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Abstract
Aims  This paper presents a multiple hybrid methods combining the lambda iteration and simulated annealing methods 
(MHLSA) to solve an economic dispatch (ED) problem with smooth cost function characteristics. The constraints of the 
economic dispatch were load demand and transmission loss.
Methods  The proposed MHLSA algorithm is a hybrid of the lambda iteration and simulated annealing methods and increases 
efficiency by adding multiple search mechanisms. It is a sequential execution of an individual hybrid algorithm of the lambda 
iteration and simulated annealing algorithm (HLSA) using only one personal microcomputer. The MHLSA algorithm intro-
duces additional techniques for improvement of the search processes, such as the hybrid method, scope for multiple adaptive 
searches, and multiple searches.
Results  To show its effectiveness, the MHLSA is applied to two systems consisting of three and six power generating units. The 
optimized results from MHLSA are compared with those from HLSA and from conventional approaches, such as bee colony 
optimization (BCO), hybrid particle swarm optimization (HPSO) and simulated annealing (SA). Results confirm that the 
proposed MHLSA approach is capable of obtaining the greater speed of convergence and a higher quality solution efficiently.
Conclusions  Thus, it has great potential to be implemented in different types of power system optimization problem.

Keywords  Multiple adaptive searches scope · Lambda iteration · Simulated annealing · Economic dispatch

1  Introduction

Increasing power demand, which has led to an increase in 
fuel costs over the years, has resulted in reducing operat-
ing costs of power systems becoming an important issue. 
One of the choices is to use the generator efficiently and 
economically. Operational economics, involving power gen-
eration and delivery, that minimizes power production costs, 
is called Economic Dispatch (ED). The objective of finding 
solutions to the ED problem is to control the committed 
generator’s output to minimize total costs while the power 
demand and other constraints are satisfied.

Traditionally, the fuel cost function of a generator is rep-
resented by a single quadratic function. To solve the prob-
lem of ED, there are two approaches including numerical 
and meta-heuristics methods. Recently, many numerical 
conventional optimization methods have been tested, such 
as lambda iteration [1], gradient method [2], linear pro-
gramming [3], interior point [4], lagrangian relaxation [5] 
and dynamic programming techniques [6]. These methods 
impose no restrictions on the nature of the cost curves and 
therefore can solve ED problems with inherently nonlinear 
and discontinuous costs. However, numerical methods can 
result in problems with complicated and large power sys-
tems where problems of dimensionality or local optimal-
ity might exist. Previously, meta-heuristics methods have 
been used to solve the economic dispatch and power electri-
cal system problem, including the genetic algorithm (GA) 
[7–9], particle swarm optimization (PSO) [10–12], ant col-
ony optimization (ACO) [13, 14], bee colony optimization 
(BCO) [15–17], the cuckoo search algorithm (CSA) [18], 
the shuffled frog leaping algorithm (SFLA) [19], the firefly 
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algorithm (FA) [20] and simulated annealing (SA) [21, 22]. 
These methods often provide fast and reasonable solutions, 
including global optimization with short time searching. 
Among them, the SA method is a probabilistic technique 
for approximating the global optimum of a given function. 
Specifically, it approximates global optimization in a large 
search space and has fast convergence. However, the con-
ventional SA algorithm can have a limitation in reaching 
a global optimum solution in a reasonable computational 
time when the initial solution is far away from the region 
where an optimum solution is required. In the SA algorithm, 
the initial population is randomly generated which is the 
reason for computation and convergence taking a long time 
as the population is initiated too early. This problem has 
been solved by estimating an initializing value and defining 
the search scope for the random method. Lambda iteration 
has been used as an initial value instead of the traditional 
random value, the scope of the search has sometimes been 
defined with the SA algorithm properties then used to find 
the best solution. However, this method can have the prob-
lem of narrowing and inappropriately restricting the search 
scope. Determining the proper scope of the search is dif-
ficult, so repeated testing can waste time. This problem can 
be solved by using a “multiple searches” method. Multiple 
searches help to find the region where the most appropriate 
global optimum solution exists.

