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Abstract
With increasing demand for energy, the penetration of alternative sources such as renewable energy in power grids has 
increased. Solar energy is one of the most common and well-known sources of energy in existing networks. But because of 
its non-stationary and non-linear characteristics, it needs to predict solar irradiance to provide more reliable Photovoltaic 
(PV) plants and manage the power of supply and demand. Although there are various methods to predict the solar irradiance. 
This paper gives the overview of recent studies with focus on solar irradiance forecasting with ensemble methods which are 
divided into two main categories: competitive and cooperative ensemble forecasting. In addition, parameter diversity and data 
diversity are considered as competitive ensemble forecasting and also preprocessing and post-processing are as cooperative 
ensemble forecasting. All these ensemble forecasting methods are investigated in this study. In the end, the conclusion has 
been drawn and the recommendations for future studies have been discussed.

Keywords Ensemble methods · Solar forecasting · Cooperative ensemble forecasting

1 Introduction

Over the past decades, the installation and use of renewable 
energy resources have been increased due to environmental 
issues such as greenhouse gas emission and the reduction 
of fossil fuels [1]. Solar energy has been considered as one 
of the promising renewable energy resources that is able to 
supply global energy demand [2]. According to the Inter-
national Renewable Energy Agency (IRENA), the top ten 

countries with the highest installed solar PV capacity are 
shown in Fig. 1 [3].

According to Renewables 2015-Global Status Report, the 
global capacity of PV was increased from 3.7 GW to 7 GW 
between 2004 and 2007 and promoted to 40 GW by 2010. In 
2015, the global installed capacity of solar PV was around 
177 GW [4]. From 2016 to 2018, based on IRENA, there 
was a significant rose in this amount, and it was reached 
about 580 GW in 2019 [5]. It has been reported that in the 
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first half of 2020, when the COVID-19 pandemic began, the 
renewable energy sector experienced a turbulent but in the 
second half of 2020, the PV sector set a new record for new 
capacity which bring the solar sector to its highest level of 
more than 800 Gigawatts [6].

However, the stochastic and unpredictable nature of solar 
energy led to a number of challenges such as voltage fluctua-
tions and uncertainties in a power grid that make it difficult 
to maintain a balance between power generation and load 
demand [7]. For example, in cloudy days, the amount of 
solar irradiation received by PV modules has many fluc-
tuations because of the cloud’s movement, and the random 
fluctuations have a significant effect on the solar PV output. 
Various solutions including power system, scheduling bat-
tery reserves, demand response, backup generators, and dis-
patches have been proposed to prevent the above problems. 
However, several limitations exist in all these solutions. 
There is a restriction for the power decline rate of backup 
generators which caused by the unit ramp rate resulted in 
difficulties to meet the incremental power generation need. 
However, due to the storage capacity restrictions and the 
costs of battery reserves, massive-scale energy storage is 
still difficult to realize. In addition, there is a difficulty to 
achieve demand response technologies based on the lack 
information on behavior of electricity consumption by con-
sumers. Besides, the efficiency of the above-mentioned solu-
tions largely depends on forecasting accuracy (with different 
time horizons) [8].

There are two important aspects of accurate forecasting: 
reducing the negative effect of random PV power on the 
power grid and providing and predicting PV power output 
data for grid operators. Hence, there is a need to forecast the 
output power of solar systems for the efficient operation of 
the power grid. The optimal management of a power system 
and scheduling is important for estimation of the reserves. It 
should be noted that the solar forecasting becomes important 

due to the substantial increase of  solar power genera-
tion worldwide [9].

Recently, the ensemble forecasting was recommended for 
solar power forecasting. In the ensemble forecasting, many 
different predictions from different forecasting are aver-
aged. Averaging predictions can reduce server biases when 
weather data in outliers, so it can avoid the worst predic-
tions. However, it takes a lot of computational time to run 
the ensemble forecasting model since several forecasting 
models should be simulated at the same time. However, this 
computational time can be further reduced when the parallel 
computing environment is used. In this study, we organize 
several ensemble solar power forecasting algorithms.

For forecasting methods of PV systems, several review 
papers have been published during the last 5 years with 
different scopes. Their focus was ensemble methods, PV 
output power forecasting different PV forecasting methods, 
probabilistic forecasting in solar PV [10], hybrid models 
for solar radiation forecasting, post-processing in solar fore-
casting, different methods for forecasting solar irradiance. 
Hence, there is no updated review with a focus on ensemble 
methods only. Therefore, we reviewed the ensemble meth-
ods for solar irradiation forecasting which are divided into 
main categories competitive (data diversity and parameter 
diversity) and Cooperative forecasting (pre-processing and 
post-processing). The recent research papers that have been 
selected which have been published in the last four years 
(2018–2022) were reviewed. The above-mentioned papers 
focused on reviewing solar forecasting methods. In this 
paper, the focus was ensemble forecasting methods and their 
classifications in recent years.

For the ensemble forecasting, there are two topics, 
namely, solar power forecasting and solar irradiance fore-
casting which are known as solar forecasting. Meanwhile, 
they have strongly correlated each other and cannot be sepa-
rated [11]. It should be noted that there is a strong impact 
of solar irradiance on the accuracy of solar power forecasts 
for the power production systems of various sorts. If a fore-
caster wants to achieve high-quality solar power forecasts, 
the ability to produce and use irradiance forecasts is essen-
tial. In other words, the best solar power prediction is always 
obtained by irradiance forecasts generation and conversion 
of those irradiance forecasts into power forecasts through 
a model chain. Therefore, there is not an intrinsic value for 
irradiance forecast [12].

