Skip to main content
Log in

Review of Research Advances in Fruit and Vegetable Harvesting Robots

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

The idea of applying machine technology for fruit and vegetable harvesting has been around for 50 years. Various prototypes have been developed through the joint efforts of scholars worldwide. However, the existing prototypes of harvesting robots are still in the experimental research stage due to their low harvesting efficiency. With the help of information technology, related research has reached a milestone, which is full of opportunities and challenges for harvesting robot researchers. This paper briefly introduces the composition and operation process of harvesting robots, so that readers have a clear understanding of harvesting robots and their harvesting principles. Then the research results of harvesting robots at home and abroad are systematically summarized, and the research progress of harvesting robots is analyzed in detail from three aspects: rapid and accurate identification and positioning of target fruits, end-effector of harvesting robots, and application of harvesting path planning in harvesting robots. The results show that improving harvesting efficiency is the focus and hot spot of harvesting robot research. With the impetus of information technology, how to achieve fast and accurate recognition of multiple environments and multi-information outcomes, obtain reasonable path planning, and further optimize control strategies are all important research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu Jizhan, Li Zhiguo, Li Pingping. Research on fast and non-destructive operation of tomato picking robot [M]. Science Press, 2018

  2. Department of rural socio-economic survey, National Bureau of Statistics (2021) China rural statistical yearbook. China Statistics Publishing House, Beijing

    Google Scholar 

  3. Huijin Xu, Zhaohua W (2022) Research on the development of fruit trade between China and ASEAN under the background of One Belt, One Road. Hubei Agric Sci 61(1):171

    Google Scholar 

  4. Zhang Jing Wu, Jianzhai KF et al (2021) Analysis of vegetable market operation in China in 2020 and outlook for 2021. Chin Veg 1:4–10

    Google Scholar 

  5. Gao Y, Kang F, Kan J et al (2021) Analysis and experiment of cutting mechanical parameters for Caragana korshinskii (CK) branches. Forests 12(10):1359

    Google Scholar 

  6. Hua Y, Zhang N, Yuan X et al (2019) Recent advances in intelligent automated fruit harvesting robots. Open Agric J 13(1):101–106

    Google Scholar 

  7. Li Qinchuan Hu, Chuanyu TW et al (2008) A review of end-effector research in fruit and vegetable picking robots. J Agric Mach 39(3):6

    Google Scholar 

  8. Rose DC, Lyon J, de Boon A et al (2021) Responsible development of autonomous robotics in agriculture. Nature Food 2(5):306–309

    Google Scholar 

  9. Vrochidou E, Tziridis K, Nikolaou A et al (2021) An autonomous grape-harvester robot: integrated system architecture. Electronics 10(9):1056

    Google Scholar 

  10. Wang S, Zhou H, Zhang C et al (2022) Design, development and evaluation of latex harvesting robot based on flexible Toggle. Robot Auton Syst 147:103906

    Google Scholar 

  11. Chen M, Chen F, Zhou S (2021) Research progress of flexible picking end-effector. For Mach Woodwork Equip 49(11):11–16

    Google Scholar 

  12. Zhang B, Xie Y, Zhou J et al (2020) State-of-the-art robotic grippers, grasping and control strategies, as well as their applications in agricultural robots: a review. Comput Electron Agric 177:105694

    Google Scholar 

  13. Bu LX, Chen CK, Hu GR et al (2020) Technological development of robotic apple harvesters: a review. INMATEH-Agric Eng 61(2):151–164

    Google Scholar 

  14. Rongda Wu, Tianci C, Shiang Z et al (2021) Research progress of key technologies for fruit and vegetable picking robots. Mechatron Eng Technol 50(9):5

    Google Scholar 

  15. Pan Fan, Bin Yan, Meirong Wang et al (2021) Three-finger grasp planning and experimental analysis of picking patterns for robotic apple harvesting. Comput Electron Agriculture 188:106353

    Google Scholar 

  16. Tian S, Ashraf MA, Kondo N et al (2013) Optimization of machine vision for tomato grafting robot. Sens Lett 11(6–7):1190–1194

    Google Scholar 

  17. Hayashi S (2005) Robotic harvesting technology for fruit vegetables in protected horticultural production. In: 7th fruit, nut and vegetable production engineering symposium at Montpellier, France, Held from Sept 12–16, 2005