2 � Problem Formulation

The economic dispatch problem, with prohibited operat-
ing zones, is approached by allocating system load demand 
commitments to groups of generators over the scheduled 
time period so that they have minimal generation costs while 
satisfying physical constraints and operating requirements.

2.1 � Objective Function

The objective function, corresponding to the production 
cost, can be approximated to be a quadratic function of the 
active power outputs from the generating units. Symboli-
cally, it is represented as in (1):

Usually, the fuel cost of a thermal unit is expressed as a 
quadratic polynomial of its output (Pi) as below (2):

where ai, bi and ci are the cost coefficients of the ith genera-
tor; Pi is the power output of the ith generator.

(1)Minimize∶FT =

N∑
i=1

Fi(Pi)

(2)Fi(Pi) = aiP
2
i
+ biPi + ci

2.2 � Constraints

The objective functions are subject to the following 
constraints:

(a)	 Power balance constraint

The load capacity is equal to the sum of the total 
amount of electricity demand with a total power loss in 
the transmission system is as below (3):

where PD is the load demand and Ploss is the total transmis-
sion network losses, which is a function of the unit power 
outputs that can be represented using B coefficients as below 
(4):

(b)	 Generator rating constraint

The output power of each generating unit has to lie 
between a lower and an upper bound. This is represented 
by a pair of inequality constraints as follow (5):

where, Pmin
i

 and Pmax
i

 are respectively the lower and upper 
bounds for power outputs of the ith generating unit.

(c)	 Ramp-rate limits and prohibited operating zone

The limit is defined as the rate at which the output 
power generated can’t change beyond a certain rate due 
to mechanical inertia in the thermal units. A decision in 
the current time period will affect a decision at a later 
time period due to variation in power demands from the 
present to a future time. There exist two possible cases 
in the actual operation of the available units. Increasing 
generation condition in Eq. (6) and decreasing generation 
condition in Eq. (7):

In the equation, P0
i
 is the generation power that the gen-

eration unit generated in the previous step, DR and UR show 
the fall and rise of the border values, therefore, the capacity 
of the generators within these the ranges is as below (8):

(3)
N∑
i=1

(Pi) = PD + Ploss

(4)Ploss =

N∑
i=1

N∑
j=1

PiBijPj+

N∑
j=1

B0iPi+B00

(5)Pmin
i

≤ Pi ≤ Pmax
i

(6)P0
i
− Pi ≤ URi

(7)P0
i
− Pi ≥ DRi

(8)max
(
Pmin
i

,P0
i
− DRi

)
≤ Pi ≤ min

(
Pmax
i

,P0
i
+ URi

)
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Performance of thermal power generators is restricted in 
the prohibited zone as the steam valve does not work prop-
erly at this time. Therefore, during this period, generators 
should not be operated. Zones for the operation of the gen-
erator are shown in Fig. 1.

Hence, dynamic economic dispatch problems with pro-
hibited operating zones and with operational border values 
of the generation units, are solved as follows (9):

3 � Hybrid of Lambda Iteration (λ) 
and Simulated Annealing (HLSA)

HLSA is an initial estimate using the principle of equal 
cost (incremental cost: λ), defined boundaries around λ 
values, and performing each procedure according to the 
SA method. The SA, lambda iteration (λ) and HLSA for 
solving the ED problem are described below.

3.1 � Simulated Annealing (SA) [23]

The Simulated Annealing (SA) algorithm is a nature-
inspired method which is adapted from the process of 
gradual cooling of metal in nature. In the metallurgical 
annealing process, a solid is melted at high temperature 
until all molecules can move about freely and then a cool-
ing process is performed until thermal mobility is lost. SA 
is a probabilistic technique for approximating the global 
optimum of a given function. Specifically, it is a meta-
heuristic approach to approximating global optimization in 
a large search space. It is often used when the search space 
is discrete. For problems where finding an approximate 
global optimum is more important than finding a precise 
local optimum in a fixed amount of time, simulated anneal-
ing may be the preferable method. In general, Simulated 

(9)Pi =

⎧
⎪⎨⎪⎩

Pmin
i

≤ Pi ≤ Pl
i,1

Pu
i,j−1

≤ Pi ≤ Pl
i,j
, j = 2, 3… ni

Pu
i,n

≤ Pi ≤ Pmax
i,1

Annealing algorithms work as follows. At each time step, 
the algorithm randomly selects a solution close to the cur-
rent one, measures its quality, and then decides to move to 
that solution or to stay with the current solution based on 
either one of two probabilities.

