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Abstract
The problem of load fluctuation in the distribution network and increasing power grid cost input caused by the unpredictable 
behavior of electric vehicle (EV) users in response to electricity price is investigated in this paper. An optimization model 
method for the charging and discharging price of electric vehicles is proposed, considering the vehicle owner response and 
power grid cost. The rule of EV user travel is first analyzed, and the travel and battery state constraints are defined. Under 
the constraints of user charging and discharging behavior and battery characteristics, a user transfer rate and unit energy 
cost function is designed to construct a multi-objective model of charging and discharging price that minimizes electric-
ity expenditure and avoids an increase in power grid investment. Finally, an improved multi-target fish swarm algorithm is 
presented to solve the model optimization problem. The example analysis shows that the proposed method can reduce the 
peak-valley load difference of the system and cost input of the power grid, as well as provide users with regulation ability 
to access the power grid at different time periods.

Keywords  Electric vehicle · Grid cost · Demand response · Multi-target immune fish algorithm

1  Introduction

Promoting the use of electric power can help mitigate the 
fuel crisis and increasing environmental pollution by gradu-
ally reducing the consumption of gasoline, diesel, and other 
automotive fuels, and alleviating pollution caused by exhaust 
emissions. Electric vehicles (EVs) are emerging as the focus 
of development in the transportation industry [1, 2]. Energy 
for EVs is mainly sourced from the power grid, and large-
scale development of such vehicles can not be separated 

from the support of the power system. According to fore-
casting by the China Automobile Engineering Association 
[3], the number of electric vehicles in China will reach 80 
million by 2030. If the average EV power battery is equipped 
with 60 kW h, the equivalent storage energy will reach 
48 × 108 kW h, compared to the daily power consumption in 
China, which was only 160 × 108 kW h in 2016. The energy 
demand is considerable, whether it absorbs electricity from 
the system or releases electricity into the system. Therefore, 
optimal management of charging and discharging behavior 
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of EV users can provide power supply for the power grid 
in cases of power shortage, alleviate the balance of power 
supply and demand, and has great significance for improving 
the stability of the power grid [4].

With the development of vehicle-to-grid (V2G) tech-
nology [5], electric vehicles can exchange power with the 
grid through charging station A/D and D/A devices, and 
participate in grid charging and discharging agent services. 
This two-way interaction of energy and information between 
users and the grid is illustrated in Fig. 1. The grid can opti-
mize the charging and discharging behavior of electric vehi-
cle users through V2G technology, so that more users can 
participate in grid peak shaving and frequency modulation 
and coordinated absorption of new energy services, provid-
ing benefits for both the grid and users.

Previous research has been conducted on the charging and 
discharging of electric vehicles. Literature [6] accounted for 
the state of charge (SOC) of EVs, and conducted modeling 
analysis based on time of utility (TOU) price. Literature [7] 
guided the orderly charging and discharging of EVs on the 
basis of load forecasting. In [8], the economic benefits of the 
power grid was analyzed, and the charging and discharging 
price of EVs was optimized according to the interests of 
the power grid. Literature [9] used Monte Carlo simulation 
method to extract the starting load state and charging time of 
EVs, and employed superposition simulation to formulate a 
total charging power curve of the EV after mass access to the 
grid. According to the division of the current regional TOU 
price, a method considering the two-stage effective charging 
strategy was proposed in literature [10]. In [11], the load and 
discharge curves of EVs in different periods were simulated 
according to the characteristics of charge and discharge bat-
teries of different types of electric vehicles.

The remainder of this paper is organized as follows. An 
analysis of the charging and discharging behavior of EV users 
is introduced in Sect. 2. In Sect. 3, a multi-objective optimiza-
tion model is constructed, which includes the minimization 
of additional costs and maximization of user satisfaction with 
charging and discharging. In Sect. 4, the simulation experi-
ment is explained, and results are provided and discussed in 
Sect. 5. Finally, conclusions are presented in Sect. 6.

2 � Analysis of Charging and Discharging 
Behavior of EV Users

It is assumed that the daily travel of EV users is known, that 
is, m times travel per day, in which there are s(i) times in the 
stroke of part i, and a day is divided into a 24 h period. Each 
trip is composed of a driving process and a stopping process, 
and the EV user will consider charging and discharging the EV 
during the j period of the stopping process s(i).