2  Parameters Affecting Solar Power 
Forecasting

Forecast horizon, weather classification, error metrics, data 
processing affect the output of solar forecasting.
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Fig. 1  Top 10 countries in 2019 based on total PV installed capacity 
(GW) [3]
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2.1  Forecast Horizon

The forecast horizon can be considered as the period of time 
in the future (time duration between actual and effective 
time) in which the forecasting should be done [13]. Forecast-
ing horizon can be classified into four categories including 
(1) very short-term, (2) short-term, (3) medium-term, and 
(4) long-term [14]. These categories have summarized in 
Table 1 based on their forecasting period and related appli-
cations in solar energy systems. However, there is still no 
universal classification criterion [15].

Furthermore, the researchers usually prefer to use another 
categories to describe forecast horizon including intra-hour, 
intra-day, and day-ahead which have overlapping with short, 
medium, and long-term forecast horizons [16].

2.1.1  Intra‑Hour

Intra-hour overlaps with very short-term and short-term 
horizon categories and it also shows the forecast horizon 
from a few seconds to an hour. It is used for operating regu-
lation reserves, storage system optimization and ensuring 
grid quality and stability. Such prediction methods can be 
applied in high solar penetration areas such as island grids 
with spans of 1 to 6 h.

2.1.2  Intra‑Day

This forecast horizon is used for 1–6 h and also overlaps 
with short and medium categories and its application is in 
electricity trading outside the standard grid and control of 
electric loads [13].

2.1.3  Day‑Ahead

Day-ahead Forecasts spanning 6–48 h overlaps with long-
term and medium horizons. Similar models have been used 
in unit commitment and utilities planning [13]. In gen-
eral, before designing PV power forecasting model, the 

appropriate forecast time horizon should be selected because 
the accuracy of a predicted model depends on the forecast 
time horizon [17]. It has been proved that by increasing the 
forecasting horizon, the accuracy of forecasting model (both 
single and ensemble models) will reduce. This is because 
the correlation between cloud cover and solar irradiance, 
which cannot be accurately predicted for long periods of 
time. In addition, for power system planning, long time 
horizon forecast is suitable while for PV output forecast-
ing, intra-hour and intra-day forecast horizons work better 
[13]. In other words, the model performance decreases with 
long-time ahead forecasting (regardless of model type) while 
the performance would be increased with short time ahead 
forecasting [18].

2.2  Weather Classification

It is obvious that the PV output is directly related to solar 
irradiance and the accuracy solar irradiance forecasting 
models is strongly affected by meteorological factors such 
as cloud cover, temperature, humidity and wind speed. So, 
climate change and different weather types have significant 
effect on PV system output power. Therefore, to enhance the 
prediction performance, weather condition is an effective 
step especially for solar irradiance forecasting [19]. Typi-
cally, there are two types of weather condition including 
the normal (ideal) weather type (sunny days), and abnormal 
(non-ideal) weather types (rainy, foggy and windy days) 
[20]. According to some studies [19–21], the PV output 
power increases in the ideal weather condition (on sunny 
days) but it decreases in non-ideal conditions.

2.3  Error Metrics

In different steps of model development, evaluation error 
metrics are one of the important parameters. In these kinds 
of metrics, the comparison of the actual solar irradiance 
and predicted solar irradiance are considered [22]. It should 
be noticed that there are different units for performance of 

Table 1  Different types of forecasting horizon and its applications [15]

Forecasting horizon Forecasting period Applications

Very short-term From seconds to 1 min ahead – Electricity market
– Monitoring of real-time electricity dispatch
– PV storage control

Short-term Several hours
ahead

Unit commitment

Medium-term One week or within a month ahead Scheduling of power systems maintenance 
(solar energy integrated power or conventional 
systems)

Long-term Months or Years ahead – Electricity pricing
– Load forecasting
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metrics while W/m2 has been used as unit for the statistical 
error of solar radiation [18]. The most used evaluation met-
rics for statistical measures are listed as below:

2.3.1  Mean Bias Error (MBE)

Mean bias error (MBE): It shows the average bias of a fore-
casting model:

The larger value of MBE shows the larger forecast bias. 
A positive value of MBE indicates over-forecasting, while a 
negative value means under-forecasting [23].

2.3.2  Mean Absolute Error (MAE)

Mean absolute error (MAE): This error is defined as the 
average of the absolute difference between forecasted and 
actual solar irradiance values. This metric is suitable for 
uniform forecast errors as equal weight will be given to all 
discrepancies in the data, and it is also used for both regres-
sion problems and evaluation of overall forecast accuracy. 
Generally, the smaller MAE is better in forecasting.

where yi(act) is the actual solar irradiance, N is the total num-
ber of observations and yi(pred) is the predicted solar irradi-
ance [22, 24].

2.3.3  Mean Square Error (MSE)

Mean square error (MSE): It is calculated by averaging the 
square of difference between the actual and predicted solar 
irradiance values [25].

2.3.4  Root Mean Square Error (RMSE)

Root mean square error (RMSE) is for calculating this met-
ric, the square root for the average of the squared differences 
of predicted and actual solar irradiance values is considered. 
RMSE is known as the most appreciated performance evalu-
ation metrics which the outliers in the data can be elimi-
nated and identified by using this error [25]. Also, as RMSE 
emphasizes the larger errors, it can be used as the main error 
metric [26].

(1)MBE =
1

N
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2.3.5  Normalized RMSE (nRMSE)

Normalized RMSE (nRMSE) is the overall deviations of 
larger datasets nRMSE can be calculated.

where ( y ) denotes the mean of the actual solar irradiance 
[27].

2.3.6  Mean Absolute Percentage Error (MAPE)

Mean absolute percentage error (MAPE) is appropriate to 
evaluate uniform prediction errors like MAE however it can 
be calculated by the difference between each predicted and 
actual observation divide by the actual observed value.