  18. Biqing L, Yongfa L, Hongyan Z et al (2016) The design and realization of cherry tomato harvesting robot based on IOT. Int J Online Biomed Eng (iJOE) 12(12):23–26

    Google Scholar 

  19. Taqi F, Al-Langawi F, Abdulraheem H, et al. (2017) A cherry-tomato harvesting robot. In: 2017 18th international conference on advanced robotics (ICAR). IEEE, pp 463–468

  20. Chiu YC, Chen S, Lin JF (2013) Study of an autonomous fruit picking robot system in greenhouses. Eng Agric Environ Food 6(3):92–98

    Google Scholar 

  21. Chiu YC, Yang PY, Chen S (2013) Development of the end-effector of a picking robot for greenhouse-grown tomatoes. Appl Eng Agric 29(6):1001–1009

    Google Scholar 

  22. Qingchun F, Wei C, Jianjun Z et al (2014) Design of structured-light vision system for tomato harvesting robot. Int J Agric Biol Eng 7(2):19–26

    Google Scholar 

  23. Feng Q, Zou W, Fan P et al (2018) Design and test of robotic harvesting system for cherry tomato. Int J Agric Biol Eng 11(1):96–100

    Google Scholar 

  24. Wang Y, Yang Y, Wang J et al (2015) An ontology-based approach to integration of hilly citrus production knowledge. Comput Electron Agric 113:24–43

    Google Scholar 

  25. Wang Y, Zhang Y, Yang Y et al (2020) Discrete element modelling of citrus fruit stalks and its verification. Biosys Eng 200:400–414

    Google Scholar 

  26. Wang Y, Yang Y, Yang C et al (2019) End-effector with a bite mode for harvesting citrus fruit in random stalk orientation environment. Comput Electron Agric 157:454–470

    Google Scholar 

  27. Davidson JR Mo C (2015) Mechanical design and initial performance testing of an apple-picking end-effector. In: ASME international mechanical engineering congress and exposition. american society of mechanical engineers, 57397: V04AT04A011.

  28. Davidson J, Mo C, Silwal A, et al (2015) Human-machine collaboration for the robotic harvesting of fresh market apples. In: Proceedings of IEEE ICRA workshop on robotics in agriculture

  29. Davidson J R, Silwal A, Hohimer C J, et al (2016) Proof-of-concept of a robotic apple harvester. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE pp 634–639

  30. Baeten J, Donné K, Boedrij S, et al (2008) Autonomous fruit picking machine: A robotic apple harvester. Field and service robotics. Springer, Heidelberg pp 531-539

  31. Wei J, Zhijie Q, Bo X et al (2018) A nighttime image enhancement method based on Retinex and guided filter for object recognition of apple harvesting robot. Int J Adv Rob Syst 15(1):1729881417753871

    Google Scholar 

  32. Ji W, Zhao D, Cheng F et al (2012) Automatic recognition vision system guided for apple harvesting robot. Comput Electr Eng 38(5):1186–1195

    Google Scholar 

  33. Ji W, Meng X, Qian Z et al (2017) Branch localization method based on the skeleton feature extraction and stereo matching for apple harvesting robot. Int J Adv Rob Syst 14(3):1729881417705276

    Google Scholar 

  34. Longsheng F, Bin W, Yongjie C et al (2015) Kiwifruit recognition at nighttime using artificial lighting based on machine vision. Int J Agric Biol Eng 8(4):52–59

    Google Scholar 

  35. Song Z, Zhou Z, Wang W et al (2021) Canopy segmentation and wire reconstruction for kiwifruit robotic harvesting. Comput Electron Agric 181:105933

    Google Scholar 

  36. Suo R, Gao F, Zhou Z et al (2021) Improved multi-classes kiwifruit detection in orchard to avoid collisions during robotic picking. Comput Electron Agric 182:106052

    Google Scholar 

  37. Bac CW, van Henten EJ, Hemming J, Edan Y (2014) Harvesting robots for high-value crops: state-of-the-art review and challenges ahead. J Field Robot 31:888–911. https://doi.org/10.1002/rob.21525

    Article  Google Scholar 

  38. Hua Y, Zhang N, Yuan X, Quan L, Yang J, Nagasaka K, Zhou XG (2019) Recent advances in intelligent automated fruit harvesting robots. Open Agric J. https://doi.org/10.2174/1874331501913010101