1.	 Travel constraints of EVs

The discharge amount of the EV from the charging station 
to the power grid must ensure enough power remains for the 
subsequent trip. The discharge amount should be between the 
maximum and minimum of the battery capacity according to 
Eq. 1:

among which, CB is the electric vehicle battery capacity, and 
Smax, Smin, Ss are the maximum, minimum, and initial value 
of the battery charge state, respectively. The dimension is 
1; pi,j

up for discharge power in the j period of travel i, di + 1 is 
the driving distance of the stroke of the i + 1 section, and W 
is the electricity consumption of the battery on average per 
kilometer.

2.	 Vehicle battery load state constraints

During the EV charging and discharging process, the charge 
and discharging amount should be kept between the maximum 
load and the minimum load of the power battery capacity, that 
is, the charge amount should be less than the maximum load 
of the power battery.

In addition, the discharged quantity should be greater than 
the minimum quantity of current electricity.

where pi,k
down is the charge power in the k period of travel i.

3 � Multi‑objective Optimization Model 
for Charging and Discharging of EVs 
Based on User Transfer Rate

The EV user response behavior according to fluctuating elec-
tricity price is mostly reflected in changes to the load. When 
the stable operation of the power grid system fluctuates, the 

(1)
SminCB ≤ SsCB − p

up

i,j
−Wdi+1 ≤ SmaxCB, k = 1, 2,… ,m,

(2)pdown
i,j

+ SminCB ≤ SmaxCB

(3)SminCB ≤ SmaxCB − p
up

i,j

Fig. 1   Relationship between power grid and EV users
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power grid company adjusts the user’s electricity structure 
through incentive strategies or price optimization schemes, 
thereby reducing the charging and discharging load within 
a certain period of time. Therefore, the responsiveness of 
users to electricity prices will be the basis for power grid 
companies to formulate electricity prices.

3.1 � Analysis of User Transfer Rate of Different 
Response

According to the user’s response, saturation, and cut-off state 
to the price response, the charge–discharge load transfer rate 
curve of a period from a to b in the middle of the day is 
expressed as follows:

where Kab is the slope of the response curve, and lab is the 
intercept of the response curve, that is, the threshold of 
response. Subscript hab is the threshold of maximum respon-
siveness, φmax is the maximum transfer rate of users, and 
Δxab is the electricity cost change difference from period a 
to period b.

The peak-to-valley load curve, valley-to-peak load curve, 
and flat-to-valley load curve fitting load of charging and dis-
charging for EV users is thus expressed as follows:

where l(t) and Lt are the load of T period before and after 
optimization, Lp, Lf, and Lv are the average of the peak, flat, 
and valley period total load in the response period, in which 
Lp is the transfer rate of the peak to the normal period of the 
peak φpf peak period, Lf is the transfer rate of the peak to the 
valley period of the φpv peak period, and Lv is the transfer 
rate of the φfv flat to the valley period. Subscripts Tp, Tf, and 
Tv are the peak, flat and valley period.

After price adjustment, the parameters of the load transfer 
rate curve before and after adjustment are fitted repeatedly 
by least square method, and the slope, response saturation 
value, and dead-time threshold of the curve are obtained. 
The relationship between load transfer rate and price change 
in different time periods is thus dynamically characterized.

1.	 Response analysis of user demand in response to charg-
ing electricity price

(4)𝜙(x) =

⎧⎪⎨⎪⎩

0 0 ≤ Δxab < lab

Kab(Δxab − lab) lab ≤

𝜙max Δxab ≥ hab

Δxab < hab

(5)l(t) =

⎧⎪⎨⎪⎩

Lt + �pvLp + �fvLf , t ∈ Tv

Lt + �pf Lp − �fvLf , t ∈ Tf

Lt − �pf Lp − �pf Lp , t ∈ Tp

After charging and discharging price adjustment, users 
responding to charging price will change the initial charging 
time according to the charging price, and enjoy preferential 
price expenditure. EV users charging from j period in i travel 
will transfer to the next preferential charging price k period. 
The electricity required to pay is determined according to:

where η is the power grid conversion efficiency, ηdown is the 
charge efficiency (Dimension 1), ωd is the battery loss cost 
rate, ρdown

i,k(t) is charging price in k period of travel i, tdown
i,j is the 

charge time of the j period in i travel, λdown is the charge 
coefficient of the battery (Dimension 1), and k ∈ (j, j + 1,…, 
j + 12 − ti,j

down).
Therefore, for users responding to the charging price, after 

the optimization of the electricity price, the number of users 
moving from j time to k time in travel i is:

in which Ni,k is the number of EVs driving in k time in i 
travel.