2.3.7  Determination Coefficient ( R2)

Determination coefficient (R^2) is used to extract the infor-
mation of the determination between the forecasted and the 
real values and the ranges is between 0 and 1 [28].

2.3.8  Skill Score ( ��)

Skill score (SS) measures the performance comparison of a 
forecast model to a benchmark model is defined as S score 
and calculated as follows:

A good forecast model has a SS score of 1. In addition, 
SS zero shows a model with forecast error equal to the 
benchmark model while a negative SS score is a forecast 
with higher forecast error [1].

2.4  Model Inputs

Inputs are considered as a key factor in forecasting and have a 
significant effect on prediction accuracy. Generally, inappropriate 
inputs can cause forecast errors in a system, for example, time 
delay, cost, and computational complexity [13]. In addition, the 
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correlation of the input and output values affects the performance 
of a forecasting model. Therefore, the correlation of PV power 
output with the different meteorological inputs, such as wind 
speed and direction, module temperature, atmospheric tempera-
ture, solar irradiance, and humidity is important [17]. Among 
these parameters, solar irradiance is the most significant input 
for the forecast and the accuracy of solar irradiance measurement 
affects the precision of solar power generation [29]. Demon-
strated the highest influence in solar power generation related to 
the intensity of solar irradiance. In [30] a SVR-based forecasting 
model was proposed for PV power generation forecasting. In this 
study, the data of three different PV plants, in Malaysia, includ-
ing the actual PV power generation data and meteorological data 
(wind speed atmospheric temperature and solar irradiance) were 
used and PV power output was received only from 8:00 AM until 
19:00 PM. Also, PV output for a specific day and the pattern 
of solar irradiance was presented and the correlation coefficient 
(R^2 = 0.9888) was obtained. The correlation coefficient indi-
cated that there is a strong correlation between solar irradiance 
and PV power output. It means that if PV power increases, then 
the irradiance will be increased, and vice versa. Other studies 
also showed that the PV power generation are correlated with 
other meteorological variables, such as clouds, module tempera-
ture, ambient temperature, and wind speed. Also, fluctuations in 
sunlight intensity caused by several parameters such as dissipa-
tion, cloud motion, deformation and birth which affect PV output 
[31]. In another study by [32], PV output variation with solar 
irradiance was analyzed during clear day, partially cloudy and 
cloudy day. Based on the results, in comparison with to partially 
cloudy and clear day, there was a high fluctuations degree with 
solar irradiance were observed in cloudy days.

Another input variables linked together are wind speed, 
ambient and module temperature. The temperature of the mod-
ule and its level of efficiency depend on the ambient tempera-
ture and the amount of absorbed radiation, as well as the wind 
speed. When the ambient temperature increases (It is related 
to cloud cover), the module temperature rises and its efficiency 
also increases, while the wind speed reduces the module tem-
perature and heat loss [33]. It is concluded that there was a 
weak correlation between atmospheric temperature and PV 
power output while there was an extremely weak correlation 
between wind speed and PV power output. In contrast, there 
was a strong correlation between module temperature and PV 
power output [30].

3  Classification of Solar Forecasting 
Algorithms

This section classifies solar forecasting algorithms. The 
solar forecasting algorithms are categorized into three 
main models, such as ensemble methods physical and sta-
tistical time-series.

Group one is statistical models, which are based on his-
torical data as input for prediction and the internal behav-
ior of the model does not have any effect on it [34]. In 
other words, to reconstruct the hourly irradiance and met-
rological parameters statistical models can be used [35]. 
Different techniques are applied for statistical time series 
such as support vector machine and Markov chain, regres-
sion model, and artificial neural network [34].

The second group generated solar power output from 
external data such as temperature and solar irradiance and 
their physical relationship. The generation of irradiance 
forecast between many meteorological parameters would 
be achieved by using mathematical models. It can be said 
that the results are highly dependent on the accurate input 
data of the model [36]. This group can be categorized 
into two subsections of Empirical models and Numerical 
weather prediction (NWP) [37].

The last group is hybrid or ensemble methods which 
used the combination of physical and statistical methods 
with unique features to solve the limitations of an indi-
vidual model. By these models, at the same time, the fore-
casting performance increases, and the model would be 
improved. Figure 2 shows these forecasting methods [38].

For forecasting methods of PV systems, several review 
papers have been published during the last 5 years with 
different scopes. Their focus was ensemble methods, PV 
output power forecasting [14, 32] different PV forecast-
ing methods, probabilistic forecasting in solar PV [40], 
hybrid models for solar radiation forecasting [41], post-
processing in solar forecasting [42], different methods 

Forecasting 
techniques

Based on Statistical 
time series method

Artificial Neural 
Network

Support Vector 
Mashine

Markov Chain 
Model

Autoregressive 
Model

Based on Physical 
method

NWP Model

Empirical Model

Based on ensemble 
method

Combination of 
Statisticsl and 

Physical method

Fig. 2  Forecasting techniques based on three major models [39]
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for forecasting solar irradiance [24]. Hence, there is no 
updated review with a focus on ensemble methods only. 
Therefore, we reviewed the ensemble methods for solar 
irradiation forecasting which are divided into main catego-
ries competitive (data diversity and parameter diversity) 
and Cooperative forecasting (pre-processing and post-
processing). The recent research papers that have been 
selected which have been published in the last four years 
(2018–2022) were reviewed. The above-mentioned papers 
focused on reviewing solar forecasting methods. In this 
paper, the focus was ensemble forecasting methods and 
their classifications in recent years.