    Article  Google Scholar 

  39. Xiao X, Wang Y, Jiang Y (2022) End-effectors developed for citrus and other spherical crops. Appl Sci 12:7945

    Google Scholar 

  40. Shigematsu K, Hayashi S, Yamamoto S et al (2009) Study on the annual utilization of a harvesting robot for forcing culture in strawberries. J Jpn Soc Agric Mach 71(6):106–114

    Google Scholar 

  41. Hayashi S, Yamamoto S, Saito S et al (2014) Field operation of a movable strawberry-harvesting robot using a travel platform. Japan Agric Res Quart: JARQ 48(3):307–316

    Google Scholar 

  42. Yoshida H, Yamamoto S, Hayashi S et al (2008) Development of a movable bench system for high-density cultivation of strawberries. J Jpn Soc Agric Mach 70(4):98–106

    Google Scholar 

  43. Chen M, Chen F, Zhou W, et al (2022) Design of flexible spherical fruit and vegetable picking end-effector based on vision recognition. In: J Phys Conf Series. IOP Publishing, 2246(1): 012060

  44. Rouba W, Libo Z, Yunhong D et al (2015) Vision servo-based fruit localization method for strawberry picking robot. J Agric Eng 31(22):25–31

    Google Scholar 

  45. Gharakhani H, Thomasson JA, Lu Y (2022) An end-effector for robotic cotton harvesting. Smart Agric Technol 2:100043

    Google Scholar 

  46. Kootstra G, Wang X, Blok PM et al (2021) Selective harvesting robotics: current research, trends, and future directions. Curr Robot Rep 2:95–104

    Google Scholar 

  47. Siyu W, Chengqiang N, Zhao L et al (2021) Status and trends of research on typical fruit and vegetable picking robots. Xinjiang Agric Mech 6:14–17

    Google Scholar 

  48. Shamshiri R, Weltzien C, Hameed IA, Yule J, Grift IE, Balasundram T, Chowdhary G (2018) Research and development in agricultural robotics: A perspective of digital farming

  49. Yan P, Brave L, Yang Y et al (2018) Research progress on the application of soft robotic claws in fruit and vegetable picking. Trans Chin Soc Agric Eng 34(9):11–20

    Google Scholar 

  50. Zhaomin S (2018) Changes in world citrus production and inspiration for China’s citrus development. Friends Fruit Farmers 9:4

    Google Scholar 

  51. Changhui Y, Yanping L, Yi W et al (2019) Research on recognition and positioning system of citrus picking robot in natural environment. J Agric Mach 50(12):14–22

    Google Scholar 

  52. Sun Q, Zhong M, Chai X et al (2023) Citrus pose estimation from an RGB image for automated harvesting. Comput Electron Agric 211:108022

    Google Scholar 

  53. Yin H, Sun Q, Ren X et al (2023) Development, integration, and field evaluation of an autonomous citrus-harvesting robot. J Field Robot 40(6):1363–1387

    Google Scholar 

  54. Fengyun Wu, Yaxin Ye, Siyu C et al (2022) Rapid recognition of banana multi-target features in complex environments. J South China Agric Univ 43(2):96–104

    Google Scholar 

  55. Zhou L, Ren L, Chen Y et al (2021) Bio-inspired soft grippers based on impactive gripping. Adv Sci 8(9):2002017

    Google Scholar 

  56. Jieli D, Wenfeng Yi, Hongjun W et al (2021) Design and experiment of a banana bunching mechanism. J South China Agric Univ 42(2):116–123

    Google Scholar 

  57. Bu L, Hu G, Chen J (2021) Assessment of grasp ability for an end-effecter with fin-ray structure. In: J Phys Conf Series IOP Publishing 1865(3):032030

  58. Zahid A, Mahmud MS, He L et al (2021) Technological advancements towards developing a robotic pruner for apple trees: a review. Comput Electron Agric 189:106383

    Google Scholar 

  59. Legun K, Burch K (2021) Robot-ready: how apple producers are assembling in anticipation of new AI robotics. J Rural Stud 82:380–390

    Google Scholar 

  60. Ning Z, Luo L, Ding XM et al (2022) Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards. Comput Electron Agric 196:106878

    Google Scholar 

  61. Arad B, Balendonck J, Barth R et al (2020) Development of a sweet pepper harvesting robot. J Field Robot 37(6):1027–1039

