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ABSTRACT
●   Ascomycetes of the genus Trichoderma are beneficial fungi that promote plant
growth.
●   Several fungal species can mitigate abiotic stress in plants.
●   Trichoderma spp. induce salt stress tolerance and drought protection in plants.
●   Soil contamination by heavy metals can be bioremediated by Trichoderma.
●   Trichoderma can detoxify pesticides and other pollutants in soils.
Plants drive both carbon and nitrogen cycling and mediate complex biotic interactions
with soil microorganisms. Climate change and the resulting temperature variations,
altered precipitation, and water shortages in soils, affect the performance of plants.
Negative  effects  of  abiotic  stress  are  reflected  in  changes  of  plant  morphology
associated with biochemical alterations and inadequate adaptation to rapid ecologi-
cal change. Accumulation of chemical agents, derived from pesticides, salinity due
to chemical fertilization, and accumulation of heavy metals, are recurrent problems
in agricultural soils. Trichoderma spp. are soil fungi interacting with roots and in this
way helping plants to cope with abiotic stresses by increasing root branching, shoot
growth  and  productivity.  In  part,  such  fungal  effects  on  the  host  plant  are  conse-
quences of the activation of fine-tuned molecular mechanisms mediated by phyto-
hormones, by profound biochemical changes that include production of osmolytes,
by the activity of the redox-enzymatic machinery, as well by as complex processes
of detoxification. Here, we summarize the most recent advances regarding the beneficial effects of Trichoderma in mitigating the negative effects
on  plant  performance  caused  by  different  environmental  and  chemical  factors  associated  with  global  change  and  agricultural  practices  that
provoke abiotic stress. Additionally, we present new perspectives and propose further research directions in the field of Trichoderma-plant inter-
actions when the two types of organism cooperate.
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 1 Introduction

Climate change, caused by emissions of greenhouse gases
from anthropogenic activities, results in changes in tempera-
ture and precipitation, which strongly affect plant functioning
whether in their native or managed ecosystems (Allen et al.,
2010).  In  addition,  the  excessive  use  of  agrochemicals  in
agroecosystems  is  leading  not  only  to  further  climate  gas
emissions but also to soil eutrophication and salinity, and to

adverse  effects  on  soil  biota  function  and  diversity  (Butter-
bach-Bahl and Dannenmann, 2011; de Almeida Silva et al.,
2019; Cavicchioli et al., 2019; Menegat et al., 2022).

Complex  communities  of  plant-beneficial  soil  microorgan-
isms are of valuable biotechnological importance, especially
in  terms  of  plant  stress  mitigation  from  biotic  and  abiotic
stress  factors  (Kolandasamy  et  al.,  2023).  Among  the
myriad of rhizosphere microorganisms there are some bene-
ficial species of microscopic filamentous fungi, among which
Trichoderma spp.  stand  out  (Woo  et  al.,  2023; Yao  et  al.,
2023). Due to their ability to promote plant growth, alleviating
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plant  stress  and  degrading  toxic  substances,  selected
Trichoderma spp. represent a sustainable alternative and/or
complement to minimizing the use of agrochemicals (Contr-
eras-Cornejo et al., 2020a, 2020b; Cardarelli et al., 2022).

A  growing  body  of  literature,  detailed  below,  reveals  an
important role for Trichoderma spp. as key microorganisms
under  field,  greenhouse  or in  vitro laboratory  conditions.  In
this review we present and discuss novel information on the
mechanisms of Trichoderma in supporting plant health.

 2 Trichoderma in the rhizosphere

The  fungal  genus Trichoderma belongs  to  the  phylum
Ascomycota.  Currently,  at  least  325  species  are  known
(Macías-Rodríguez  et  al.,  2018).  Soil  population  density  of
Trichoderma spp.  is  estimated  to  be  in  the  range  of  101−
103 propagules g−1 soil in tropical soils (Harman et al., 2004).
At  species  level,  the  population  density  of Trichoderma
atroviride has been shown to be approximately 103 propag-
ules  g−1 soil  (Cordier  et  al.,  2007).  Some  species  show
saprotrophic  behavior,  growing  on  decomposing  plant
organic  matter.  Other  species  have  a  great  capacity  to
compete with other soil microorganisms for space and nutri-
ents  and  to  modulate  plant  interactions  at  different  trophic
levels  (Contreras-Cornejo  et  al.,  2018, 2020b; Macías-
Rodríguez  et  al.,  2020).  Moreover,  endophytic  growth  has
been reported for some Trichoderma spp. (Bae et al., 2011;
Chaverri et al., 2015).