2.	 User demand response analysis in reaction to charge and 
discharge price

After the charging and discharging price adjustment, users 
who participate in V2G discharging will respond to charg-
ing price to maximize revenue. In the process of discharging, 
the user should ensure that there is enough electricity in the 
next stage of discharging, and the cost of the previous charg-
ing period is less than the income of the following discharge 
period. The profits of EV users in the j time discharge are 
determined by:

where ρi,j
up is the discharge electricity price of EVs moving 

to k period in travel i, ηup is the efficiency of EV discharging 
to electric net (the dimension is 1), and λup is the battery 
discharge coefficient (the dimension is 1).

The EV electricity cost to be paid from the start of charg-
ing j − 1 time to discharging j time of the same time length is 
determined according to:

(6)Qi,k =

k+tdown
i,k∑

t=k

�

(
�down
i,k

�down − �d�
down

)
pdown
i,k

,

(7)N1

i,k
= �(Qi,j − Qi,k)Ni,k

(8)QV2G
i,j

=

j+t
up

i,j∑
t=j

�(�
up

i,j
(t)�up − �d�

up)p
up

i,j

(9)Qi,j−1 =

(j−1)+t
up

i,j−1∑
t=j−1

�(�down
i,k

�down − �d�
down)pdown

i,k
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Therefore, for the user mode in response to the charging 
price, after implementation of peak-valley TOU price, the 
number of electric vehicles at time j of the travel i participat-
ing in V2G discharge is obtained as follows:

The profit meeting discharging and charging cost to be 
paid is:

3.	 Demand response analysis of unresponsive users

After adjusting the peak-valley time-of-use tariff, the 
unresponsive EV users neither change the charging time nor 
participate in V2G, exhibiting the same charging and dis-
charging behavior as before the tariff adjustment. Therefore, 
the change of user charging and discharging load for unre-
sponsive users has nothing to do with tariff adjustment, and 
the number of non-responding users at time j of travel i is:

In summary, the average total load of different responses 
at any time is obtained as follows:

3.2 � Optimization Goal

1.	 Minimizing peak-valley difference of power grid

The goal of power grid companies is to alter user charging 
and discharging habits when adjusting electricity prices in 
an effort to minimize the peak load and peak-valley differ-
ence in the system. Therefore, the objective function of the 
grid company is:

among which, minG1 is the smallest peak load, minG2 is the 
smallest peak-valley difference, and Lt0 is the original daily 
load data.

2.	 Minimizing power grid cost input

The benefit goal of power grid companies is to control the 
cost input. The fixed cost is the construction of the charging 
pile at charging stations, and the variable cost is the power 

(10)N2

i,j
= �(QV2G

i,j
− Qi,j−1)N

1

i,j

(11)QV2G
i,j

≥ Qi,j−1

(12)N3

i,j
= Ni,j − N1

i,j
.

(13)Lt =

m∑
i=1

�

[
�down

(
pdown
i,k

N1

i,k
+ pdown

i,j
N3

i,j

)
− �upp

up

i,j
N2

i,j

]
.

