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Abstract
With the complete implementation of the “Replacement of Coal with Electricity” policy, electric loads borne by urban power 
systems have achieved explosive growth. The traditional load forecasting method based on “similar days” only applies to the 
power systems with stable load levels and fails to show adequate accuracy. Therefore, a novel load forecasting approach based 
on long short-term memory (LSTM) was proposed in this paper. The structure of LSTM and the procedure are introduced 
firstly. The following factors have been fully considered in this model: time-series characteristics of electric loads; weather, 
temperature, and wind force. In addition, an experimental verification was performed for “Replacement of Coal with Elec-
tricity” data. The accuracy of load forecasting was elevated from 83.2 to 95%. The results indicate that the model promptly 
and accurately reveals the load capacity of grid power systems in the real application, which has proved instrumental to early 
warning and emergency management of power system faults.

Keywords Load forecasting · Long short-term memory · “Replacement of Coal with Electricity · Time series · Neural 
network

1 Introduction

Due to the impact of air pollution and energy shortages, 
Beijing, China has introduced a “Replacement of Coal with 
Electricity” policy that encourages household users to use 
electricity for heating instead of traditional coal-fired heating 

[1]. Some provinces north of Beijing have a large number of 
wind farms, which not only provides green power to Beijing 
but also reduces coal use and air pollution [2]. The major 
technology adopted in the policy of “Replacement of Coal 
with Electricity” is the air source heat pump [3], which has 
been utilized for heating in winter but appreciably increases 
the electric load at the same time.
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With the implementation of the policy, the fault rate has 
increased, especially in winter the demand for heating is 
very high. The faults are often severe due to incorrect load 
forecasting (inadequate estimation of impending accidents) 
[4, 5]. There are many load forecasting methods, includ-
ing the linear fitting, regression analysis models, and vari-
ous nonlinear models. The actual electric load is nonlinear 
and the load is usually affected by various factors, such as 
temperature and humidity [6]. Consequently, the forecasting 
accuracy of the conventional nonlinear forecasting model 
cannot meet the accuracy requirements of the modern power 
management system.

In the traditional unidirectional neural network (NN) 
model [7, 8], there is no connection between the neural 
units of the hidden layer, and each neural unit doesn’t have 
a recurrent structure [9, 10]. In [11–13], the load forecasting 
method based on the artificial neural networks are studied 
and compared. The disadvantage of traditional NN model 
is that it is impossible to consider the past and future train-
ing data on the current output. Feedforward neural network 
(FNN) is similar to the structure of the traditional neural 
network model. The difference is that its hidden layer can be 
a multi-layer structure, but the neural unit has no recurrent 
structure, so it still cannot avoid the problem of long-term 
forgetting [14].

Therefore, a recurrent neural network (RNN) is proposed 
to solve this problem, which is characterized by adding a 
recurrent structure to the neural unit of the hidden layer. In 
[15], a path forecasting method is proposed and got good 
forecasting results. However, there is only one processing 
function in the neural unit of RNN, which will cause the 
problem of gradient disappearance or explosion after recur-
rent training, and will adversely affect the forecasting results 
[16].

Long short-term memory (LSTM) neural network [17] 
is a special RNN. The structure of its neural unit contains 
four processing sections. By processing the input data and 
the cyclic input data, the problem of gradient disappear or 
gradient explosion is avoided. LSTM has been used in some 
forecasting applications. In [18], a trading technology analy-
sis method based on the LSTM is proposed to learn and fore-
cast market behavior. In [19], a short-term load forecasting 
method is proposed, which obtain good forecasting results. 
At present, according to our investigation, there are few stud-
ies on the application of using LSTM to forecast load. After 
the introduction of the "Replacement of Coal with Electric-
ity" policy, the residents’ load in some areas of Beijing has 
changed significantly, and the accuracy requirement of load 
forecasting will be higher.

Therefore, in order to more accurately forecast the load 
and reduce the loss due to load overload, this paper pro-
poses a method to predict the load using the LSTM neural 
network model. A load forecasting model based on LSTM is 

established first, and the structure of its hidden layer neural 
unit is introduced. The model fully considers the time series 
characteristics of the power load. Based on this model, the 
problem of forgetting long-term training data of traditional 
NN and FNN can be avoided. Finally, this paper experi-
mentally verified the 2016–2017 data in Changping District, 
Beijing, and analyzed the impact of temperature and wind 
speed on the prediction results.