    Google Scholar 

  62. Polic M, Tabak J, Orsag M (2021) Pepper to fall: a perception method for sweet pepper robotic harvesting. Intell Serv Robot 15:1–9

    Google Scholar 

  63. Hu X, Yu H, Lv S, et al (2021) Design and experiment of a new citrus harvesting robot. In: 2021 international conference on control science and electric power systems (CSEPS). IEEE pp 179–183

  64. Xiao X, Huang J, Li M et al (2021) Parameter analysis and experiment of citrus stalk cutting for robot picking. Engenharia Agrícola 41:551–558

    Google Scholar 

  65. Xie, Kong D, Wang Q (2022) Optimization and experimental study on structural parameters of bio-inspired tarsus compliant end-effector to reduce the risk of fruit sliding out from end-effector for cherry tomato harvesting. In: Proceedings of the institution of mechanical engineers, part c: journal of mechanical engineering science 09544062211067777

  66. Gharakhani H, Thomasson JA (2021) Challenges and solutions in designing an end-effector for robotic cotton harvesting. In: 2021 ASABE annual international virtual meeting. American society of agricultural and biological engineers p 1

  67. Wang G, Yu Y, Feng Q (2016) Design of end-effector for tomato robotic harvesting. IFAC-PapersOnLine 49(16):190–193

    Google Scholar 

  68. Wang Z, Xun Y, Wang Y et al (2022) Review of smart robots for fruit and vegetable picking in agriculture. Int J Agric Biol Eng 15(1):33–54

    MathSciNet  Google Scholar 

  69. Bogue R (2020) Fruit picking robots: has their time come? Ind Robot Int J Robot Res Appl 47(2):141–145

    Google Scholar 

  70. Jizhan Liu, Pingping Li, Qi Ni, Zhiguo Li (2010) Design and experiment of vacuum suction cup device for tomato picking robot. J Agric Mach 41(10):170–173+184

    Google Scholar 

  71. Gao J, Zhang F, Zhang J et al (2022) Development and evaluation of a pneumatic finger-like end-effector for cherry tomato harvesting robot in greenhouse. Comput Electron Agric 197:106879

    Google Scholar 

  72. Deniz C (2023) A robust and simple collision avoidance approach for pick and place robot applications. Industr Robot 50(5):841–847

    Google Scholar 

  73. Wang M, Li J, Zhu P et al (2017) Photoelectric automatic rotation direction-finding detection method and mechanism design of cherry tomato petiole. Trans Chin Soc Agric Eng 33(1):42–48

    Google Scholar 

  74. Kondo N, Monta M, Fujiura T (2012) Basic constitution of a robot for agricultural use. Adv Robot 10(4):339–353

    Google Scholar 

  75. Kurpaska S, Sobol Z, Pedryc N et al (2020) Analysis of the pneumatic system parameters of the suction cup integrated with the head for harvesting strawberry fruit. Sensors 20(16):4389

    Google Scholar 

  76. Xiao X, Huang J, Li M et al (2022) Fast recognition method for citrus under complex environments based on improved YOLOv3. J Eng 2022(2):148–159

    MathSciNet  Google Scholar 

  77. Hanjiang Y, Lijun Li, Zicheng G (2016) Forward kinematicsanalysis and experiment of hybrid harvesting robot based onscrew theory. Trans Chin Soc Agric Eng Trans CSAE 32(9):53–59

    Google Scholar 

  78. Hayashi S, Ganno K, Ishii Y et al (2002) Robotic harvesting system for eggplants. Japan Agric Res Quart: JARQ 36(3):163–168

    Google Scholar 

  79. Marchese AD, Rus D (2015) Design, kinematics, and control of a soft spatial fluidic elastomer manipulator. Int J Robot Res 35(7):840–869

    Google Scholar 

  80. Arikapudi R, Vougioukas SG (2023) Robotic Tree-fruit harvesting with arrays of Cartesian Arms: a study of fruit pick cycle times. Comput Electron Agric 211:108023

    Google Scholar 

  81. Tian S, Wang J, Xu H (2022) Firmness measurement of kiwifruit using a self-designed device based on acoustic vibration technology. Postharvest Biol Technol 187:111851

    Google Scholar 

  82. Shi Y, Zhu K, Zhai S et al (2018) Design of an apple-picking end effector. Strojniski Vestnik/J Mech Eng 64(4):216–224