The basic step of the SA algorithm is presented with the 
following pseudo-code.

Additional mechanisms for the SA method include con-
trolled parameters for the SA algorithm including: starting 
Temperature, Final Temperature, Temperature Decrement and 
Iterations at each Temperature, which are described as follows.

(a)	 Starting Temperature

The starting temperature must be set to a reasonable value 
so that it is very likely to be accepted as the solution in the 
first step of the application of the algorithm. However, if the 
default temperature is too high, the SA step will not occur 
because of slow convergence, and generally, the optimiza-
tion process will cause random. In contrast, if the initial tem-
perature is very low, it is possible to get more local solutions. 
There are no specific methods for finding the right starting 
temperature that deals with the whole range of problems. It 
is advisable to increase the system temperature quickly to the 
point at which the worst solution percentage is acceptable 
and then thereafter to gradually decrease the temperature.

(b)	 Final Temperature

During the application of the SA algorithm, it is common 
to let the temperature fall to zero degrees. However, if the 
temperature decrease becomes an exponent, the SA step can 
work longer. Finally, the stopping threshold may be a low tem-
perature or a suitable spot when the system is “frozen” at the 
current temperature.

(c)	 Temperature Decrement

Once the initial and final temperatures are set, it is necessary 
to find a way to change from the initial to the final temperature. 

Input ($/h)

Output (MW)min
iP ,1

u
iP

max
iP,2

l
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l
iP ,2

u
iP

Fig. 1   Prohibited operating zone function cost curve
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How the way in which the temperature is reduced is very 
important for the success of the algorithm. It is suggested that 
the following way is used to reduce the temperature (10):

where d is a positive constant. The alternative is the geomet-
ric relationship of Eq. (11):

where parameter a, is a constant near 1. In effect, its typical 
values range between 0.8 and 0.99.

(d)	 Iterations at Each Temperature

Optimizing the number of repetitions of the algorithm is 
very important. Using a certain number of iterations for each 
temperature is the proper solution. Indicate the actuation of 
a single repetition for each temperature, while the lowering 
of the temperature should occur at a very slow pace, which 
can be demonstrated by Eq. (12):

where, β takes a very low value.

3.2 � Lambda Iteration (λ)

At the solution, multiple generators have the same marginal 
(or incremental) cost. This common marginal cost is equal 
to λ. If the cost difference between generators is different, 
by reducing capacity at higher cost margins and increasing 
capacity at lower cost margins, overall costs can be reduced. 
If demand changes, changes in total costs can be estimated 
from λ, and the solved value of λ can be used to evaluate 
Pi. Equation (2) is the fuel cost of power generation of each 
generator. This equation is used to calculate the incremental 
cost (λ) using the differential equation shown in Eq. (13):

Total fuel cost is lowest when λ values are equal for each 
generator. The value of λ for the initial configuration of the sys-
tem can be calculated by using the following (14) and the elec-
tric power of each generator can be calculated from Eq. (15):

(10)T(t) =
d

log(t)

(11)T(t) = a.t

(12)T(t) =
t

(1 + �.t)

(13)
d(Fi(pi))

d(pi)
= �

(14)� =

PD +
∑N

i=1

bi

2ai∑N

i=1

1

2ai

(15)pi =
� − bi

2ai

3.3 � Hybrid of Lambda Iteration (λ) and Simulated 
Annealing (HLSA) for Solving the ED Problem

A hybrid of lambda iteration and simulated annealing is 
used to solve the economic dispatch problem by using the 
principle of equal cost (incremental cost: λ), an estimate 
of the initial value to narrow search scope and to find the 
most appropriate solution as SA properties around the esti-
mates. The HLSA algorithm to solve the economic dispatch 
is described as follows:

Step 1: Specify the parameters of hybrid lambda iteration 
and simulated annealing including the initial temperature, 
the final temperature, cool shed, maximum number of itera-
tions and the maximum number of successes.