The main contributions of this paper are as follows. (1) 
A load forecasting method based on the LSTM model is 
proposed, which take many factors, such as temperature, 
wind force, into account and avoids the shortages of gradient 
disappearance or explosion. This model can reflect the load 
capacity of the power grid in a timely and accurate manner. 
In the actual application, the load forecast accuracy has been 
increased from 83.2 to 95%. (2) It is the first time that we 
consider the effect of “Replacement of Coal with Electric-
ity” on the load forecasting. This research will mitigate the 
influence of “Replacement of Coal with Electricity” on the 
power system.

The rest of this paper is organized as follows. Section 2 is 
the load forecasting model based on LSTM. Section 3 is the 
model verification. Section 4 is the conclusion.

2  LSTM Model of Load Forecasting

LSTM neural network was proposed by Hochreiter & 
Schmidhuber (1997) and was improved by Graves. It is an 
optimized RNN neural network and has achieved success 
in many applications. Compared with conventional RNN, 
LSTM can learn long short-term information of time series 
and easily overcome gradient disappearance or explosion 
problem arising in RNN.

2.1  LSTM Model Unit

The greatest difference between the ordinary neural network 
and RNN is that each hidden unit of RNN is not independent. 
They are not only related to each other but also associated 
with the sequential input which follows the input of load data 
at the current moment into the unit of the hidden layer. This 
feature is highly instrumental in processing time series data. 

Fig. 1  RNN unfolded view
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The unfolded view of a single RNN hidden unit is shown in 
Fig. 1. xi is input the neural network module A and hi is output. 
In this cycle, the information is passed from the current step to 
the next step, which means the same neural network is copied 
multiple times and each neural network module will pass the 
information to the next one.

Figure 1 shows the procedure repeated at every step of 
RNN, except for input. Such a training method considerably 
decreases the parameters that need to be learned in the network 
and greatly shortens training time while ensuring accuracy at 
the same time.

However, RNN has its disadvantages. For a standard RNN 
architecture, the historical data that can be used in practice 
is rather limited. Moreover, the influence of historical data 
in the distant future on the output either reduces overwhelm-
ingly or explodes exponentially, which is commonly known 
as vanishing gradient or exploding gradient problem. LSTM, 
as a solution to the problem, is an improved RNN. There are 
four special structures in a single LSTM unit to describe the 
current state of the LSTM unit. Figure 2 presents three control 
gates: input, output and forget gates.

The outputs of the three gates relate to a multiplication unit 
to respectively control the input, output and status units of the 
network. When an input at the first moment is processed, the 
output of the network will be affected continuously by it, if 
the input gate is closed and the forget gate is open. The related 
formula is as follows:

where,
∑I

i
xi(t)wic denotes the input of input gate at the 

moment t and 
∑H

h
bh(t − 1)whc is the input of forget gate 

at the moment t − 1 . Besides, another formula is described 
below:

(1)ac(t) =

I∑

i

xi(t)wic +

H∑

h

bh(t − 1)whc

where, bl(t)g
(
ac(t)

)
 represents the product mapped by the 

forget gate ac(t) at the moment t. b�(t)sc(t − 1) refers to the 
product of forget gate at the moment t and the output of cell 
status at the moment t − 1 . g(⋅) is a mapping function. sc(t) 
denotes the output of cell status at the moment t. Fig. 3

In the LSTM model presented in this paper, the data 
needs to be pre-processed firstly. The input xi of each neuron 
incorporates current status and status of t − 1 . In this way, 
the load on the day t can be predicted by the data of day 
t − 1 . The model is constructed as shown in Fig. 3.

2.2  Development of LSTM Load Forecasting Model

2.2.1  Data Processing

The data collected in this paper was derived from the electric 
load data with the introduction of “Replacement of Coal 
with Electricity” in a certain area of Beijing from 2016 to 
2017. Table 1 shows the brief description of the data col-
lected from 10 kV low-voltage power grid of various stations 
in February 2017, among which Changshuiyu is the most 
representative example with high fault rate. The load fluctua-
tion was more violent when high loads were connected to the 
power system. In the experiment of this study, the maximum 
load of Changshuiyu was 215.338A in the examined month, 
which was 18.2% higher than the average. Thus, the data 
collected from Changshuiyu were used as the sample to train 
the LSTM model.