The  effect  of Trichoderma on  microbial  communities  can
be  negative  (repressor),  neutral  (no  apparent  effect),  and
positive (stimulator of specific microbial communities). In this
context,  it  is important to investigate the environmental and
ecological  conditions  that  modulate  the  activity  of Tricho-
derma,  especially  when  some  of  the  species  are  used  as
bioinoculants  and  introduced  into  agricultural  soils,  where
they  represent  exotic  species  under  new  environmental
conditions.

Commonly,  many Trichoderma species  are  associated
with  plant  roots,  in  the  rhizosphere,  on  the  root  surface  or
endophytically  (Evans  et  al.,  2003; Bae  et  al.,  2011;
Rosmana  et  al.,  2016; Harman  et  al.,  2021),  most  often
resulting in symbioses with plants (Harman, 2011). In situa-
tions  with  different  abiotic  stress  factors  such  as  extreme
temperatures,  water  deficit  and  the  presence  of  toxic
substances  (Björkman  et  al.,  1998; Govarthanan  et  al.,
2019; Cristaldi et al., 2020), Trichoderma spp. can promote
plant  adaptation,  tolerance  and/or  resistance  to  adverse
environmental conditions (Table 1).

 3 Trichoderma-plant interactions

Trichoderma is  a  common  soil  fungus  forming  part  of  the
plant holobiont (Contreras-Cornejo et al., 2016; TariqJaveed
et al., 2021). The interaction of Trichoderma with plants can
happen  without  physical  interaction  between  the  mycelium
of  the  fungus  and  the  tissue,  commonly  with  the  roots

   
Table 1    Mitigation of abiotic stress by Trichoderma on plants under different stresses.
Type of stress Fungal species Beneficial effect Reference

Oxidative stress T. harzianum
1 295-22

Induction of shoot biomass accumulation in maize (Zea mays L.) Björkman et al.,
1998

Thermic stress by
low temperatures

T. harzianum
1 295-22

Root biomass formation in maize (Zea mays L.) Björkman et al.,
1998

Cadmium
tolerance

T. virens TvGST, a fungal glutathione transferase expressed in Nicotiana tabacum enhances
Cd in the transgenic plant

Dixit et al., 2011a

Contamination by
anthracene

T. virens TvGST, expressed in N. tabacum enhanced anthracene tolerance and degradation
of hydrocarbonated compounds

Dixit et al., 2011b

Salinity T. atroviride IMI
206 040; T.
longibrachiatum
TG1; T. atroviride
HN082102.1;
T. viride RA1

Na+ detoxification through enhanced ion root exudation in Arabidopsis thaliana.
TG1 promotes wheat tolerance to salinity and resistance to the plant pathogen
Fusarium pseudograminearum. The marine isolate HN082102.1 alleviates salt
stress in cucumber (Cucumis sativus L.). In tomato plants, T. viride increased the
concentration of proline and the activities of CAT, PPO and APX.

Contreras-Cornejo
et al., 2014;
Boamah et al.,
2021; Zhang et al.,
2022; Metwally and
Soliman 2023

Drought Trichoderma spp. Several fungal species increase plant tolerance to water deficit. Particularly, T.
parareesei has a chorismate mutase that is involved in tolerance to water deficit in
rapeseed (Brassica napus L.) and T. asperellum NT33 promoted biomass
accumulation of tomato (Solanum lycopersicum) under drought conditions

Poveda, 2020;
Rawal et al., 2022;
Hoseini et al., 2022

Elevated soil pH Trichoderma spp. Plant adaptation and growth promotion under alkaline soil pH Cabral-Miramontes
et al., 2022

Aluminum
tolerance

T. asperelloides The fungal inoculation reduces Al stress-induced damages by improving growth,
photosynthetic pigments and organic solutes in maize

do Rêgo Meneses
et al., 2022

Heat stress T.
longibrachiatum
SMF2

This fungal strain produces trichokonins that enhance heat stress resistance in
Lilium davidii var. unicolor by the up-regulation of the heat-protective genes
LzDREB2B, LzHsfA2a, LzMBF1c, LzHsp90, and LzHsp70

Cao et al., 2023
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(Martínez-Medina  et  al.,  2017; Poveda  et  al.,  2023).  Roots
exude  monosaccharaides  and  sucrose  that  function  as  a
nutritional  source  for Trichoderma.  In  this  scenario,  the
fungus grows towards the source of carbohydrate emission,
encountering the root  which it  subsequently  colonizes,  initi-
ating  further  physical  interaction  (Macías-Rodríguez  et  al.,
2018). Trichoderma also  releases  substances,  including
auxins and ACCase that stimulate plants and have biological
activity related to plant growth (Gravel et al., 2007; Ou et al.,
2023). Table  2 indicates  the  main  signaling  pathways  acti-
vated  by Trichoderma species  in  plants  under  different
abiotic stress conditions (Fig. 1).