    Google Scholar 

  83. Zahid A, He L, Zeng L et al (2020) Development of a robotic end-effector for apple tree pruning. Trans ASABE 63(4):847–856

    Google Scholar 

  84. Zahid A, Mahmud MS, He L et al (2020) Development of an integrated 3R end-effector with a cartesian manipulator for pruning apple trees. Comput Electron Agric 179:105837

    Google Scholar 

  85. Ji W, Qian Z, Xu B et al (2017) Grasping damage analysis of apple by end-effector in harvesting robot. J Food Process Eng 40(6):e12589

    Google Scholar 

  86. Shaoming Q, Qinghua Y, Zhiheng W et al (2010) Research on holding characteristics of cucumber and end-effector of cucumber picking. Trans Chin Soc Agric Eng 26(7):107–112

    Google Scholar 

  87. Mehta SS, Burks TF (2014) Vision-based control of robotic manipulator for citrus harvesting. Comput Electron Agric 102:146–158

    Google Scholar 

  88. Mehta SS, MacKunis W, Burks TF (2016) Robust visual servo control in the presence of fruit motion for robotic citrus harvesting. Comput Electron Agric 123:362–375

    Google Scholar 

  89. Wang Y, Yang Y, Zhao H et al (2020) Effects of cutting parameters on cutting of citrus fruit stems. Biosys Eng 193:1–11

    Google Scholar 

  90. Elango N, Faudzi A (2015) A review article: investigations on soft materials for soft robot manipulations. Int J Adv Manuf Technol 80(5):1027–1037

    Google Scholar 

  91. Yamamoto S, Hayashi S, Yoshida H et al (2014) Development of a stationary robotic strawberry harvester with a picking mechanism that approaches the target fruit from below. Japan Agric Res Quart: JARQ 48(3):261–269

    Google Scholar 

  92. Arata J, Kondo H, Ikedo N et al (2011) Haptic device using a newly developed redundant parallel mechanism. IEEE Trans Rob 27(2):201–214

    Google Scholar 

  93. Rus D, Michael T et al (2015) Design, fabrication and control of soft robots. Nature 521(7553):467–475

    Google Scholar 

  94. Zhang L, Zhu X, Huang J et al (2022) BDS/IMU integrated auto-navigation system of orchard spraying robot. Appl Sci 12(16):8173

    Google Scholar 

  95. Ye L, Duan J, Yang Z et al (2021) Collision-free motion planning for the litchi-picking robot. Comput Electron Agric 185:106151

    Google Scholar 

  96. Bac CW, Hemming J, Van Tuijl BAJ et al (2017) Performance evaluation of a harvesting robot for sweet pepper. J Field Robot 34(6):1123–1139

    Google Scholar 

  97. Hayashi, Yamamoto, Saito, et al (2014) Field operation of a movable strawberry-harvesting robot using a travel platform. JARQ-JPN AGR RES Q

  98. Valk TA, Mouton LJ, Otten E et al (2019) Synergies reciprocally relate end-effector and joint-angles in rhythmic pointing movements. Sci Rep 9(1):1–17

    Google Scholar 

  99. Kondo N, Taniwaki S, Tanihara K, et al . (2007) n End-effector and manipulator control for tomato cluster harvesting robot. In: 2007 ASAE annual meeting American society of agricultural and biological engineers.

  100. Habegger R, Bergamo E, Schwab W et al (2021) Impact of intensive modification of sweet pepper plants on performance of end effectors for autonomous harvesting. Eur J Hortic Sci 86(4):354–359

    Google Scholar 

  101. Tang Y, Chen M, Wang C et al (2020) Recognition and localization methods for vision-based fruit picking robots: a review. Front Plant Sci 11:510

    Google Scholar 

  102. Yang H, Chen L, Chen M et al (2019) Tender tea shoots recognition and positioning for picking robot using improved YOLO-V3 model. IEEE Access 7:180998–181011

    Google Scholar 

  103. Yang Q, Chang C, Bao G et al (2018) Recognition and localization system of the robot for harvesting Hangzhou White Chrysanthemums. Int J Agric Biol Eng 11(1):88–95

    Google Scholar 

  104. Xu LJ, Kang ZL, Huang P et al (2016) Research on intelligent watermelon identification and positioning method in natural scene. J Intell Fuzzy Syst 31(4):2109–2117