During the data acquisition process, some data with 0 
load value were removed in this paper since the number 
of days differs in some months. For the remaining data, 
November 01 was set as the start date and February 28 of the 
following year as the end. All the data was summarized in 
the load distribution chart (Fig. 4) below, where the number 
of days is the abscissa and electric load value is the ordinate.

(2)sc(t) = b�(t)sc(t − 1) + bl(t)g
(
ac(t)

)

Fig. 2  LSTM compute nodes Fig. 3  Model architecture
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2.2.2  Data Preparation

The existing data is sequential in chronological order. How-
ever, as a sample for supervised learning, the data is required 
to create the input sequence X and label Y for load forecast-
ing. t denotes the present moment, (t + 1, t + n) refers to the 
future time, and (t − 1, t − n) means the past time. These are 
intended to predict Y at the time of t. A forecasting model 
was established in this paper, where the input data, includ-
ing var(t − 1) and var(t) , was used to predict the variable 
var(t + 1) . In this case, the data was processed in Table 2.

The default activation function of LSTM is a hyperbolic 
tangent (tanh), in which the output values lie between -1 
and 1, as shown in Fig. 5. Hence, all the data also needed to 
be standardized. To ensure fairness in the experiment, the 
scaling factor must be calculated from the training dataset 
and must be used to scale the test dataset and any forecast-
ing dataset. This method was intended to avoid the adverse 
impact of the test dataset on the experiment fairness and to 
ensure reliable forecasting outcomes of the model. In this 
paper, datasets were converted and kept within [− 1, 1] using 
MinMaxScaler. The data obtained is as shown in Table 3. 

Table 1  Electric loads (A) Station name Line name Day 1 Day 2 Day 3 … Day 28

Heying Yingfang 155.22 155.92 155.22 … 132.54
Taowa Taoliu 50.98 50.98 50.98 … 59.77
Taowa Huata 192.49 192.49 192.49 … 139.75
Jundou Zhenshun 199.69 200.92 202.68 … 348.05
Jundou Shangsi 151.35 165.41 157.15 … 105.47
Taowa Changshuiyu 156.45 156.45 156.45 … 145.02
Nankou Xueshan 327.67 326.08 331.89 … 327.31
Xiangtun Xinzhuang Village 134.30 131.84 136.76 … 115.67
Shangyuan Xiying 98.44 93.17 93.17 … 107.23
Shangyuan Laima Village 163.48 151.18 154.69 … 143.27

Fig. 4  Time distribution of electric load

Table 2  Single-step forecasting

Learning frequency (time) var(t − 1) var(t)

0 0 176.67
1 176.67 164.36
2 164.36 171.39
3 171.39 170.51
4 170.51 163.48
5 163.48 165.24

Fig. 5  Tanh function graph

Table 3  Standardized dataset

Learning Frequency (time) var(t − 1) var(t)

0 −1 −0.3133
1 0.640847 −0.73136
2 0.526516 −0.49261
3 0.591808 −0.5225
4 0.583635 −0.76125
5 0.518343 −0.70148
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2.3  Development of LSTM Neural Network Model

LSTM is a special type of RNN, which can learn and 
memorize longer sequences, and does not depend on the 
pre-specified observed value of window lag as the input. 
Keras [20] is a deep-learning modeling environment, with 
CNTK, Tensorflow [21] or Theano [22] as the backend in 
python. It has the following advantages compared with 
several common deep-learning frameworks, such as Ten-
sorflow and Caffe:

(1) Keras is designed to support rapid modeling so that 
users can quickly map the architecture of the required 
model into the code. It can minimize coding workload, 
especially for well-established models, thereby speed-
ing up the development process and directing more 
attention to the design of the model.

(2) Keras is highly modularized, with which users can 
combine modules randomly to construct a desired 
model. In Keras, any neural network can be described 
as a graph or sequence model, in which the components 
are divided into the following modules: neural network 
layer, loss function, activation function, initialization 
method, regularization method, and optimization 
engine. The user can select, in a reasonable manner, 
the network required by the module construction.

(3) Keras can switch seamlessly between CPU and GPU, 
suitable for different applications, especially GPU.