4  Ensemble Forecasting

The main concept of the ensemble technique is training 
ensemble members (base learners) and combining their pre-
diction into a single output to obtain a better performance 
of a model [10]. Figure 3 shows the typical ensemble model 
construction. As can be seen in the Fig. 3, the training data 
is divided into many data sets initially and then several base 
learners are generated which can be run in a sequential or 
parallel format. Finally, the combination of the models is run 
on the base learners [43, 44].

On other words, Ensemble (hybrid, or combined tech-
nique) [45] is a machine learning-based method in which 

multiple predictors are used to reach an aggregated decision 
in a better format of base predictors. The main advantage of 
an ensemble model is that it incorporates the suitability of 
its constituent techniques, which creates a stronger learn-
ing pattern. So, it can enhance the accuracy and strengths 
of individual methods by solving their weakness [46]. The 
ensemble methods can be classified into two main groups: 
competitive and cooperative [39]. In a competitive ensem-
ble forecasting, the different base predictors train individu-
ally with the same or different data sets by using different 
parameters, and the prediction is obtained from the averag-
ing the decisions of all base predictors [47]. Besides, in a 
cooperative method, the prediction task will be divided into 
several sub-tasks to select the appropriate predictors based 
on the characterization of the sub-tasks. Then, the sum of all 
the base predictors’ output will be the final decision of the 
cooperative method [48]. Table 2 shows the classification of 
the ensemble methods and their perspectives in this paper.

4.1  Competitive Forecasting Methods

As mentioned earlier, a competitive forecast model can 
construct individual forecast models for the formation of an 
ensemble forecast model by using multiple predictors using 
different initial conditions or parameters. Then, the results 
will be obtained from the average of the selected models 
[50]. The competitive ensemble methods are categorized 
into three different perspectives which are data diversity, 
parameter diversity and structural diversity [51]. Diversity 
is the most important feature of competitive ensemble fore-
casting. For instance, the outputs of base predictors would 
be similar if the sub-tasks are similar while the performance 
improvement of ensemble predictor will be marginal [50]. 
Some examples of competitive ensemble forecasting models 
are discussed in detail in the following sections.

4.1.1  Data Diversity

Data diversity is another category of cooperative ensemble 
forecasting method in which the forecasting system is fed by 
more than one input dataset [37]. As shown in the following 
equations, two variations have been used in Eq. (9) and (10). 
Equation (9) applies N predictors ( f1(0)… fN(0)) for N input Fig. 3  General construction flow of an ensemble model

Table 2  The classification of 
ensemble forecasting models 
[49]

Categories Perspectives Methods

Competitive ensemble methods –Data diversity
–Parameter diversity

– Bagging, Boosting
– Ensemble Kalman filter

Cooperative ensemble methods –Pre-processing
–Post-processing

– Wavelet decomposition (WD), 
empirical mode decomposition 
(EMD)

– ARMA-GARCH, ARMA-ANN,
   ARIMA-SVM
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datasets ( x1 … xN ) for forecasting and the weighted average 
of all of them will be the final prediction value, but Eq. (10) 
uses only a single predictor for forecasting.

where ŷ is the predicted value and h is the forecast horizon. 
The most famous and common approaches are bagging and 
boosting for data diversity [48].

4.1.1.1 Bagging For the first time, bagging or bootstrap 
aggregation is proposed by Breiman [52] which helps 
decrease the forecasting model variance and avoid overfit-
ting [51]. The main goal of Bagging is developing several 
estimators, and results are obtained by aggregation of indi-
vidual estimators' results with some biasing. Initially, from 
the original datasets, several subsets of training data are cre-
ated. Then, the samples are selected randomly by replace-
ment of data samples which are called Bootstrap samples. In 
the last step, the final prediction is obtained by aggregation 
of all the bootstrap predictions [53]. This process is shown 
in the Fig. 4. One of the advantages of bagging is the error 
reduction of ensemble generation in the baseline predictors. 
It also can correlate its estimation with real datasets using 
estimates of test sets or cross-validation [54].

The most common algorithm for bagging is random forest 
(RF) which can be considered as an extension to the bagging 
concept, and it can be used for classification and regres-
sion. It is made up and trained a large number of decision 
trees (DT), called predictors and each one produces their 
own predictions that can create higher accuracy in predic-
tion [55, 56]. In the RF algorithm, several decision trees are 
constructed through training samples (a subset of training 

(8)ŷ(t + h) =
1

N

N∑

i=1

wifi(xi(t))

(9)wi ≥ 0

(10)
N∑

i=1

wi = 1

(11)ŷ(t + h) = f (x1(t), x2(t), ..., fN(t))

samples are injected into each tree randomly). The output 
of RF is obtained by voting of the decision trees. In the case 
of classification, the majority of voting is used to decide on 
the predicted result, but in the case of regression, the mean 
value of the predictions of all the estimators (predictors) are 
calculated [57]. Figure 5 demonstrates the procedure of ran-
dom forest method graphically. This algorithm does not need 
complex calculations like Support Vector Machine (SVM) 
and ANN because the main variables that should be adjusted 
is the number of trees. Also, compared to ANN and SVM, 
training process is faster in the RF. In this algorithm, if suf-
ficient trees are used, it is robust to noise and outliers [58].

The application of this RF can be extended to PV produc-
tion forecasting. Tato et al. used real radiation measurements 
by combining simple radiation predictions to forecast the 
solar energy output for short-term temporal horizons [60]. A 
daily PV power generation forecasting model was proposed 
for North China in winter. The proposed forecasting model 
was based on the RF algorithm using weather measures [61]. 
The accuracy, extra trees (ET), computational cost, and sta-
bility of RF were investigated for predicting hourly PV gen-
eration output. In addition, their performance was compared 
with support vector regression (SVR).The performance 
evaluation of the model was performed by RMSE,MAE 
and R2 and it was concluded that RF performed better on 

Fig. 4  Block diagram depicting 
the basic principle of Bagging 
ensemble learning

Fig. 5  The procedure of random forest method [59]
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both testing datasets and training in comparison with other 
models [62].