    Google Scholar 

  105. Kang DH, Lee SY, Kim JK et al (2019) Development of an automatic grafting robot for fruit vegetables using image recognition. J Bio-Environ Control 28(4):322–327

    Google Scholar 

  106. Jidong L, De-An Z, Wei J et al (2016) Recognition of apple fruit in natural environment. Optik 127(3):1354–1362

    Google Scholar 

  107. Gao G, Zhao S, Zhang C et al (2015) Study on fruit recognition methods based on compressed sensing. J Comput Theor Nanosci 12(9):2937–2942

    Google Scholar 

  108. Ceng J, Zeng L, He L (2019) Apple fruit recognition algorithm based on multi-spectral dynamic image analysis. Sensors 19(4):949

    Google Scholar 

  109. Tian Y, Duan H, Luo R et al (2019) Fast recognition and location of target fruit based on depth information. IEEE Access 7:170553–170563

    Google Scholar 

  110. Wu G, Li B, Zhu Q et al (2020) Using color and 3D geometry features to segment fruit point cloud and improve fruit recognition accuracy. Comput Electron Agric 174:105475

    Google Scholar 

  111. Nevo O, Orts Garri R, Hernandez Salazar LT et al (2015) Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Sci Rep 5(1):1–10

    Google Scholar 

  112. Zhang X, Zhu Y, Su Y et al (2021) Quantitative extraction and analysis of pear fruit spot phenotypes based on image recognition. Comput Electron Agric 190:106474

    Google Scholar 

  113. Lv J, Lv X, Ma Z (2022) A fruit recognition method of green grape images in the orchard. N Z J Crop Hortic Sci 50(1):1–16

    Google Scholar 

  114. Nyarko EK, Vidović I, Radočaj K et al (2018) A nearest neighbor approach for fruit recognition in RGB-D images based on detection of convex surfaces. Expert Syst Appl 114:454–466

    Google Scholar 

  115. Arefi A, Motlagh AM, Mollazade K et al (2011) Recognition and localization of ripen tomato based on machine vision. Aust J Crop Sci 5(10):1144–1149

    Google Scholar 

  116. Wei X, Jia K, Lan J et al (2014) Automatic method of fruit object extraction under complex agricultural background for vision system of fruit picking robot. Optik 125(19):5684–5689

    Google Scholar 

  117. Lin G, Tang Y, Zou X et al (2019) In-field citrus detection and localisation based on RGB-D image analysis. Biosys Eng 186:34–44

    Google Scholar 

  118. Saedi SI, Khosravi H (2020) A deep neural network approach towards real-time on-branch fruit recognition for precision horticulture. Expert Syst Appl 159:113594

    Google Scholar 

  119. Chen D, Tang J, Xi H et al (2021) Image recognition of modern agricultural fruit maturity based on internet of things. Traitement du Signal 38(4):1237–1244

    Google Scholar 

  120. Jia W, Mou S, Wang J et al (2020) Fruit recognition based on pulse coupled neural network and genetic Elman algorithm application in apple harvesting robot. Int J Adv Rob Syst 17(1):1729881419897473

    Google Scholar 

  121. Yu L, Xiong J, Fang X et al (2021) A litchi fruit recognition method in a natural environment using RGB-D images. Biosys Eng 204:50–63

    Google Scholar 

  122. Meng YH, Wang JQ, Tian EL et al (2020) Research on navigation of agricultural UAV based on single chip microcomputer control. J Agric Mech Res 42(3):245–248

    Google Scholar 

  123. Li T, Xie F, Zhao Z et al (2023) A multi-arm robot system for efficient apple harvesting: perception, task plan and control. Comput Electron Agric 211:107979

    Google Scholar 

  124. Kelman EE, Linker R (2014) Vision-based localisation of mature apples in tree images using convexity. Biosys Eng 118:174–185

    Google Scholar 

  125. Ji J, Zhu X, Ma H et al (2021) Apple fruit recognition based on a deep learning algorithm using an improved lightweight network. Appl Eng Agric 37(1):123–134

    Google Scholar 

  126. Bu R, Xiong J, Chen S et al (2020) A shadow detection and removal method for fruit recognition in natural environments. Precision Agric 21(4):782–801