In this paper, LSTM was fast built using Keras. In 
default status, the LSTM network layer in Keras main-
tains states between two batches of data. This batch of 
data represented a fixed number of rows in the training 
dataset which defines running frequency before the weight 
of the network is updated. The default state of the LSTM 
layers between batches of data is reset, thus LSTM can’t 
be presented without states. The reset time of the state 
for the LSTM layer can be controlled precisely by calling 
the function reset states. During the network compiling, 

“mean-squared-error” served as the loss function because 
it was very close to the root mean squares error to be cal-
culated. Dropout was used to reduce overfitting [23] and 
the efficient ADAM optimization algorithm [24] was also 
adopted. The network architecture was finally built as 
shown in Fig. 6.

3  Model Verification and Results Discussion

3.1  Data Introduction

In this paper, the first 90 load values of the Changshuiyu line 
were taken as the training data and the load values during 
28 days in February as the test sample. The final evaluation 
indicator was the root mean square error [25] (RMSE).

Compared with mean error, RMSE can detect more data 
patterns that, in addition to the linear trend, have not been 
described by the model, such as periodicity. For the load pre-
dicted herein, periodicity also exists. It will rise when the uti-
lization rate of electric heating in winter increases with cold 
weather. The load will slowly return to the lower level when 
the coldest season ends.

(3)MSE =
1

T2

T1+T2∑

t=T1+1

e2
t

(4)RMSE =
√
MSE

Fig. 6  Diagram of LSTM model architecture

Fig. 7  Fitting effect comparison of different models
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3.2  Model Verification

3.2.1  Verification of LSTM Model

The trained LSTM model was tested using the test dataset. 
The fitting effect of the test data is shown in Fig. 7, where the 
number of days is the abscissa and load value is the ordinate, 
with actual load values in blue and predicated ones in orange.

As shown in Fig. 7, the actual data of the first few days in 
February was unchanged but not consistent with real values, 
which might be the result of problematic data processing dur-
ing data acquisition. However, the trend of the electric load 
values during this period can still be obtained through forecast-
ing of the training model. When the training number was 50 
epochs, there is a difference existed between the predicted and 
actual values but the overall trend of rising and fall keep con-
sistent. Thus, more complex models can be trained by adding 
more epochs to acquire more accurate forecasting data (LSTM 
of 1500 epochs in Fig. 7).

As shown in Fig. 7, the LSTM neural network model can be 
employed based on the historical training data of 90 days, that 
is 1500 epochs. Compared with 50 epochs, we can find that 
the forecasting accuracy of 28 days is improved by using more 
historical data to train the LSTM model. From the 11th to the 
25th day, the predicted values are closed to the actual data. 
Actually, through analyzing the original data used to train, 
we find that the training data doesn’t include a similar value 
of the 1st-10th day and the 26th-29th days. The difference 
between the predicted and actual value is caused by insufficient 
training data. The improvement in precision can be secured by 
increasing the complexity of the training model and history 
training data.

Besides, we also applied different models, such as artificial 
neural network (ANN), convolutional neural network (CNN), 
cascading neural networks (CANN) and Boltzmann machine 
(BM). For showing clearly in the figure, we simulate the 50 
epochs for these models. It can be seen that, compared with 
the LSTM model, the predicted effects of other models are 
worse. We showed the predicted error of different models in 
the following section. It also verified that the LSTM model is 
better than others.

3.2.2  Comparison with Polynomial Models

The polynomial curve fitting method has been adopted in the 
traditional load forecasting models of which the mathematical 
model is as below:

(5)f (x|p;n ) = p0x
n + p1x

n−1 + p2x
n−2 +⋯ + pn−1x + pn

where, f (x|p;n ) refers to the model. p and n are the param-
eters of the model. p is the coefficient of the polynomial 
f. n represents the degree of the polynomial. L(p; n) is the 
loss function of the model. The common loss function is the 
square loss. Traditionally, the parameters p and n, which can 
minimize the loss function L(p; n) , are obtained by the fitting 
of historical data, and then the values to be predicted are 
gained through new input. In this study, the dataset adopted 
in the LSTM model is in the conventional model for direct 
comparison. The first 90 days is selected as the training 
set and the next 28 days as the test set. Figure 8 reveals 
three spline curves of the historical dataset and indicates 
that simple polynomial curve fitting is not applicable to the 
characteristics of load variation due to frequent changes of 
historical data.