There  is  experimental  evidence for  the  communication  of
plants with Trichoderma when the environmental conditions
are a challenge for plant growth. For example, tomato roots
of stressed plants release oxylipins, including 10-hydroxy-8Z,

12Z-octadecadienoic  acid,  12,13  epoxy-9Z-octadecenoic
acid  and  9,10-epoxy-12Z-octadecenoic  acid  into  the  rhizo-
sphere; under high salinity these substances attract Tricho-
derma and promote the interaction (Lombardi et al., 2018).

 4 Influence of Trichoderma on plant growth
under stress conditions

Abiotic stress can compromise plant health and performance
(Waadt  et  al.,  2022).  Several Trichoderma species  have
been  shown  to  promote  plant  growth  under  abiotic  stress
and reduce the negative effects of abiotic factors that delay
or  alter  plant  growth (Bae et  al.,  2009; Shukla  et  al.,  2012;
Contreras-Cornejo et al., 2014; Metwally and Soliman, 2023;
Fig. 2).  Under  abiotic  stress  the  phytohormone-like

   
Table 2    Molecular mechanisms by which Trichoderma promotes abiotic stress tolerance in plants.
Phytohormone Gene Product Function Reference

ABA ABI4 Encodes a transcription
factor, which belongs to the
family of APETALA 2

Under abiotic stress ABA signaling is activated and ABI4 is
required in salt responses

Arroyo et al., 2003

ABI1 and
ABI2

The Arabidopsis ABI1 and
ABI2 encode two protein
phosphatases 2C (PP2C)

In adverse conditions that promote plant dehydration, ABI1
and ABI2 promote stomatic closure to reduce rate of water
lost and improve water-use efficiency

Contreras-Cornejo
et al., 2015

IAA NIT1 and
NIT2**

Protein nitrilases Saline stress induces nitrilases that are involved in IAA
production

Bao and Li, 2002;
Liu et al., 2021

ARF7 and
ARF19

Transcription factors in IAA
response

An intact auxin signaling pathway has a critical role to salt
tolerance in modulating the root branching and consequently
enhance Na+ elimination through root exudates

Contreras-Cornejo
et al., 2014

AUX1 An auxin influx transporter

PIN2 An IAA efflux transporter.

TIR1, ABF2
and ABF3

Auxin receptors

ET ETO3 Ethylene-over producing 3 A factor involved in ET production Brotman et al., 2012;

EIR1 EIR1 encodes the auxin
transporter AtPIN2

Contreras-Cornejo
et al., 2014

ACCD* 1-Aminocyclopropane-1-
carboxylate deaminase

ACCD cleaves its substrate to produce α-ketobutyrate,
ammonia and ET, which is a signaling phytohormone in
response to abiotic stress
T. asperelloides T203 ameliorates the negative effects
caused by salinity in plants regulating the ACCD activity

Viterbo et al., 2010;
Brotman et al., 2013;
Zhang et al., 2019b

GA GAI, RGA,
RGL1, and
RGL2

DELLA proteins ET signaling can induce salt stress tolerance in a DELLA-
dependent manner and this address needs further research
during Trichoderma-plant interactions under abiotic stress

Achard et al., 2006;
Zhao and Zhang,
2015

SA - - T. longibrachiatum TG1 triggers the accumulation of SA,
which increases the activity of antioxidants and expression of
the genes SOD, POD, and CAT to cope with the oxidative
stress provoked by salinity

Illescas et al., 2021;
Boamah et al., 2022

CM* Choristamate mutase CM is a component of the shikimate pathway. In plants, over-
expression of CM increases the levels of SA. Most likely, this
enzyme in Trichoderma promotes tolerance to salinity and
drought in plants by increasing the expression of genes
related to the signaling mechanism mediated by ABA under
drought, and ET under salinity

Poveda, 2020; Jan
et al., 2021

Multiple MAPK3 Mitogen activated protein
kinase 3

This kinase participates in signal transduction cascades of
defense responses and abiotic stress resistance, which need
further research in Trichoderma-plant interactions

Bae et al., 2009

All these five phytohormones can be produced by Trichoderma spp. ABA: Abscisic acid; IAA: Indole-3-acetic acid; ET: Ethylene;
GA: Gibberellic acid; SA: Salicylic acid. *, Component of the Trichoderma molecular machinery.
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compounds produced by Trichoderma play an important role
in  mitigating  the  burden  caused  by  stressful  conditions
(Fig.  3).  In  the following sections,  we describe how several
species  of Trichoderma impact  on  plants  under  adverse
conditions.