4.1.1.2 Boosting To solve the classification and regression 
problems, boosting can be also used as a powerful learning 
strategy. It can be done by the combination of weak learners’ 
output into a ‘committee’. In addition, boosting improves 
the suitability of model to data through bias reduction [63]. 
In boosting process, several subsets can be created from the 
original dataset. Then it sequentially trains the predictors 
with the datasets, and at each iteration, smaller weights to 
the data points with smaller error and higher weights to 
the data points with larger error can be assigned by boost-
ing. Finally, the results from the weighted average will be 
obtained [64]. Different algorithms can be used in bagging 
methods such as AdaBoost [65], extreme gradient boost-
ing (XGBM) [64], gradient boosting machine (GBM) [66, 
67], and light gradient boosting machine (LGBM) [68]. The 
recent advances in boosting algorithms and their applica-
tions in energy research such as solar and wind have been 
reviewed in [69]. They showed that how boosting algorithms 
are effective tools in the performance of prediction models.

Recently published studies are using bagging and boost-
ing methods for forecasting solar irradiation in different 
regions. For instance, to improve forecasting accuracy in 
solar energy output, the bagging model was used in [64]. 
The proposed model as an ensemble method, used a based 
learner such as random forest, LGBMs, and XGB by addi-
tion of the past output data as new features. They found the 
bagging model was successful with higher model accuracy 
using past data features in comparison with a single model 
learner with default features [70].

In another study [44], the solar irradiance in five cities of 
Turkey, was estimated using bagging and boosting ensem-
bles of ANN, SVR, and DT. Initially, base models (ANN, 
SVR, and DT) were created and examined by using 5 years 
of meteorological data. Then, both bagging and boosting 
ensembles methods of the base models were constructed 
and tested with the same data. The results were compared 
based on two evaluation metrics namely RMSE and R2 . 
Based on their findings, the proposed model based on bag-
ging and boosting methods improved ANN, DT, and SVR 
in the range of 4.6 and 14.6% in terms of RMSE. Several 
ensemble models to predict short-term solar irradiation were 
investigated in [71]. The models were RF, Boosted Trees, 
Generalized Random Forest, and Bagged Trees. The perfor-
mance of these methods was validated via R2 , and MAPE 
and compared with SVR and Gaussian process regression. 
Their result showed a consistent and reliable prediction of 
ensemble methods with high prediction performance in com-
parison with the individual regressors. In a recent study in 
2022, a natural gradient boosting (NGBoost) algorithm was 
used for the short-term solar prediction of PV power systems 

based on physical properties and human intuition. They 
found a 6% increase in RMSE with apply the most important 
features of the ensemble method [72]. The several tree-based 
methods of DT, GBM, XGBM, bagging, RF, and Cubist [73, 
74] were used for forecasting solar irradiation on Jeju Island 
of South Korea. Also, the prediction performance was based 
on the comparison of MAE, RMSE, and nRMSE [75].

4.1.2  Parameter Diversity

In contrast to data diversity, parameter diversity is applied 
different parameter settings with the same dataset (x) . The 
forecasts can be generated by using the following equation 
[71]:

where h is the forecast horizon and ŷ  is the predicted 
value.�i is the parameter for model fi, i = 1,… ,N . It should 
be noted that the combination in Eq. (11) uses equal weight-
ing. In solar forecasting studies, once the initial conditions 
need to be perturbed, parameter diversity is a useful method 
as it considers numerical weather prediction models (NWP) 
[76, 77]. Kalman filter is the best method for NWP which 
estimates the “true” state of a dynamical system from noisy 
measurement data [76]. The Kalman filter processes in two 
stages including prediction and updating. In the first stage, 
there is a current state vector contains one or more state vari-
ables, and the state vector with a weighted average will be 
updated in the second stage. In addition, without additional 
past information the Kalman filter can run in real-time due to 
its recursive nature [78]. Recently, studies have been focused 
on solar forecasting using Kalman filtering.

Yang studied day-ahead NWP forecasts using Kalman fil-
tering to forecast solar irradiation. The author used multiple 
Kalman filters to maintain the original day-ahead horizon 
[79]. Besides, an ensemble version of Kalman filter is called 
Ensemble Kalman Filter (EnKF) which can correct the fore-
casted value in real-time. It can be done by propagating the 
uncertainties in time [80]. In another study, the Ensemble 
Kalman filter (EnKF) and the state-space models (SSMs) in 
a short-term PV forecasting experiment which was effective 
to forecast solar irradiance [81].

Jiranantacharoen and Benjapolakul [82], used Kalman 
filter and Auto-Regressive Integrated Moving Average 
(ARIMA) for forecasting photovoltaic (PV) power genera-
tion. It should be noted that real-time measurement data is 
needed for Kalman filter to adjust forecast value. Then, they 
proposed a predictor model to apply in the forecasting pro-
cess once the real-time measurement data is unavailable. 
In addition, to estimate the transition matrix for running 

(12)ŷ(t + h) =
1

N

N∑

i=1

fi(xi, 𝜃i)
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Kalman filter, ARIMA model was applied and the model 
performance by RMSE and SS.

4.2  Cooperative Forecasting Method

The cooperative ensemble forecasting is another type of 
forecasting method which divides a prediction task into 
several sub-tasks. These tasks can be solved individually. 
In addition, the output of one sub-task can be considered 
as input into another sub-task. The overall process of coop-
erative ensemble forecasting is distributed into two assign-
ments. The first one is to realize the prediction task and 
the second are some assistant procedures such as parameter 
optimization, preprocessing, error correction, feature selec-
tion, and postprocessing.