Figure 9 demonstrates the comparison between the pre-
dicted and actual curves obtained by polynomial curve 

(6)L(p;n) =
1

2

m∑

i−1

[
f (x|p;n ) − y

]2

Fig. 8  Fit curves for historical dataset

Fig. 9  Forecasting results for the next 28 days



2339Journal of Electrical Engineering & Technology (2021) 16:2333–2342 

1 3

fitting. It is not difficult to figure out that the prediction 
curve cannot correctly reflect the variation of the original 
load value with time. The RMSE value was 23.45, much 
higher than the LSTM model. The results of the compari-
son between LSTM, polynomial model, artificial neural 
network (ANN), convolutional neural network (CNN), cas-
cading neural networks (CANN) and Boltzmann machine 
(BM) are shown in the Table 4. The abbreviations are 
mean absolute error(MAE) and mean absolute percentage 
error (MAPE) respectively.

Through the predicted error comparison of different mod-
els, it can be seen that the neural networks are better than 
the polynomial fitting model. In these models, the predicted 
effect of ANN is the worst, the LSTM model is the best. The 
CANN is the second. It is obviously that the result of the 
1,500 epochs is better than the 50 epochs.

3.3  Comparison Among Multiple Factors

Apart from historical data, multiple factors can affect the 
electric loads, such as weather, temperature and wind force. 
Electric heating is an example, which is widely used in win-
ter when more residents are facing lower temperature and 
tend to stay indoors, which may lead to a sudden elevation of 

electrical load. In this paper, the data of meteorological fac-
tors (including weather, temperature, and wind force) from 
November 2016 to February 2017 in Changshuiyu area were 
collected to describe the effect of meteorological factors on 
electric load.

There are two types of variables in the original data, char-
acter and numerical types. The wind force was simplified 
to numerical values, such as "2, 2, 2, 1, 1…". The range 
of variables varied greatly, thus it was converted into the 
interval of 0–1 using the following normalization method 
for convenient description.

The Table 5 is the Meteorological Data of Changshuiyu 
area and Table 6 is the pre-processed data of Table 5.

3.3.1  Effect of Temperature on Electric Load

The temperature will directly affect the time that people 
spent outdoors. The intention to stay indoors is greater when 
the environment temperature is lower, which will increase 
the electric load. To clarify the relationship between tem-
perature and load, the temperature data hereinafter is repre-
sented by "1-actual temperature". Figure 10 shows that the 
tendencies of daily average temperature and daily load are 
essentially the same, and almost synchronize at the turning 
points. Moreover, the RMSE (0.227) obtained by calcula-
tion indicates that the tendencies of average temperature 
and electric loads share considerable similarities. When 
the temperature was considered as maximum and minimum 
daily temperatures, the RMS values were 0.3350 and 0.3325 
respectively. It is found that the minimum daily tempera-
ture can more adequately reflect the variation rules of load 
compared with the maximum. However, both variables are 
not as accurate as average temperature. The inaccuracy is 

(7)xnormalization =
x −Min

Max −Min

Table 4  Model comparison results

Model Name RMSE MAE MAPE

LSTM (50 epochs) 14.00 11.97 0.0727
LSTM (1,500 epochs) 7.07 6.10 0.0610
Polynomial Fitting 23.45 18.22 0.1240
ANN 17.03 14.85 0.0902
CNN 16.96 14.45 0.0879
CANN 14.40 12.82 0.0773
BM 16.79 14.72 0.0900

Table 5  Meteorological data 
of changshuiyu area from 
November 2016 to February 
2017 (only showing the data of 
the first 10 days)

Electric load(A) Number 
of days

Date Max. Daily 
temperature 
(℃)

Min. 
Daily
tem-
perature 
(℃)

Weather 
descrip-
tion

Wind
direction

Wind force

176.67 1 01-NOV-2016 8 −2 Cloudy Southwest 2
164.36 2 02-NOV-2016 12 1 Clear Southwest 2
171.39 3 03-NOV-2016 13 2 Haze South 2
170.51 4 04-NOV-2016 14 4 Haze West 1
163.48 5 05-NOV-2016 18 2 Clear South 2
165.24 6 06-NOV-2016 10 3 Cloudy North 1
160.84 7 07-NOV-2016 11 2 Clear Northwest 2
167.00 8 08-NOV-2016 11 −1 Clear South 2
176.67 9 09-NOV-2016 8 2 Haze Northeast 1
184.58 10 10-NOV-2016 10 1 Haze South 1
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caused by the minimum temperature, which only lasts for 
a short period, such as the early hours of a day, and mini-
mally impacts the frequency of heater use throughout the 
day. Additionally, the average daily temperature indicates 
that the overall temperature of the day will have a greater 
influence on people’s decision on travel.