 4.1 Climate change

Climate  change  produces  significant  changes  in  environ-
mental  temperature,  observed at  regional  and global  scale.
Changes  in  climate  patterns  induce  biotic  and  abiotic

 

 
Fig. 1    Schematic representation on the negative effects of abiotic factors that damage plants and the role of Trichoderma on
stress  mitigation.  Abiotic  factors  such  as  drought,  primary  and/or  secondary  salinity,  heavy  metals  and  toxic  agrochemicals
cause detrimental effects on plants. However, Trichoderma sp. can mitigate such effects and improve plant growth and produc-
tivity.

 

 

 
Fig. 2    Plant  abiotic  stress  mitigation  by Trichoderma.  This  image  shows  five  boxes  representing  a  continuous  scenario  of
abiotic  stress.  The gray box is  an initial  and general  condition of  stress (i.e.,  salinity).  Subsequent  boxes show a progressive
plant health degradation scenario that is represented by the orange section, but also show in blue the contribution of Trichoderma
to mitigation of the stress.
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stresses that affect the growth, development, and productivity
of  plants  in  their  natural  habitats  and  in  agroecosystems
(Contreras-Cornejo et al., 2023). Alterations in environmental
temperature, in the availability of water in the soil, in intensity
of sunlight and the presence of contaminants in the air and
soil, are critical abiotic factors for the survival of plants.

Changes in the environmental temperature leads to oxida-
tive  stress  in  plants,  which  alters  multiple  physiological
processes involved with the growth of the vegetative phase.
This in turn affects the subsequent performance of plants in
their  processes  of  adaptation,  defense,  and  reproduction
(Lesk  et  al.,  2016).  It  has  been  observed  that  different
Trichoderma species can help plants to cope with tempera-
ture  changes  (Cao  et  al.,  2023).  Interestingly, Trichoderma
can  resist  adverse  environmental  conditions  by  activating
efficient molecular mechanisms for environmental perception
and oxidative stress mitigation (Karuppiah et al., 2022). For
example, the Trichoderma isolate TaDOR673 seems to use
the  mitogen  activated  protein  kinase  (MAPK)  signaling
cascade  in  combination  with  heat  shock  proteins  to  resist
heat  shock  (Poosapati  et  al.,  2021).  That  is,  the  fungus

induces  significant  changes  in  the  metabolism  of  its  host
plant  and  activates  key  molecular  mechanisms  that  are
associated with stimulating tolerance to heat stress. Table 1
shows  some  cases  in  which Trichoderma had  beneficial
effects on plants under heat stress.

 4.2 Salt stress conditions

High  soil  salinity  is  an  environmental  constraint  that  funda-
mentally  affects  plant  growth  (Zhang et  al.,  2019a, 2019b).
For  example,  irrigated agriculture and the excessive use of
chemical fertilizers that contain sodium ions (Na+) frequently
cause  secondary  salinity  in  arable  soils  (Moharana  et  al.,
2019; Stavi et al.,  2021). Soil  salinity causes a reduction of
growth in both roots and shoots, but also causes chlorosis,
oxidative burst, and low rates of photosynthesis (Abogadal-
lah,  2010).  Several Trichoderma strains  can  alleviate  the
detrimental  effects  on  plant  physiology,  acting  alone  or
synergistically, and confer salt stress tolerance (Gupta et al.,
2021; Zhang et  al.,  2022; Anshu et  al.,  2022; Irshad et  al.,
2023).