Step 2: Calculate the value of λ for the initial configura-
tion of the system using the SA algorithm. In this process, 
the initial λ is determined from Eq. (14).

Step 3: Find the lower and upper limits of the ith generat-
ing unit using the follow (16)–(17):

bi and ci are the cost coefficients of the ith generator and rank 
is the multiplier to determine the extent, the solution is more 
than 0 and less than 1.

Step 4: Random to the initial population (Si) of the power 
output of the ith generation from step 3 can be expressed as 
follows (18):

The value must satisfy the system requirements by con-
sidering the system conditions. Capacity constraints of the 
generator must be within the minimum and maximum ranges 
of each generator.

Step 5: Create a random close proximity (Sj) and cal-
culate the cost of production to compare with the value 
obtained from Step 4.

Step 6: If the new answer is better than the original answer, 
then the new answer will be chosen. But if the new answer is 
inferior to the original answer, calculate the deviation of cost 
ΔS = Sj− Si and generate random numbers. Then accept the 
new solution (Sj) instead of the original solution (Si).

Step 7: Proceed to temperature adjustment in the next 
state from Eq. (19):

Step 8: Repeat until all conditions have been met.

(16)Pmax
i

=
� − bi

ci
+

(
� − bi

ci
⋅ rank

)

(17)Pmax
i

=
� − bi

ci
−

(
� − bi

ci
⋅ rank

)

(18)Pi = Pmin
i

+ ((Pmax
i

− Pmin
i

) ⋅ rand(1))

(19)TK = r ∗ TK−1
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4 � Multiple Hybrid of Lambda Iteration (λ) 
and Simulated Annealing (MHLSA)

Multiple searches help to find the regions with the most 
appropriate global solution. MHLSA uses multiple search 
methods of HLSA at the same time. The concept of MHLSA 
arises from the solution of the HLSA method in Sect. 3.3. 
In Step 3, configuring rank to get the right value is difficult, 
so repeated testing can waste time. Convergence speeds 
can be improved by implementing multiple searches. The 
MHLSA algorithm uses several initial solutions to maximize 
the probability of reaching the area with the most optimal 
solution. The procedure of the MHLSA algorithm is shown 
in Fig. 2, which consists of several independent HLSA algo-
rithms. Additional mechanisms are as follows.

4.1 � Specify Parameter

The parameters used in the SA algorithm are initial tem-
perature, final temperature, cool shed, maximum number 
of tries, and maximum number of successes within. The 
parameter values used in SA, HLSA, and MHLSA to test 
the operation of the simulation are presented in Table 1.

4.2 � Calculate the Value of Lambda (λ)

Lambda iteration is based on the principle of equal cost 
(incremental cost: λ), and an estimate of the initial value to 
narrow the search scope and finding the most appropriate 
solution as a swarm of bees around the estimates. Total 
fuel cost is lowest when λ is equal among the generators. 
The value of λ for the initial configuration of the system 
is calculated from Eq. (14).

4.3 � Multiple Adaptive Search Scope

In this method, rank is a multiplier in scoping the answer. 
It is used to determine the lower and upper power limits of 
the ith generating unit by defining the scope of the value of 
λ, which comes from Eqs. (16) and (17). The size of rank 
effects search answers. Determining the proper rank size of 
the search is difficult, so repeated testing can waste time. 
Adjusting the size of rank to multiple values at the same 
time provides a scalable range for the search. The adap-
tive search scope is a process for finding nearby locations. 
This process depends on the size of the rank . Rank is the 
variance, which is the key factor in the search. Hence the 
right size rank must be chosen. In general, low rank sizes 
can be used to reduce computational time due to narrower 
search spans. On the other hand, a rank size with a high 
value provides a more accurate solution but makes the 
calculation time longer. Nevertheless, the searched result 
may not reach the global optimum. In this method, the rank 
size can be adjusted based on the number iterations of the 
SA algorithm as defined in the MHLSA algorithm. As a 
result, the problem can be solved more accurately. There-
fore, the adaptive search scope improves the calculation 