    Google Scholar 

  127. Kurtulmus F, Lee WS, Vardar A (2011) Green citrus detection using ‘eigenfruit’, color and circular gabor texture features under natural outdoor conditions. Comput Electron Agric 78(2):140–149

    Google Scholar 

  128. Chaivivatrakul S, Dailey MN (2014) Texture-based fruit detection. Precision Agric 15(6):662–683

    Google Scholar 

  129. Ilyas T, Khan A, Umraiz M et al (2021) Multi-scale context aggregation for strawberry fruit recognition and disease phenotyping. IEEE Access 9:124491–124504

    Google Scholar 

  130. Wang Z, Jin L, Wang S et al (2022) Apple stem/calyx real-time recognition using YOLO-v5 algorithm for fruit automatic loading system. Postharvest Biol Technol 185:111808

    Google Scholar 

  131. Payne A, Walsh K, Subedi P et al (2014) Estimating mango crop yield using image analysis using fruit at ‘stone hardening’stage and night time imaging. Comput Electron Agric 100:160–167

    Google Scholar 

  132. Patel HN, Jain RK, Joshi MV (2011) Fruit detection using improved multiple features based algorithm. Int J Comput Appl 13(2):1–5

    Google Scholar 

  133. Kang H, Zhou H, Wang X et al (2020) Real-time fruit recognition and grasping estimation for robotic apple harvesting. Sensors 20(19):5670

    Google Scholar 

  134. Hussain D, Hussain I, Ismail M, et al . A Simple and Efficient Deep Learning-Based Framework for Automatic Fruit Recognition. Computational Intelligence and Neuroscience 5:85. Doi https://doi.org/10.1155/2022/6538117

  135. Uçar A, Özalp R (2017) Efficient android electronic nose design for recognition and perception of fruit odors using Kernel extreme learning machines. Chemom Intell Lab Syst 166:69–80

    Google Scholar 

  136. Wen J, Zhao Y, Rong Q et al (2022) Rapid odor recognition based on reliefF algorithm using electronic nose and its application in fruit identification and classification. J Food Measure Character 16:1–12

    Google Scholar 

  137. Alresheedi KM, Aladhadh S, Khan RU et al (2022) Dates fruit recognition: from classical fusion to deep learning. Comput Syst Sci Eng 40(1):151–166

    Google Scholar 

  138. Wang D, Song H, Tie Z et al (2016) Recognition and localization of occluded apples using K-means clustering algorithm and convex hull theory: a comparison. Multimed Tools Appl 75(6):3177–3198

    Google Scholar 

  139. Song C, Wang D, Bai H et al (2021) Apple disease recognition based on small-scale data sets. Appl Eng Agric 37(3):481–490

    Google Scholar 

  140. Chen X, Yang SX (2013) A practical solution for ripe tomato recognition and localisation. J Real-Time Image Proc 8(1):35–51

    Google Scholar 

  141. Liu J, Wang X (2020) Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model. Plant Methods 16(1):1–16

    MathSciNet  Google Scholar 

  142. Le TM, Bublin M, Breiteneder H et al (2013) Kiwifruit allergy across Europe: clinical manifestation and IgE recognition patterns to kiwifruit allergens. J Allergy Clin Immunol 131(1):164–171

    Google Scholar 

  143. Fu L, Feng Y, Wu J et al (2021) Fast and accurate detection of kiwifruit in orchard using improved YOLOv3-tiny model. Precision Agric 22(3):754–776

    Google Scholar 

  144. Li B, Wang M (2013) In-field recognition and navigation path extraction for pineapple harvesting robots. Intell Autom Soft Comput 19(1):99–107

    Google Scholar 

  145. Dao PN, Liu YC (2022) Adaptive reinforcement learning in control design for cooperating manipulator systems. Asian J Control 24(3):1088–1103

    Google Scholar 

Download references

Funding

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 62027810, 61733004), the National Key Research and Development Program of China (2020YFB1712600) and the Hunan Science and Technology Program of Hunan Province (2017XK2102, 2018GK2022). It is also supported by China Scholarship Council (CSC NO. 201806130027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaonan Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Wang, Y. & Jiang, Y. Review of Research Advances in Fruit and Vegetable Harvesting Robots. J. Electr. Eng. Technol. 19, 773–789 (2024). https://doi.org/10.1007/s42835-023-01596-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-023-01596-8

Keywords

Navigation