 

 
Fig. 3    Signaling mechanisms that Trichoderma activates in plants to promote abiotic stress tolerance. SA, ABA, IAA, ET and
GAs  are  the  canonical  phytohormones  produced  by  plants  and Trichoderma.  Initially,  the  abiotic  factor  that  provokes  stress
causes signal translation involving the participation of secondary messengers and the activity of protein kinases; subsequently,
the hormones are activated to trigger a response of tolerance or resistance to stress. The phytohormones in turn promote the
gene  expression,  protein  biosynthesis  and  their  activity.  Metabolic  components  as  antioxidants  (i.e.,  ascorbic  acid)  and
osmolytes  (i.e.,  proline)  contribute  with  the  correct  cell  functionality,  protecting  the  cell  from  oxidative  damage  and  cellular
collapse during abiotic stress mitigation. CTR1: Constitutive Triple Response, which is a central modulator of the ET-signaling
pathway. CTR1 allows EIN2 to relay ET signal to the correspondent transcription factors, including EIN3.
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For  example, T.  asperellum diminished  the  negative
effects of a naturally alkaline-saline soil  (pH = 9.30) on two
maize  genotypes:  Jiangyu  417,  a  saline-resistant  line,  and
Xianyu  335,  a  saline-sensitive  line.  Indeed, T.  asperellum
promoted root and shoot growth with both maize genotypes,
but  with  different  degrees  of  protection  against  oxidative
damage involving the antioxidant mechanisms. In non-inoc-
ulated soil, the Xianyu 335-line accumulated higher levels of
superoxide  anion  (O−2)  than  Jiangyu  417.  Clearly, T.
asperellum inoculation  enhanced  the  activity  of  the  antioxi-
dant enzymes ascorbate peroxidase (APX), catalase (CAT),
glutathione  reductase  (GR),  guaiacol  peroxidase  (GPX),
peroxidase  (POD),  and  superoxide  dismutase  (SOD)  in
plants, which contributed to the decrease of Na+ and reactive
oxygen  species  (ROS)  levels  in  the  roots  and  shoots  (Fu
et al., 2017).

Further, it has been observed that T. asperellum Q1 allevi-
ated  the  negative  effects  caused  by  salinity  in  cucumber
plants  by  increasing  plant  concentrations  of  indole-3-acetic
acid (IAA) and gibberellins (GAs) and modulating the levels
of  abscisic  acid  (ABA),  which  was  related  with  increased
root  growth  and  phosphate  solubilization  by  the  fungus
(Zhao and Zhang, 2015). More recently, it was reported that
T. hamatum increases plant tolerance to salinity, modulating
both  antioxidant  metabolism and  photosystem II.  The  plant
beneficial effects induced by T. hamatum included reduction
of  the  oxidative  stress  by  the  activity  of  the  enzymes  SOD
and  CAT,  reduction  of  the  oxidative  stress  markers  H2O2

and  malondialdehyde,  increases  of  the  chlorophyll  content
from  81%−189%  and  growth  promotion  from  141%−209%
(Irshad et al., 2023).

Zhang and coworkers (Zhang et  al.,  2019a) reported that
“T-soybean”,  a T.  harzianum isolate  from  soybean  rhizo-
sphere,  mitigated  the  negative  effects  caused  by  saline
stress  in  cucumber  plants  by  modulating  multiple  factors
involved  in  the  antioxidative  mechanisms,  such  as  APX,
CAT,  GR,  POD,  SOD,  phenylalanine ammonia-lyase (PAL)
and polyphenol oxidase, as well as by inducing the production
of ascorbic acid (AsA), soluble proteins, sugars, proline, and
chlorophyll. In addition, T-soybean regulated the proportions
of  glutathione  (GSH)  to  oxidized  glutathione  (GSSG)  and
AsA  to  dehydroascorbate  (DHA)  in  cucumber  plants,  and
modulated  the  expression  of  some genes  that  form part  of
the AsA-GSH cycle and CsAPX. T-soybean provoked modu-
lations in  the ratios  of  K+:Na+ in  soybean,  since decreased
concentrations of Na+ were detected, while increased levels
of K+ occurred; moreover, the presence of T-soybean led to
the maintenance of an adequate osmotic balance in its host,
which resulted in better  salt  stress tolerance and sustained
plant  growth  (Zhang  et  al.,  2019a).  Taken  together  these
data show that Trichoderma confers salt stress tolerance by
targeting multiple mechanisms in plants.