Start

Specify MHLSA parameter

Iteration = 0 

Calculate the value of lamda

rank#1 rank#2 rank#3 rank#4

SA#1 SA#2 SA#3 SA#4

Evaluate the fitness and select the best value

Check stopping 
criterion

NO

YES

Update best final solution

Stop
Iteration = Iteration+1

Update best current solution
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Fig. 2   Proposed HLIBCO algorithm

Table 1   The parameters of SA, HLSA, and MHLSA

Parameters Number

Initial temperature 100
Final temperature 5
Cool shed 0.83
Maximum number of tries 1000
Maximum number of successes within 50
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speed and accuracy of the solution. Multiple rank values 
in this article are defined as follows: rank #1 = 0.1, rank 
#2 = 0.15, rank #3 = 0.2 and rank #4 = 0.25.

4.4 � Multiple Search

In large-scale solutions, it may be necessary to use several 
computers at the same time to calculate the result. These 
solutions involve parallel searches. However, the multiple 
searches implemented in this paper are performed using a 
single personal computer [24]. The basic idea is to reduce 
the time spent searching results by improving the accuracy 
and relevance of each search, as well as the ability to manage 
the results. Multiple searches use a multitasking algorithm 
that combines algorithm features and additional search capa-
bilities. The answer may come from one or more algorithms. 
Multiple searches are a way of taking advantage of the power 
of many algorithm, that may not be as eloquent as the tra-
ditional algorithm, and help to find the promising region 
where the global optimum solution exists. This concept is 
used to improve the efficiency of the HLSA algorithm after 
initial estimation by the lambda iteration and to define the 
range of multiple searches scope, as described in Sect. 4.3. 
The search algorithm for better algorithms is used in the SA 
algorithm step as described in Sect. 3.1. The sequence of 
execution starts from SA#1 to SA#4 for execution for find-
ing better solutions.

4.5 � Evaluate the Fitness and Select the Best Value

The fitness function is the specificity of the objective func-
tion that is used to summarize similar design approaches to 
achieve the goal that is set. After each round of testing or 
simulation, the idea was to bring the worst design solution 
out and rebuild it from the best design solution. The results 
of each solution have to be good enough to indicate an 
approximation of the overall specification, and this is built 
on using the fitness function to test or simulate the results of 
the solution. If the algorithm is poorly designed, it will come 
to an abnormal solution or will have difficulty converging. 
Moreover, the result must be computed quickly. The whole 
process involves “evaluating the fitness and selecting the 
best value”.

4.6 � Check Stopping Criterion

In general, there are several possible conditions to stop a 
search. Here, stop search is used if any of the following three 
conditions are met: firstly, as defined by the limit time. That 
means that if the calculation time is more than or equal to the 
time limit, the search process will stop. Secondly, defined by 
the maximum allowable iterations—if the iteration number 
is greater than or equal to the maximum allowed number of 

iterations, the search process will stop. Finally, when the 
appropriate values meet the objective function within the 
constraints and conditions of the system.

5 � Case Study

The proposed MHLISA algorithm has been applied to solv-
ing the economic dispatch problem with prohibited operat-
ing zones in two different test cases for verifying its feasibil-
ity. These are a three unit system and a six unit system. Each 
optimization method was implemented in the MATLAB pro-
gram which was run on a 2.30 GHz Intel (R) Core (TM) i5 
with 8 GB of RAM.

5.1 � The First Case Study

A three unit system is considered and the system load 
demand was set as 300 MW. The system data are shown in 
Tables 2 and 3. The system loss coefficient matrix was as 
follows [25]:

The results of the proposed method are divided into two 
parts: convergence speed and convergence with BCO, SA 
and HLSA methods and the best solution compared to EP, 
PSO and HPSO methods.