(14)minG1 = min

[
max
1≤t≤24

(Lt + Lt0)

]
,

(15)minG2 = min

[
max
1≤t≤24

(Lt + Lt0) − min
1≤t≤24

(Lt − Lt0)

]
,

loss during charging and discharging, the battery charge and 
discharging loss subsidy, and the conversion cost of the basic 
service fee. Therefore, assuming that the fixed cost input of the 
grid company is certain, the variable cost input is minimized 
to reduce the overall expenditure. The unit power cost of EVs 
in the process of charging and discharging in the power grid 
is thus obtained as:

where cS is the conversion cost of basic service fee, and cEL 
is the unit power loss cost caused by energy conversion dur-
ing charging and discharging, which can be expressed as:

After adjusting the peak and valley charging and discharg-
ing price, the centralized charging and discharging of EVs in 
peak period can be reduced, meaning the grid company save 
costs and investment according to Eq. 18:

3.	 Maximizing EV user satisfaction

To avoid new costs, grid companies adjust peak and valley 
charging and discharging prices. However, varying electricity 
prices will lead to changes in the way customers use electric-
ity, which will affect user comfort and their ability to respond 
to electricity prices. Therefore, when adjusting the price of 
electricity, it is necessary to ensure the satisfaction of users 
in responding to the price of electricity. Customer satisfaction 
is expressed as the power load change ratio after price adjust-
ment as follows:

3.3 � Multi‑objective Optimization Model 
for Charging and Discharging Price of EV

To summarize, under the constraints of charging and discharg-
ing habits and battery characteristics of EVs, a multi-objective 
model of peak-valley charging and discharging price is estab-
lished to coordinate the interests of users and power grids. 
Taking into account the peak-valley difference of power grids, 
the minimization of cost input by power grids companies, and 
the maximization of user satisfaction with electricity consump-
tion, the model is denoted as follows:

(16)ce = cEL + �d + cs

(17)cEL = �down
i,j

⋅

(
1

�down ⋅ �up
− 1

)
.

(18)max Cost = ce ⋅

[(
max
1≤t≤24

Lt − min
1≤t≤24

Lt

)
−minG2

]
.

(19)max� = 1 −

∑24

j=1
��Lt − Lt0

��∑24

j=1
Lt0

.

(20)

{
Fi(x) , i = 1, 2,… ,m

s.t.Uk(x) ≤ 0 , k = 1, 2,… q
,
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where F = (Pay, minG1, minG2, -Cost) is the objective func-
tion, x is a vector group composed of optimized variables, 
and Uk(x) is an inequality constraint function.

4 � Solution of Multi‑target Immune Fish 
Model Based on Shrinking Space

To achieve the goal of minimizing peak-valley difference 
and peak load, user satisfaction with electricity consumption 
must be ensured, and added investment by grid companies 
should be avoided. Obviously, there are clear contradictions 
among the three objective functions, and the proposed multi-
objective optimization will determine the optimal solution 
satisfying the conditions by balancing the solution values of 
each group. Therefore, for solving multi-objective problems, 
a multi-objective immune fish swarm algorithm (MOIFSA) is 
designed based on artificial fish swarm algorithm combined 
with immune algorithm and Pareto optimal solution set. Utiliz-
ing the fast convergence rate of artificial fish swarm algorithm, 
the multi-objective peak-valley charging and discharging price 
model is solved. The immune algorithm is then introduced to 
prevent the algorithm from prematurely converging to a local 
inferior solution.

4.1 � Fish Swarm Optimization Method Combining 
Immune Antibody Fitness

The probability of antibody concentration selected by immune 
algorithm is regarded as the probability of artificial fish swim-
ming to the current food source. The location of the first fish is 
xi, i.e. the first antibody. The food concentration yi of the cur-
rent position is then set as the fitness value f(xi) of the antibody 
at that position. The artificial fish swims from one position to 
another, that is, it produces new immune antibodies. Accord-
ing to the behavior of fish in the process of searching for food, 
the position of the optimal solution is found.

(a)	 Foraging behavior

In the current position of the artificial fish in xi field of 
vision range, another location xj is randomly selected, and the 
food concentration in this position is Yi. If it is determined to 
meet Yj > Yi, then the individual moves in that direction. If not, 
the next location xj is randomly selected to determine whether 
the next position satisfies the move condition. If it still does 
not satisfy the forward condition, it moves forward randomly:

(21)xinext =

⎧⎪⎨⎪⎩

xi +
xi − xj

���xi − xj
���
⋅ Visual ⋅ Ps(xi) Yi > Yj

xi + rand() ⋅ Ps(xi) Yi < Yj

,

where Visual is the range of the artificial fish random field 
of vision, and xinext is the next target of an artificial fish in 
which the artificial fish in this position is a new antibody. 
Subscript Ps(xi) is the probability of antibody concentration 
for the immune algorithm [13], that is, the probability of 
selecting artificial fish to swim to the current food source, 
and rand() is the random variable of artificial fish swim-
ming, with a value between 0 and 1.