Preprocessing includes reconstruction, decomposition, 
and transformation which should be performed before fore-
casting [49, 83].

4.2.1  Pre‑Processing

Raw renewable energy data always has a variety of irregu-
larities, such as fluctuations. These irregularities have non-
linear and non-static properties which deteriorate the perfor-
mance of the forecasting. Therefore, many pre-processing 
techniques have been proposed to break down the renewable 
energy original signal into several components. These tech-
niques have better behavior in terms of outliers and data 
variance. With the help of these data processors, the negative 
impact of irregularities on the accuracy of forecasting can be 
properly reduced [84]. In pre-processing forecasting method, 
the data is decomposed into finite numbers of subseries. It is 
noted that the performance of each subseries is better than 
the original data. Then, to forecast each subseries, a regres-
sor and feature extractor is developed independently. In the 
next step, all the subseries is combined, and the forecast-
ing results will be generated. In pre- processing forecasting, 
Empirical mode decomposition (EMD) and wavelet decom-
position (WD) are two of the most widely used methods.

Time series of temperature data and solar irradiance 
include seasonal long-term behaviors, and daily informa-
tion. Then, for training, it is suggested that to improve the 
forecasting model performance, the frequency contents of 
those signals can be used instead of the signal values. To do 
this, the forecasting models can be based on WD of the input 
data [85]. The WD deal with the solar irradiance fluctuations 
and used to the input data of a forecasting model and, which 
resulted in the accuracy improvement. Generally, an efficient 
solution have been made using the wavelet techniques repre-
sents resulted in the noise reduction in input datasets before 
to implement a prediction model [86]. Some recent studies 
about WD have summarized (based on the time) as follows.

A method combining the ANN and WD for the forecast-
ing of the power output of PV power plants was presented 
by [87]. The solar irradiance, and meteorological variables 
such as wind speed humidity, and temperature were chosen 
as inputs of the ANN model as the ANN cab address their 
nonlinear relationships. Then, WD is used to decompose 
output power of the PV plant resulted in the separation of 
the useful information from disturbances. To build mod-
els of the decomposed PV output power, ANNs were used. 
Next, various sky conditions include rainy, sunny, cloudy 
days and overcast were proposed for validation of model. 
Finally, the ANN applied to compare the presented method 
with the traditional forecasting method. The results show 
that the method needs lesser calculation time with a better 
forecasting accuracy (MAE of 10.34%, MAPE of 25.37%, 
and RMSE of 19.66% in rainy days).

Ref [88] was proposed a model called wavelet-coupled 
support vector machine (W-SVM) in global incident solar 
radiation forecasting based on the minimum and maximum 
temperature, sunshine hours, evaporation, precipitation 
and wind speed as the predictor variables. The merit of the 
W-SVM was benchmarked with the classical SVM model 
to achieve reliable results. Then, in sixteen months from 
01-March-2014 to 30-June-2015 the data were divided into 
the test (35%) and train (65%) were set for daily forecasting 
in the three metropolitan stations (Townsville Aero, Cairns 
Aero and Brisbane City). The forecast was assessed by pre-
diction errors (MAE, RMSE, MAPE and RMSE). Based on 
the obtained results, the W-SVM model outperformed bet-
ter than the classical SVM model for daily forecasts using 
optimum input combinations.

By referring to Ref [89], the merits of wavelet-ANN mod-
els for solar radiation was evaluated. Four different archi-
tectures of ANN, namely: adaptive neuro-fuzzy inference 
system (ANFIS), generalized regression neural networks 
(GRNN), nonlinear autoregressive recurrent exogenous neu-
ral network (NARX) and multilayer perceptron (MLP), were 
used. The for the decomposition of the complex meteoro-
logical signals into relatively simple parts a wavelet analysis 
was used by using wavelet sub-series, and WD transforma-
tion algorithm. The ANN models were used to model the 
wavelet sub-series and reconstructed to estimate the original 
signal. Then, to model the global horizontal irradiation over 
Abu Dhabi city, four meteorological parameters were used 
including temperature, wind speed, relative humidity, and 
sunshine duration. The proposed approach was compared to 
ANN models and validated using different metrics such as 
R2 , t-statistics RMSE, MAPE, and MBE. The results con-
firmed the proposed model improved the performance of 
the ANN with a maximum 6.84% in R2 for MLP meanwhile 
GRNN had a minimum of 2.78% RMSE.

In [90], the information from raw data with better 
time–frequency resolutions was extracted and the WD was 
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applied with a bias compensation Random Forest (BCRF) 
to minimize the prediction error. First, eight decomposi-
tion layers in a stationary WD on all raw input features was 
conducted. Then, there was the lower frequency part of the 
original signal due to the higher level of decomposition. 
Next, to train a random forest regression model, the wavelet 
components and time index as input features were used. In 
fact, an additional model created by BCRF for prediction of 
bias to minimize the overall prediction error. Finally, Wave-
let – BCRF technique was evaluated by some error metrics 
like RMSE, MAE and MAPE.

In another study [91], a multi-level WD based on day-
ahead solar irradiance forecasting method was proposed. 
Initially, based on the weather conditions, the daily solar 
irradiance series were classified into different patterns. Next, 
the solar irradiance of the next day 24 h was forecasted for 
each weather pattern using decomposed data series at dif-
ferent WD levels. Then, to fuse the predictions into the final 
forecasting output, a data-driven fusion model correspond-
ing to the weather pattern was applied. Simulations showed 
that the forecasting accuracy using different WD level data 
depends on the weather conditions (sunny, cloudy, and rainy 
days). In sunny days, solar irradiance reached its maximum 
level, and the day irradiance curves were relatively smooth 
but in cloudy and rainy days the value of solar irradiance was 
limited to lower level and there were more fluctuations on 
the irradiance curve. To evaluate the forecasting accuracy, 
two error indexes of RMSE and MAE were used. Gener-
ally, the forecasting accuracies all showed the trend of first 
increasing and then decreasing with WD.