5.2 � The Second Case Study

The test system for this case consisted of six thermal units. 
The constraints included the generation limits, fuel cost 

Bij =

⎡⎢⎢⎣

0.000136 0.0000175 0.000184

0.0000175 0.000154 0.000283

0.000184 0.000283 0.00161

⎤⎥⎥⎦

Table 2   Generator data in case 1

Unit ai bi ci P
min

i
P
max

i

1 0.00525 8.663 328.13 50 250
2 0.00609 10.04 136.91 5 150
3 0.00592 9.76 59.16 15 100

Table 3   Ram rate limits and prohibited zone in case 1

Unit P
0

i
URi DRi Prohibited zone

Zone 1 Zone 2

1 215 55 95 [105–117] [165–177]
2 72 55 78 [50–60] [92–102]
3 98 45 64 [25–32] [60–67]
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coefficients, ramp-rate limits and prohibited operating zones 
of these thermal units, 26 buses and 46 transmission lines. 
The transmission loss was calculated using a B matrix as 
given by [26]. The results of the proposed method were 
divided into two parts: convergence speed and convergence 
with BCO, SA and HLSA methods and the best solution 
compared to PSO, HPSO and MSSA methods.

The characteristics of the six thermal units are given in 
Tables 4 and 5 [26].

6 � Simulation and Results

The convergence of speed is used as a basis for comparison. 
In this test, the parameters of SA, HLSA and MHLSA are 
shown in Table 1 and the following parameters are used in 
the BCO method:

Bij = 10−1

⎡⎢⎢⎢⎢⎢⎢⎣

0.017 0.012 0.007 −0.001 −0.005 −0.002

0.012 0.014 0.009 0.001 −0.006 −0.001

0.007 0.009 0.031 0.0 −0.010 −0.006

−0.001 0.001 0.0 0.24 −0.006 −0.008

−0.005 −0.006 −0.010 −0.006 0.129 −0.002

−0.002 −0.001 −0.006 −0.008 −0.002 0.15

⎤⎥⎥⎥⎥⎥⎥⎦

B
0i
= 10

−2 × [−0.3908 − 0.1297 0.7047 0.0591 0.2161 − 0.6635]

B00 = 0.056

•	 Population size (n) = 50
•	 Number of selected sites (m) = 20
•	 Number of best sites (e) = 5
•	 Number of bees around best sites (nep) = 50
•	 Number of bees around other sites (nsp) = 50

Case 1, simulation results for the selected values ising 
BCO, SA, HLSA, and the MHLSA methods. Case study 1, 
200 trail runs were conducted, and the best solutions that 
satisfy the system constraints are shown in Table 6.

The total cost of the MHLSA method was less than that of 
the BCO, HLSA and SA methods and the loss in the trans-
mission line was also lower. Computational and convergence 
times are shown in Fig. 3. The MHLSA method used fewer 
iterations to find the solution, and the convergence was faster 
than the BCO, SA and HLSA methods and the results were 
comparable to EP [27], PSO [27] and HPSO [27] (Table 7).

Case 2, This case study utilized a benchmark test system 
having 26 buses, 46 transmission lines, and 6 thermal gen-
erating units. The total system load was 1263 MW. 200 trail 
runs were conducted, and the best solutions are shown in 

Table 4   Generator data in case 2

Unit ai bi ci P
min

i
P
max

i

1 0.0070 7.00 240 100 500
2 0.0095 10.0 200 50 200
3 0.0090 8.50 220 80 300
4 0.0090 11.0 200 50 150
5 0.0080 10.5 220 50 200
6 0.0075 12.0 190 50 120

Table 5   Ram rate limits and prohibited zone in case 2

Unit P
0

i
URi DRi Prohibited zone

Zone 1 Zone 2

1 340 80 120 [210–240] [350–380]
2 134 50 90 [90–110] [140–160]
3 240 65 100 [150–170] [210–240]
4 90 50 90 [80–90] [110–120]
5 110 50 90 [90–110] [140–150]
6 52 50 90 [75–85] [100–105]

Table 6   Results of MHLSA, HLSA, SA and BCO for three units

Unit output BCO SA HLSA MHLSA

P1 (MW) 199.57 200.40 191.19 191.65
P2 (MW) 78.97 78.15 85.30 85.12
P3 (MW) 34.00 34.02 34.63 34.00
PT (MW) 312.54 312.56 311.12 310.76
TC ($/h) 3631.66 3631.71 3618.14 3614.64
PLoss 12.54 12.56 11.12 10.76
Time (S) 14.10 10.13 10.06 40.34

Fig. 3   Solution and convergence time of MHLSA, HLSA, SA, and 
BCO in case 1
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Table 8 that satisfies the system constraints, including the 
power balance and the generator limits constraints, ramp rate 
limits, prohibited operating zones, and transmission losses. 
Table 8 presents a comparison between the results obtained 
by the BCO, SA, HLSA, and the MHLSA algorithms.