(b)	 Cluster behavior

The number of partners nf in the artificial fish field of 
position xi and its central position Xcenter is calculated. When 
the Ycenter/nf> δYi is satisfied, one step is made toward the 
position, otherwise, foraging behavior is performed.

where δ is crowding factor.

(c)	 Tail following behavior

The number of partners nf in the artificial fish field of 
position xi is calculated (i.e. ||xi − xj|| < Visual), and the 
best place to feed among partners xbest is determined. When 
Ybest/nf > δYi is satisfied, it indicates that the xbest location 
partner is low in density and has a high physical concen-
tration around the fish. In this case, a step is taken in the 
direction of xbest position, otherwise, foraging behavior is 
performed.

Taking the probability of antibody concentration as the 
probability of artificial fish choosing to swim to the cur-
rent food source, the algorithm reduces the redundant cal-
culation of distance to the target position when simulating 
the artificial fish swarm foraging solution. This ensures the 
uniqueness of the vector path from different points to the 
optimal solution, and avoids the convergence of the whole 
population in the optimal solution of artificial fish swarm.

4.2 � Solving Steps of the Charge–Discharge Price 
Model by Multi‑objective Optimization 
Algorithm

Using MOIFSA can obtain a superior set of Pareto solutions 
among the solutions obtained by the original algorithm. 
Here, the non-inferior optimal solution function under other 
objectives constitutes a non-inferior optimal target region, 
thus solving the optimization problem with multi-objective 
constraints. The solution process is shown in Fig. 2.

(22)xinext = xi +
xcenter − xi

‖‖xcenter − xi
‖‖
Visual ⋅ Ps(xi)

Ycenter

nf
> 𝛿Yi

(23)xinext = xi +
xbest − xi

‖‖xbest − xi
‖‖
Visual ⋅ Ps(xi)

Ybest

nf
> 𝛿Yi
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The steps of solving the multi-objective model are as 
follows:

1.	 For parameter initialization, input EV battery parameters 
and parameter of user transfer rate;

2.	 Set the fish swarm size to S (simulating the number of 
EVs), and in the solution space, randomly initialize S 
antibody to generate artificial fish swarm M. The number 
of iterations is k;

3.	 For determination of objective function, Fi(x) and Uk(x) 
are used as antigens in the multi-objective optimization 
model of the charge–discharge price. The hierarchical 
clustering method is used to stratify the population. All 
individual artificial fish in each layer are assigned to the 
initial Pareto solution bulletin board.

4.	 For the optimization process, biological behavior of 
artificial fish is simulated. The artificial fish with the 
best behavior in the foraging process of artificial fish is 
selected, and the individual fish is updated.

5.	 To evaluate the affinity between all antigens and antibod-
ies (artificial fish), the individual fish with the highest 

affinity is selected and assigned to the bulletin board, 
and the external bulletin board of Pareto optimal solu-
tion is updated.

6.	 Determine if the maximum number of iterations has 
been met. If satisfied, the optimal charge and discharge 
price solution set is output and the algorithm is termi-
nated. If not, return to step 3.

5 � Example Experiment and Analysis

5.1 � Experiment Data and Parameter setting

1.	 User transfer rate initialization parameters

The user transfer rate initial value parameter [12, 17] was 
set as shown in Table 1, and the user transfer rate parameter 
is updated with each optimization.

2.	 Initial charge and discharge price and load data

In this experiment, PJM real time load data was used as 
historical load data [15], California TOU electricity price 
data was used as the charging electricity price [16], and 
Table 2 provides the mean value of the TOU electricity price 
and the corresponding historical load data.

3.	 Battery parameters for EV

In this paper, Nissan’s EV lithium-ion battery and the 
lithium iron battery used by BYD electric vehicles were 
selected for analysis [18, 19]. They are abbreviated as NS 
battery and BYD battery in the following discussion, and the 
main parameters are provided in Table 3.