 4.3 Drought and water fluctuations

Water  availability  modulates  growth  and  adaptability  in  all
terrestrial  organisms.  For  example,  drought  substantially
alters  the  overall  community  composition  of  fungi  in  the
rhizosphere  of  grapevine  (Carbone  et  al.,  2021).  However,
several Trichoderma strains  can  increase  tolerance  and
adaptation  of  plants  to  water  fluctuations  and/or  drought
stress (Illescas et al., 2021). Water potentials from −2.8Ψ to
−8.5Ψ  have  a  profound  negative  impact  on  the  growth  of
several  isolates  of Trichoderma,  including  the  commercial
strain T.  afroharzianum T-22  (Rawal  et  al.,  2022).  Under  a
water potential of −8.5Ψ the more sensitive isolates were T.
asperellum NT4, T. asperelloides NT39, T. hamatum OT40,
T. ghanense OT41 and T. harzianum NT5. However, some
strains  can  confer  beneficial  effects  on  plants  even  under
water  stress.  For  example, T.  asperelloides NT33  confers
tolerance  of  tomato  plants  to  water  deficit  (Rawal  et  al.,
2022).  During  drought  conditions  at  the  early  stages  of  the
interaction  of Trichoderma with  seeds,  germination  is  posi-
tively  influenced.  For  example,  tomato  seed  germination
was  dramatically  affected  by  osmotic  stress,  particularly  at
–0.2 and –0.3 MPa, but seeds treated with T. afroharzianum
T22  had  a  more  homogenous  and  faster  germination  rate
compared  with  non-inoculated  seeds  under  osmotic  stress
(Mastouri  et  al.,  2010).  Beneficial  effects  of Trichoderma in
rice  (Oryza  sativa L.)  plants  suffering  water  deficit  include
the modulation of genes involved in several processes such
as  photosynthesis,  and  mechanisms  involving  PSII  subunit
PSBY,  PSI  subunit  Q,  osmoproteins,  aquaporins,  chaper-
onins and antioxidative mechanisms, including that involving
plastocyanin  (Bashyal  et  al.,  2021).  In  particular,  an  endo-
phytic  strain  of T.  hamatum conferred  beneficial  effects  to
cacao  plants  grown  under  water  deficit  and  delayed  the
negative effects caused by drought. During such conditions,
T.  hamatum modulated  the  expression  of  key  genes  in
cacao  plants,  including MITOGEN  ACTIVATED  PROTEIN
KINASE  3 (MAPK3),  SORBITOL  TRANSPORTER (SOT),
PATHOGENESIS-RELATED 5 (PR5), and LIPOXYGENASE
(LOX), suggesting that T. hamatum promotes the responses
to  environmental  signals  in  its  host,  most  likely  by  quickly
triggering  the  molecular  mechanisms  for  abiotic  stress,
including drought (Bae et al., 2009).

Like  the  protective  mechanisms  induced  by Trichoderma
in  plants under salt  stress, T. afroharzianum T22 has been
found to  regulate  the expression of  CAT,  APX and SOD in
tomato  plants,  genes  that  encode  enzymes  that  serve  as
scavengers of ROS (Mastouri et al., 2012). Nevertheless, in
response  to  water-deficit,  such  enzymes  were  induced  in
non-colonized  plants  but  occurred  to  a  lower  level  than  in
T22-colonized plants.  Most  likely  because of  the enzymatic
function  counteracting  ROS-accumulation,  the  growth  of
tomato plants increased (Mastouri et al., 2012). In summary,
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these data  reveal  that Trichoderma confers  tolerance to  its
host plants if available water is variable.

 4.4 Heavy metals in soil

Trichoderma species  also  can  induce  plant  tolerance  to
heavy metals and other elements present at toxic concentra-
tions  (do  Rêgo  Meneses  et  al.,  2022).  Particularly, T.
asperellum can  confer  tolerance  and  support  growth  of
Suaeda salsa plants when planted in soil contaminated with
Na+,  Ca2+ and  Pb.  Sodium  dodecyl  sulfate  polyacrylamide
gel electrophoresis analyses showed that Pb and salt stress
affected  the  total  protein  content  in  plants.  Consequently,
application of Trichoderma offers phytoremediation. Interest-
ingly, the interaction with T. asperellum led to decreases of
13%−58%,  19%−30%,  and  9%−42%  of  Na+,  Ca2+ and  Pb
concentrations,  respectively (Li  et  al.,  2019).  The beneficial
effects of Trichoderma on phytoremediation of soil contami-
nants  are  further  important  since  high  uptake  of  Na+ by
plants promotes the competence with K+, which results in a
cellular  ion  imbalance  and  subsequently  induces  cellular
dysfunctionality (Li et al.,  2019). Also T. afroharzianum T22
can promote the growth of crack willow in soil with elevated
concentrations of metals, including Zn (1 109 ± 45 mg kg−1),
Sb  (150  ±  64  mg  kg−1),  Pb  (351  ±  20  mg  kg−1),  Ni  (208  ±
74 mg kg−1) and Cr (62 ± 26 mg kg−1). After three months,
saplings  grown  in  the  presence  of T.  afroharzianum T22
showed  that  the  total  dry  biomass  was  39%  higher  for
saplings  inoculated  with  the  fungus  compared  with  their
respective control,  and accumulated on average 60% more
dry  stem  biomass  than  non-inoculated  saplings  (Adams
et al., 2007).