It is usually difficult to design and implement forecast-
ing for non-stationary and non-linear signals. In these 
cases, The Fourier decomposition can be used, but it does 
not give information about the time scale characteristics of 
the data. For this purpose, and in order to obtain the time-
scale (time–frequency) information of the signal, we need 
a method that can extract the intrinsic modes embedded in 
the signal [92]. The EMD method is proposed for this pur-
pose. In fact, the EMD is a signal analysis method that can 
indicate at what moment, at what frequency, and with what 
intensity it is present in a signal [93]. By EMD, there is the 
decomposition of complex signal into a linear combination 
of a limited number of intrinsic mode functions (IMFs) with 
different frequencies. Hence, each of the decomposed IMF 
components contains local characteristic signals of different 
time scales from the original signal [94]. Some recent stud-
ies about EMD have been summarized as follows.

In [95], a hybrid EMD and back-propagation neural net-
work (BPNN) model was developed for photovoltaic power 
forecasting. Then, each IMF and each residue were used to 

train and test the BPNN individually after decomposition 
of the time series data by EMD. The proposed EMD-BPNN 
model was evaluated with PV power output time series data. 
These data were collected from grid-connected photovol-
taic power plants situated in Ghaziabad India at the 100-
kW roof-top. Finally, for the performance evaluation of the 
developed model, the data set was divided into the four eval-
uation parameters (the symmetric mean absolute percentage 
error (sMAPE), MSE, MAPE and RMSE) and weekly data 
groups (W1-W4) with different forecast horizon of 1, 12 
and 24 h ahead. Results indicate that the data decomposition 
greatly reduces the complexity and evaluation time of the 
back-propagation neural network.

In another study, a hybrid model with combination of 
ensemble empirical mode decomposition (EEMD) and 
variable weights was proposed to overcome the demerits 
of the EMD-ANN model. Therefore, for decomposition of 
the original PV power generation data, EEMD was used to 
obtain the residual component (RC) and multiple IMF com-
ponents (IMF_1, IMF_2). Then, residual components and 
IMF components were divided into low-frequency, interme-
diate-frequency, and high-frequency sequences. Then for the 
prediction of these three sequences, variable-weight com-
bination forecasting (VWCF) method was used. The final 
prediction results were calculated by summation of the three 
forecasting results. The total number of input variables were 
13 but the first six influential variables were top net solar 
rad, surface thermal rad down, temperature, surface pres-
sure, time, and relative humidity. RF algorithm was used for 
the determination of each variable impact. Then, MAE and 
MSE were used for the evaluation of the forecasting results. 
Based on the results, the prediction accuracy of each model 
(in terms of MAE) was reduced [96].

In [97], the pre-processing technique (EMD) was pre-
sented to decompose the data. The solar power output using 
the hybrid design of the SVR model was used the improved 
feature selection algorithm that resulted in the selection of 
the best input for the next processing. To improve the accu-
racy of the model, the proposed model design was set based 
on the SVR with PSO optimization. The results showed that 
the proposed algorithm performed better with an average of 
14.55 (%) of MAPE and 0.95 (%) of nRMSE.

In [98], several multiscale decompositions in methods 
of time series analysis for one-hour global solar radiation. 
Initially, they calculated the time series of the Clear Sky 
Index. Then, EMD and EEMD methods are used to decom-
pose obtained time series data. Next, the data was forecasted 
using a linear model and nonlinear models using the time 
scale fast fluctuation components. Finally, the results were 
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improved with a combined hybrid model using globally mul-
tiscale decomposition.

In [98], several multiscale decompositions in methods 
of time series analysis for one-hour global solar radiation. 
Initially, they calculated the time series of the Clear Sky 
Index. Then, EMD and EEMD methods are used to decom-
pose obtained time series data. Next, the data was forecasted 
using a linear model and nonlinear models using the time 
scale fast fluctuation components. Finally, the results were 
improved with a combined hybrid model using globally 
multiscale decomposition. Table 3, which summarizes the 
above, is in the appendix.

4.2.2  Post‑Processing

In general, PV data have time-series measurements [99]. 
In post-processing as a cooperative ensemble forecasting 
method, the forecasting will be performed using the time 
series consecutively by two or more predictors. Moreover, 
a time series data may have more than one characteristic 
which is suitable for one specific method. For instance, ANN 
is usually applied for modeling non-linear time series while 
ARIMA model is suitable for modeling linear time series 
[38]. The main advantage of post-processing methods is 
the improvement in the bias of the global solar irradiance 
forecasts without the need for a long-term historical data 
database [100]. Based on post-processing method, there 
are several cooperative ensemble forecasting models such 
as ARIMA-ANN, ARIMA-SVM, ARMA_ANN, ARIMA-
GARCH, SARIMA-ANN, and ARMA-GARCH.

Based on the information, post-processing methods are 
often used to optimize the output of NWP models. It should 
be noted that detailed local weather characteristics generally 
cannot be resolved by NWP predictions hence the spatial 
resolution has been grown recently. By using the post-pro-
cessing method, the forecasting will be improved slightly 
by consideration of the uncertainty of some forecasts even 
though most of the forecasting methods contain statistical 
components. Therefore, the final forecasting of data using 
this method will be a single value that can be valid for future 
studies [101].