The minimum and maximum SOC of the EV during 
charge and discharge were set to 15% and 95%, respectively. 
Electric vehicle battery charge and discharge efficiency ηup 
and ηdown was 0.97, the power grid to charge and discharge 
energy conversion efficiency η was 0.85, cf = 1.2 cent/
(kW h), and V2G charge and discharge coefficients λdown 
and λup were set as 0.1. According to the development of 
EVs [20], the number of analog electric vehicles was simu-
lated as N = 3 × 106, and the BYD and Nissan vehicle ratio 

Fig. 2   Multi-objective model solving flow chart

Table 1   Initial value parameter of user transfer rate

Transfer type rate Slope Kab Dead-zone 
calculated 
value lab

Peak-flat transfer rate curve 0.06 0.11
Peak valley transfer rate curve 0.08 0.12
Flat valley transfer rate curve 0.04 0.09
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is assumed to be 1:1, that is, the variable of their battery 
parameters to calculate according to the average. Thus, pup 
and pdown takes 6.75 kW, CB takes 40.5 kW h, and W takes 
0.182 kW h km−1.

5.2 � Experimental Comparison and Analysis 
of MOIFSA

The ZDT test function set is used in this paper [14]. The test 
function has good distribution and convergence, and has two 
kinds of functions with two kinds of objectives, as shown in 
Eqs. (24) and (25).

The convergence, diversity index, and error ratio of 
MOIFSA and multi-objective artificial fish swarm algorithm 
(MOAFSA) were compared. The experimental data is shown 
in Tables 4, 5, and 6. The algorithm ran 30 times and the 
results were average.

(24)

�
min f1(x) = x1

min f2(x) = g(1 −
√
f1∕g)

(25)g(x) = 1 + 9

n∑
i=2

xi∕(n − 1)

As can be seen from Table 4, MOIFSA does not dem-
onstrate much improvement to convergence performance 
compared with MOAFSA.

As illustrated in Table 5, the uniformity index value of 
MOIFSA algorithm increased by approximately 18%.

Table 6 shows that the average error of MOIFSA algo-
rithm is 11.9% less than that of MOAFSA algorithm.

5.3 � Example Analysis of Optimization Model

To solve issues with the model, MOIFSA is proposed in this 
paper. The relevant parameters are used as follows: popula-
tion size S is 100, maximum number of iterations k = 100, 
Visual = 0.5, and δ = 0.25.

Table 2   Time sharing charging 
price and real-time load data

Time [h] TOU [cent 
(kW h)−1]

Load [MW] Time [h] TOU [cent (kW h)−1] Load [MW]

1 6 79,661 13 30 88,967
2 6 78,048 14 11 87,452
3 6 77,471 15 11 86,096
4 6 78,000 16 6 84,853
5 6 80,391 17 6 83,971
6 11 84,585 18 6 83,608
7 11 89,787 19 6 83,958
8 30 93,986 20 6 84,876
9 30 95,693 21 11 86,540
10 30 94,946 22 11 88,573
11 30 92,908 23 11 89,579
12 30 90,774 24 11 86,942

Table 3   EV battery parameters

Battery type CB [kW h] pup 
(pdown) 
[kW]

ωd 
[cent (kW h)−1]

W 
[(kW h) km−1]

BYD 57 9.5 4.0 0.215
NS 24 4.0 4.0 0.149

Table 4   Convergence index data of Pareto solutions

Convergence Best Worst Mean Std

MOAFSA 0.0002 0.0030 0.0017 0.0013
MOIFSA 0.0003 0.0029 0.0015 0.0014

Table 5   Diversity index data of Pareto Solution

Diversity Best Worst Mean Std

MOAFSA 9.2e−04 0.0203 0.0078 0.0044
MOIFSA 7.13e−05 0.0181 0.0061 0.0031

Table 6   Error ratio index data of Pareto solution

Error Best Worst Mean Std

MOAFSA 0.0015 0.0921 0.0517 0.0289
MOIFSA 0.0010 0.0811 0.0425 0.0259
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Figure 3 shows the optimization of the random access 
load superposition curve based on historical load and ran-
dom access of the EV load.