Overall,  the  mechanisms  involved  in Trichoderma biore-
mediation  of  metal  polluted  soils  remain  to  be  further
addressed. A possible mode of action is the remediation of
single  metal  contaminants  by  calcite  precipitation,  where
toxic  metals  are  immobilized  in  the  form  of  compounds  by
metal-resistant  microorganisms  (Su  et  al.,  2015; Zhu  and
Dittrich,  2016; Govarthanan  et  al.,  2019).  However,  this
depends on the ability of the microorganisms to modify their
microenvironment and create the physicochemical conditions
favorable  to  metal  precipitation  (Gadd,  2010; Gadd  et  al.,
2012).  A  particular  case  is  the  isolate  of Trichoderma sp.
MG,  which  can  effectively  immobilize  As  and  Pb
(Govarthanan et al., 2019). However, the molecular mecha-
nisms activated by Trichoderma to confer tolerance in plants
to heavy metals remain to be understood in more depth.

 4.5 Accumulation of pesticides and other xenobiotics

Several Trichoderma species  with  plant  growth-promoting
activities can contribute to the biotransformation and detoxi-
fication of chemical contaminants, including chloroacetamide

and other  hydrocarbonated compounds (Dixit  et  al.,  2011b;
Jasińska  et  al.,  2022).  For  example, T.  koningii IM  0956,
T. harzianum KKP 534, T. viride KKP792 and T. virens DSM
1963 promoted the growth of rapeseed (Brassica napus, cv.
Monolit)  seedlings treated with  the herbicides alachlor  and/
or  metolachlor.  These  four  strains  were  found  to  produce
key factors involved in plant growth promotion by rhizosphere
microorganisms  such  as  siderophores  and  ACCase,  and
were  also  efficient  in  solubilizing  phosphate,  even  in  the
presence of herbicides. Among those strains, T. harzianum
KKP 534 showed an outstanding impact on growth promotion
of roots and shoots in the presence of both herbicides, when
compared with uninoculated plants (Nykiel-Szymańska et al.,
2020).

Phoxim is a broad-spectrum organophosphate insecticide,
whose indiscriminate use can contaminate both the environ-
ment  and  plant-derived  foods.  Interestingly, Trichoderma
asperellum TM  can  reduce  the  accumulation  of  phoxim  in
tomato  roots  by  increasing  the  rate  of  elimination  of  this
pesticide. Also, T. asperellum TM has been found to cause
an  increase  of  the  transcript  levels  of GST1, GST2, GST3
and  accumulation  of  GSH  in  the  plant.  Furthermore,  TM
enhanced the conversion, conjugation, and sequestration of
phoxim to stimulate the plant detoxification and leading to a
reduced  pesticide  residue  in  tomato  roots  (Chen  et  al.,
2020). Also, T. harzianum can degrade the herbicide meto-
lachlor (MET), a chloroacetamide-derived compound. When
present  at  a  concentration  of  20  mg  L−1 of  MET,  after  24
and  72  h  the  fungal  strain  degrades  25%  and  75%  of  the
initial concentration of herbicide (Jasińska et al., 2022).

Considering  bioremediation  in  a  broader  sense, Tricho-
derma spp.  are  also  able  to  degrade  polycyclic  aromatic
hydrocarbons  (PAHs)  (Zafra  and  Cortés-Espinosa,  2015),
hexachlorohexane  (HCH)  (Russo  et  al.,  2019),  Dichlorodi-
phenyltrichloroethane  (DDT)  (Russo  et  al.,  2019b),  as  well
as kerosene, diesel, spent engine oil and crude oil (Ani et al.,
2021).  Consequently, Trichoderma spp.  can  become  an
important tool to support phytoremediation and bioremedia-
tion  both  by  protecting  the  plants  from pollutant-associated
stress and by direct degradation of chemicals.