3.3.2  Effect of Wind Force on Electric Load

Wind force herein refers to the average wind force in the 
area included in the weather data of the day. The presence 
of drastic variations revealed in Fig. 11 is caused by a few 
discrete values of wind force, so it is omitted in this study. 
As shown in Fig. 11, when the wind was relatively stronger 
around day 23 and day 80, the load also reached a peak. 
These noticeable time nodes suggest that wind force can 
provide certain guidance about load forecasting, but the 
effect is not as obvious as the prediction through average 
temperature.

3.3.3  Effect of Weather on Electric Load

Unlike temperature and wind force, the weather can’t be 
denoted by numerical variables. There were totally 15 
types of weather in Changshuiyu area during the investi-
gated period. The influence of weather on electric load is 
less significant than that of wind force and temperature, 
which can be illustrated by snow and cloudy days. Due to 
travel inconvenience, people tend to stay indoors on snowy 
days when the temperature is lower compared to cloudy 
days. As shown in Fig. 12, the load is the abscissa, and fre-
quency of certain weather is the ordinate. It demonstrates 
that high load occurred more frequently on snowy days. 
The difference between the two types of weather, however, 
is not rather evident. In fact, the temperature is gener-
ally lower throughout the winter, even on some cloudy or 
clear days despite colder weather on snow days. In these 
circumstances, it is difficult to forecast the electric load 
only with the weather.

Table 6  Pre-processed data

Electric load(A) Number of 
days

date Max. Daily tem-
perature (℃)

Min. Daily tem-
perature (℃)

Weather 
description

Wind direction Wind force

0.450085 1 01-NOV-2016 0.65517241 0.63636364 Cloudy Southwest 0.5
0.275028 2 02-NOV-2016 0.79310345 0.77272727 Clear Southwest 0.5
0.375 3 03-NOV-2016 0.82758621 0.81818182 Haze South 0.5
0.362486 4 04-NOV-2016 0.86206897 0.90909091 Haze West 0.25
0.262514 5 05-NOV-2016 1 0.81818182 Clear South 0.5
0.287543 6 06-NOV-2016 0.72413793 0.86363636 Cloudy North 0.25
0.224972 7 07-NOV-2016 0.75862069 0.81818182 Clear Northwest 0.5
0.312571 8 08-NOV-2016 0.75862069 0.68181818 Clear South 0.5
0.450085 9 09-NOV-2016 0.65517241 0.81818182 Haze Northeast 0.25
0.562571 10 10-NOV-2016 0.72413793 0.77272727 Haze South 0.25
0.525028 11 01-NOV-2016 0.75862069 0.77272727 Cloudy North 0

Fig. 10  Relationship between average temperature and load (x: time, 
y: temperature/load)

Fig. 11  Relationship between wind force and electric load (x: time, y: 
wind force/load)
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4  Conclusion and Prospect

With the implementation of the “Replacement of Coal 
with Electricity” policy, the connection of more loads to 
the power system has resulted in increased fluctuation. The 
forecasting accuracy of the traditional linear fitting model is 
only 83.2%, far from meeting the actual needs. Against such 
backdrop, an LSTM model was established in this paper 
to simplify load forecasting into the prediction about time 
series data for one-dimensional load, which can be used to 
precisely predict the load variations in the scenario of con-
siderable load fluctuations.

In the experiment of this study, the load data of Chang-
shuiyu in Changping District of Beijing in 2016 and 2017 
was illustrated as an example. The area features violent 
load fluctuation, with a high incidence of accidents. In this 
case, the RMSE of the LSTM model is 12.089, which is 
much lower than 23.45 obtained by the conventional poly-
nomial curve fitting method. The forecasting accuracy has 
been improved from 83.2% (the precision of the traditional 
approach) to 95%. Meanwhile, compared with the regres-
sion analysis of temperature and weather, the LSTM model 
is more sensitive to load variation. Hence, it can efficiently 
assist in overload prevention, which is intensely practical in 
warning of faults.
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