After random access of the EV, the peak load of the sys-
tem increased from 95,693 to 97,042.76 MW, and the peak-
valley difference increased from 18,222 to 19,397.7 MW. 
For the common purpose of minimizing peak load and peak-
valley load difference, the optimization of the charging and 
discharging price of EVs can be divided into three situations 
as discussed below:

1.	 Minimizing power grid cost input as the target

According to the proposed model, to avoid the maximiza-
tion of investment into the power grid, only the minimum 
input of the power grid is considered, and the load curve of 
the EV can be obtained after optimization.

The result is shown in Fig. 4. If avoiding a large invest-
ment in the grid is the only target, the charging and discharg-
ing price will be dramatically adjusted in the peak and valley 
period, and the users of the response charge begin to shift 
to the flat period and the valley period. In response to the 
discharge, the users begin to discharge in the peak period, 
leading to a large change in the mode of user charging and 
discharge. User satisfaction is the lowest at this time.

2.	 Maximizing EV user satisfaction as the target

The result of the proposed model for maximization of EV 
user satisfaction and the load curve of the EV obtained after 
optimization shown in Fig. 5. Users charge and discharge 
according to their own wishes, so that load changes are 
mainly concentrated in peak and valley periods, increasing 
the peak and valley period of the grid charge and discharge 
pressure.

3.	 Multi-objective optimization model

The results of the multi-objective optimization model are 
provided in Figs. 6 and 7.

The daily load curve before and after optimization is 
shown in Fig. 8. It can be seen that the peak load has been 
reduced by 1057.91 MW, and the peak and valley difference 
has decreased by 29,020.41 MW.

As shown in Fig.  7, the load of the peak period is 
reduced, the charge and discharge load begin to shift to 
peak time and valley period, and the system load changes 
smoothly. The response mode of the user begins to change 
compared to before the optimization, in which the user of 
the response discharge price begins to discharge to the 
power grid in the peak period of the system load. This 
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Fig. 3   Optimization of random access load superposition curve for 
EVs
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relieves the demand for charging load after EV access, 
and users responding to the charging price change their 
charging time in the low valley peak period, reducing the 
rush hour charging pressure of electricity.

Combined with the above optimization results, this 
paper compared and analyzed the charge and discharge 
price, user expenditure, power grid input, and total satis-
faction of the peak, flat, and valley period. The results are 
provided in Table 7.

According to the results in Fig. 7 and Table 7, the multi-
objective model is superior to other models for load regu-
lation and power grid input reduction, and has good user 
satisfaction. If only one objective is optimized, only one 
objective can be achieved, and other objectives will be 
affected.

6 � Conclusion

The unpredictable behavior of EV users in response to 
electricity price was investigated in this paper, considering 
the fluctuation of the power grid load, the new cost input 
of operators, and the satisfaction of users in responding to 
electricity price. An optimization model was constructed 
for the charging and discharging price of EVs, considering 
vehicle owner response and power grid cost. An improved 
immune fish swarm algorithm was then proposed to opti-
mize the multi-objective model of charging and discharg-
ing price. Experimental analysis illustrated that the multi-
objective electricity price optimization method can reduce 
the peak-valley load difference of the system and the cost 
input of operators. Using this method, the ability of users 
to respond to electricity prices was maximized, along with 
the regulation ability for users to access the power grid 
during different time periods.
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Fig. 6   Daily load curve before and after optimization of multi-objec-
tive charging and discharging price models
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mization modeling

Table 7   Optimization results 
under different targets

Optimization period Before optimiza-
tion

Users satisfaction 
max.

Avoiding max. grid 
investment

Multi-
objective 
model

Charging price [cent (kW h)−1]
 Peak time 30 37.21 39.53 38.49
 Normal time 11 9.51 9.74 9.52
 Valley time 6 4.02 4.21 4.41

Discharging price [cent (kW h)−1]
 Peak time 37.08 41.18 43.65 40.12
 Normal time 16.89 11.72 11.96 15.32
 Valley time 11.58 5.87 6.07 9.89

Avoiding cost invested [106 
dollars]

– 423.28 440.07 428.41

Total satisfaction 1 0.89 0.42 0.79
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