 5 Molecular mechanisms activated by
Trichoderma in plants under abiotic stress

Trichoderma might  intervene  in  plant  hormone  signaling
pathways  by  releasing  certain  substances  such  as  auxins,
ethylene,  gibberellins  and  abscisic  acid.  In  turn,  these
substances  activate  their  respective  signaling  mechanisms
leading to expression of genes related to abiotic stress toler-
ance or resistance that may be linked to both changes in the
redox  enzymatic  machinery  and  osmolytes  production.
Fig.  3 illustrates  the  canonical  mechanisms  mediated  by
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phytohormones and their molecular components that Tricho-
derma modulates in plants to mitigate abiotic stress.

 6 Perspectives

In  the  last  decade,  agroecological  and  biotechnological
interest in Trichoderma spp. has increased considerably due
to its beneficial effects on plants and their limited effects on
the environment. Thus, in the last 5 years, reports showing
Trichoderma species  as  key  mitigation  microorganisms  to
resist  abiotic  stress  caused  by  different  physicochemical
agents  have  gradually  increased  in  rate  of  publication.
However,  there  are  still  many  questions  to  be  answered  in
depth.  For  example:  What  are  the  physiological  and
biochemical responses of Trichoderma when it is growing in
soils with water deficit or heat stress, which are two parame-
ters that vary with climate change? What are the molecular
mechanisms  that  the  fungus  activates  in  plants  to  resist
adverse  environmental  conditions  caused  by  water  deficit?
And  in  the  context  where Trichoderma is  found  in  soils
contaminated with heavy metals that can considerably affect
the  proliferation  and  activity  of  native  microorganism
communities, the question is: Can Trichoderma mitigate the
negative  effects  and  contribute  to  the  adaptation  of  native
microbial  communities  in  the  soil?  It  is  also  important  to
isolate  and  characterize  new Trichoderma species  with
potential  application  as  bioinoculants.  The  advance  in
knowledge  in  these  fields  will  allow  the  continued  use  of
these  beneficial  fungi  in  the  soils  of  agroecosystems  with
environmental  problems that  affect  the production of  plants
of food interest.

 7 Conclusions

In this review we provide relevant and novel aspects on the
role  of Trichoderma when  these  fungi  interact  with  plants
and form part of a holobiont with ecological and agricultural
importance. Trichoderma can  promote  plant  growth  under
various scenarios of abiotic stress, such as those provoked
by increases in environmental temperature, frequent periods
of drought in agricultural lands and in protected ecosystems,
and  contamination  of  soil  by  chemical  elements  and  agro-
chemicals.

A broad body of scientific literature strongly suggests that
different  species  of Trichoderma activate  considerable
biochemical  changes in plants that include the activation of
molecular mechanisms modulated mainly by phytohormones
such as auxins, ET, and ABA. Applying signaling networks,
plants respond in this interplay and induce tolerance and/or
adaptation  to  adverse  conditions.  Plants  then  alter  the
production  and  accumulation  of  osmolytes,  antioxidant

metabolites  and  key  enzymes  such  as  chaperones  and
others  that  participate  in  regulating  the  oxidation-reduction
processes  of  cellular  components.  These  effects  together
converge and contribute to mitigation of the negative effects
caused by the different stress-inducing abiotic factors.

Multiple prediction efforts on the effects of climate change
on  terrestrial  ecosystems  suggest  that  the  flora  present  in
large portions of forest and agricultural lands will be severely
affected.  These  concerns  are  calling  for  new  strategies  for
plant  biodiversity  conservation and management  of  agricul-
tural systems, as well as reduction of adverse anthropogenic
practices that contribute to the deterioration of soils and the
environment.  Besides  the  naturally  induced  changes  in  the
microbiomes  caused  by  climate  change,  human  induced
changes by bio-inoculants and plant symbionts also have to
be considered (Averill et al., 2022).

Since Trichoderma spp. are part of the soil and rhizosphere
microbiomes worldwide, strains of this genus are optimal for
regional enhancement of climate change resilience of plants
without major disturbance of the local microbiome. However,
although Trichoderma has  great  potential  for  agricultural
applications,  there  are  still  several  issues  to  address  in
terms of formulation and application methods and utilization.
As spore formulations of Trichoderma are influenced by vari-
ous  natural  factors  such  as  humidity,  temperature,  soil  pH,
and  soil  microbial  communities  in  the  field,  it  is  crucial  to
develop  efficient  formulations  ensuring  fungal  performance
in the soil. Finally, the use of Trichoderma as a bioinoculant
represents  a  sustainable  alternative  for  short  term replace-
ment  of  excessive  use  of  agrochemicals,  for  increasing
climate change resilience of crops and for discontinuing the
use of substances that are used illegally in agricultural fields,
especially in developing countries.
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