Computational and convergence times were as shown in 
Fig. 4, which clearly demonstrates the speed of the conver-
gence approach, where the MHLSA method used through 
iteration to find fewer answers. Converge was faster than 
with the BCO, SA and HLSA methods.

A comparison of results using the proposed methods with 
those from PSO [27], HPSO [27] and MSSA [28] are shown 
in Table 9, which the proposed method gets a better than the 
other ways.

7 � Conclusion

In this work, new mechanisms are implemented for solving 
different ED problems with ramp rate limits and prohibited 
operating zones. Many sophisticated techniques, such as initial 
estimation using the lambda iteration, adaptive search scopes, 
multiple searches, and simulated annealing have been added 
to the MHLSA, in order to enhance the search potential. The 
MHLSA algorithm has been proposed to solve the ED problem 

by initial estimation using the lambda iteration method, using 
the SA method to find the best solution, and using multiple 
searches as a mechanism to increase efficiency in finding 
appropriate solutions. The MHLSA optimization mechanisms 
out-performed a number of other algorithms. The strength of 
the algorithm was demonstrated in two case studies involving 
different ED problems with ramp rate limits and prohibited 
operating zones. The convergence quality of MHLSA algo-
rithm in these two case studies proved the robustness of the 
algorithm. Study results from the studies involving either three 
or six generating units confirmed that the MHLSA was supe-
rior to the HLSA, SA and BCO methods in terms of providing 
a high-quality solution, stable convergence characteristics, and 
good computation efficiency. The results clearly showed that 
the proposed algorithm yielded better results than the compari-
son method. Electric system operators can use this algorithm 
for optimization of their networks.

Table 7   Three generators test system: comparison of results

Unit output EP PSO HPSO MHLSA

P1 (MW) 199.53 190.59 200.18 191.65
P2 (MW) 75.68 85.77 76.26 85.12
P3 (MW) 38.19 34.80 34.40 34.00
PT (MW) 313.40 311.16 310.84 310.76
TC ($/h) 3641.70 3631.10 3623.11 3614.64
PLoss 13.40 11.16 10.84 10.76

Table 8   Results of MHLSA, HLSA, SA and BCO for six generating 
unit

Unit output BCO SA HLSA MHLSA

P1 (MW) 452.52 447.26 455.52 450.44
P2 (MW) 171.56 170.47 171.62 170.83
P3 (MW) 256.61 261.92 254.98 253.33
P4 (MW) 138.45 138.53 134.60 137.81
P5 (MW) 163.97 166.46 155.10 160.93
P6 (MW) 92.29 90.55 99.62 98.02
PT (MW) 1275.10 1275.20 1271.44 1271.36
TC ($/h) 15,439.61 15,439.80 15,394 15,392
PLoss 12.09 12.20 8.44 8.36
Time (S) 15.56 10.26 10.07 60.02

Fig. 4   Solution and convergence time of MHLSA, HLSA, SA and 
BCO in case 2

Table 9   Six generators test system: comparison of results

Unit output MSSA PSO HPSO MHLSA

P1 (MW) 447.50 457.26 462.45 450.44
P2 (MW) 173.32 160.72 184.53 170.83
P3 (MW) 263.46 247.53 246.60 253.33
P4 (MW) 139.07 131.52 108.83 137.81
P5 (MW) 165.43 170.50 171.07 160.93
P6 (MW) 87.13 106.62 98.50 98.02
PT (MW) 1275.96 1274.15 1271.98 1271.36
TC ($/h) 15,449.90 15,433 15,404 15,392
PLoss 12.96 11.15 8.98 8.36
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