In a study by David et al., two models of ARMA and 
GARCH were combined to provide probabilistic forecasts 
of solar irradiance. Meanwhile, to provide a framework that 
can be applied in an operational context easily, a recursive 
estimation of the parameters of the models has been set up. 
As they found, higher forecast accuracy has been found by 
the proposed method (ARMA and GARCH) in comparison 
to other machine learning-based techniques. In addition, this 
model gave additional information about the uncertainty of 
the forecasts which was easier to set up [102].

A solar radiation forecasting time series model was pro-
posed for multi-hour forecasting (915 h ahead) and a small-
scale solar radiation database (30- and 1-s scales) for 1 day 
(47,000 s ahead). In the first step, ARMA was used to predict 
future values of the global solar radiation time series. Then, a 
nonlinear autoregressive (NAR) neural network was applied 
for prediction purposes due to the nonlinearity in solar radia-
tion time series. The results showed that the ARMA- NAR 
combination had better accuracy. The NRMSE of the hybrid 
model was equal to 0.2034 compared to 0.3241 for ARMA 
model and NRMSE equal to 0.2634 for NAR model [103]. 
An innovative hybrid model was proposed in three differ-
ent cities in Morocco for forecasting the daily global solar 
radiation. There were three steps for estimation including 
1) evaluating the linear aspect of the problem by ARIMA 
model, and 2) building an ANN model to model the residu-
als of the ARIMA. It was estimated that the error conditions 
for the ARIMA model can be forecasted by output from 
ANN model. The findings showed that the hybrid model 
(ARIMA–ANN) was more accurate in terms of MAPE, R2, 
RMSE, MBE, NRMSE, and TS [104]. Table 2 shows the 
findings of recent studies that use ensemble methods for 
solar forecasting.

5  Conclusion

In general, the reliability of solar power systems is affected 
by the dynamic nature of solar irradiance. Changes in sun-
light intensity led to voltage and power fluctuations in solar 
power plants and disruption of power systems. A good way 
to deal with such problems is to predict solar irradiance. 
Accurate forecasting is challenging and involves a variety 
of methods statistical, physical and ensemble forecast-
ing methods. This paper has reviewed recently published 
studies (2015–2021) on solar irradiance forecasting using 
ensemble models including competitive and cooperative 
forecasting methods. The former has been divided into data 
diversity and parameter diversity and the latter has been cat-
egorized according to pre-processing and post-processing. 
In this paper, recent articles have been discussed according 
to each category. It can be concluded that ensemble mod-
els perform better than standalone ones. However, a hybrid 
models have a more complex structure, but they provide 
better accuracy. Based on the previous studies, Artificial 
Neural Network (ANN) and Space Vector Machine (SVM) 
are widely used with ensemble models (WD-ANN, EMD-
BPNN and W-SVM) due to their ability in solving complex 
and non-linear forecasting models. Also, the performance 
of the ensemble models has been evaluated by some error 
metrics such as RMSE and MAE. It has been indicated that 
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EMD is more powerful, and it has more accuracy than WD 
in solar forecasting methods.

Moreover, in this article, the different model inputs, and 
their effects on the prediction of solar radiation have been 
discussed. Common inputs are solar irradiance, atmospheric 
and module temperature, wind speed and direction, and 
humidity. Among these, solar irradiance is most positively 
correlated with PV output. Solar irradiance is positively 

correlated with temperature and negatively correlated with 
wind speed. Other weather variables have low correlation 
values.

Appendix

See Table 3.

Table 3  Summary of recent studies for solar forecasting using perspectives

Ref Time ahead Input variables Output variable Perspectives Forecasting 
method

Error Comparison

[53] Daily −Wind Speed
−Wind
Direction
−Air pressure

Wind power Data diversity Bagging RMSE = 10.6% Bagging > ANN > 
k-NN

[61] Daily −Temperature
−Air
Pressure
−Wind

PV power Data diversity Random
Forest

MAPE = 8.5% RF > GBDT

[63] Daily −Temperature
−Relative humid-

ity
−Cloud cover
−Precipitation

PV power Data diversity Boosting RMSE = 9.48% Boosting > AR

[65] Hour −Wind
Speed

Wind power Data diversity Ada Boosting MAE = 1.0581
MAPE = 7.63%

AB > ANN

[76] Daily −PV power PV power Parameter
Diversity

Time series MSE = 16.24 TS > SARIMA

[77] Hour −Irradiation PV power Parameter
Diversity

SVR MAE = 37.04 SVR > NAM > 
SP

[81] Hour −Irradiation
−Temperature

Purchased PV 
power

Parameter
Diversity

Polynomial
Regression

MAPE = 10.51% –

[87] Daily − Humidity
− Temperature
− Wind Speed

PV power Pre-
processing

WD-ANN RMSE = 19.663%
MAE = 10.349%

WD-ANN > ANN

[88] Daily − Sunshine hours
− Temperature
− Wind speed—

evaporation—
precipitation

Global solar irra-
diation

Pre-
processing

W-SVM RMSE = 2.317
MJ m−2

MAE = 1.819
MJ m−2

W-SVM > SVM

[90] 6 h − Solar irradiance
− Temperature
− PV output

PV power Pre-
processing

WD-BCRF RMSE = 32.12%
MAE = 20.64%

WD-BCRF > WD-
SVM > RF

[96] 1 h − surface thermal 
rad down

− Top net solar rad
− surface pressure
− Humidity
−Temperature

PV power Pre-
processing

EEMD-VWCF RMSE = 0.0107
MAE = 0.0622

EEMD-
VWCF > BPNN > RF

[95] 1,12 and 24 h − PV power Pre-
processing

EMD-BPNN RMSE = 0.019
MAPE = 5.47%

EMD-BPNN > BPNN

[38] 10 min − Irradiation PV power Post-
processing

ANN RMSE = 6% ANN > ARIMA
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