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ABSTRACT
●   Soil  resistomes  of  conventional  and  organic  systems
were similar in terms of ARG biodiversity.
●   Soil  resistomes  of  conventional  and  organic  systems
were different regarding individual ARGs.
●   Uncultivated bacteria and archaea can contribute signifi-
cantly to soil resistome.
Metagenomic  studies  of  various  soil  environments  have
previously  revealed the widespread distribution of  antibiotic
resistance genes (ARGs) around the globe. In this study, we
applied shotgun metagenomics to investigate differences in
microbial  communities  and  resistomes  in  Chernozem  soils
that  have  been  under  long-term  organic  and  conventional
cropping  practices.  The  organic  cropping  system  was
seeded  with Triticum  spelta without  any  fertilizer.  The
conventional  cropping  system  was  seeded  with Tríticum
durum Desf and used mineral  fertilizer (NPK),  that  resulted
in an increased amount of total and available carbon and nitrogen in soils. Across all samples, we identified a total of 21 ARG classes, among
which the dominant were vancomycin, tetracycline and multidrug. Profiling of soil microbial communities revealed differences between the studied
fields in  the relative abundances of  14 and 53 genera in  topsoil  and subsoil,  respectively.  Correlation analysis  showed significant  correlations
(positive and negative) among 18 genera and 6 ARGs, as well as between these ARGs and some chemical properties of soils. The analysis of
metagenome-assembled  genomes  revealed  that Nitrospirota, Thermoproteota, Actinobacteriota and Binatota phyla  of  archaea  and  bacteria
serve as hosts for glycopeptide and fluoroquinolone/tetracycline ARGs. Collectively, the data obtained enrich knowledge about the consequences
of  human  agricultural  activities  in  terms  of  soil  microbiome  modification  and  highlight  the  role  of  nitrogen  cycling  taxa,  including  uncultivated
genera, in the formation of soil resistome.
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 1 Introduction

The concept  of  the resistome as the collection of  all  genes

responsible for resistance to antibiotics and their precursors

was  introduced  in  2006  in  a  study  that  demonstrated  the
extent of the spread of antibiotic resistance genes (ARGs) in
soil ecosystems (D’Costa et al., 2006). The widespread use
of metagenomic approaches in studying natural habitats has
shown that resistance genes in natural microbial communities
are  diverse  and  ubiquitous,  with  presence  in  regions  of
Alaska  and  the  Arctic  untouched  by  human  activity  (Allen
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et al., 2009; Van Goethem et al., 2018).
Active research is still  being conducted to understand the

natural  and  anthropogenic  drivers  that  determine  the  resis-
tome.  The  question  of  the  contribution  of  anthropogenic
activity to the resistome phenomenon is of particular interest,
as  the  answer  obtained  can  serve  as  the  basis  for  any
legislative  decisions  (Kaviani  et  al.,  2022).  The  general
questions  can  be  formulated  as  follows:  How  exactly  does
the  composition  of  the  soil  microbial  community  correlate
with  the  composition  of  ARGs?  What  is  the  contribution  of
external  factors  (fertilizers,  pesticides,  etc.)  to  the  richness
and shape of the resistome?

Some studies have shown that anthropogenically modified
lands such as сroplands did not  show significantly  different
levels  of  ARG  richness  or  diversity  compared  with  most
other  biomes  (Qian  et  al.,  2021; Delgado-Baquerizo  et  al.,
2022). Other studies have provided evidence to the contrary.
For  example,  the  analysis  of  metatranscriptomic  data  sets
from microbiomes revealed that soil from agricultural origins
had  significantly  more  diversity  of  ARGs  per  sample  than
was the case for forest soil (Lawther et al., 2022).

A study of soils collected from fields in the organic farming
system compared to conventional farms could provide some
answers  to  the  aforementioned  questions;  that  is,  the
organic soil microbiome can serve as a baseline for investi-
gating  the  ecology  of  antibiotic  resistance  on  farms  and  in
fields  (Cadena et  al.,  2018).  Conventional  farming  systems
use pesticides, which are one of the significant factors in the
selection  of  antibiotic-resistant  bacteria;  these  substances
can come from different chemical (or functional) classes, but
their use has led to an increase in the diversity and richness
of  ARGs  (Qiu  et  al.,  2022).  On  the  other  hand,  in  organic
farming, biopesticides are used, which are reservoirs of clini-
cally  relevant  antimicrobial  resistance  genes  (Kaze  et  al.,
2021). However, the most significant factor determining soil
resistome is  application of  fertilizers,  without  which modern
agriculture  would  be  impossible.  A  number  of  studies  have
shown that the impact of organic fertilizers on soil resistome
is  more  significant  than  that  of  mineral  fertilizers.  Those
studies  also  confirmed  that  chemical  fertilizer  significantly
modulates  soil  bacterial  composition  (Liu  et  al.,  2017; Xie
et  al.,  2018; Wang  et  al.,  2020; Liu  et  al.,  2022).  Fertilizer
application  changed  the  physicochemical  parameters  of
soils,  leading  to  changes  in  the  taxonomic  profile  of  the
microbiome (Dincă et al., 2022). Urea and ammonium bicar-
bonate  significantly  increased  both  soil  pH  and  nitrification
rates, while ammonium sulfate did not affect soil pH (Wang
et al., 2020B). Zishu et al. (2023) convincingly demonstrated
that soil pH plays a pivotal role in shaping the resistome.

Another  important  factor  determining  the  richness  and
diversity of the soil  microbiome is the vertical distribution of
nutrients  in  the  soil  profile.  For  example,  soils  from  fields
fertilized  with  manure  have  been  found  to  be  enriched  in

phosphorus  in  the  topsoil  and  nitrate  in  the  subsoil
(Edmeades, 2003). While the vertical distribution of nutrients
in  the  soil  and  the  related  microbiome changes  have  been
studied  in  many  researches  (Pathak  and  Reddy,  2021),
much less  is  known about  the  vertical  distribution  of  ARGs
(Li et al., 2023).

In this study, we conducted a comparative investigation of
the  diversity  and  abundance  of  soil  resistomes  of  the
conventional  and  organic  fields  that  received  different
amounts  of  nitrogen.  Our  main  research  tool  was  shotgun
sequencing,  which  allowed  coverage  of  a  wide  range  of
ARGs  and  direct  identification  of  ARG  hosts  in  the  soil
microbiome.  We  investigated  how  the  microbiome  and  soil
resistome are connected to each other and how the resistome
is distributed when going deeper into the soil.

 2 Materials and methods

 2.1 Soil sampling

Soil samples were collected from two agricultural lands with
Chernozems  soils,  located  in  the  temperate  continental
climate zone in  the Russian Federation,  at  the end of  April
2022.  The collected  soils  represented  organic  and conven-
tional cropping systems. The chosen fields were seeded by
wheat Tríticum  durum Desf  (conventional)  and Triticum
spelta (organic).  The  studied  plots  were  located  on  arable
soils used in the zonal crop rotation regime.

Conventional  cropping  system  (CCS):  Crop  rotation  was
winter wheat−winter wheat−peas−winter wheat. Crop rotation
had been carried out since 2003 (five full cycles of rotation).
The  field  was  treated  with  mineral  fertilizers:  diamofoska
NPK(S)  10:26:26(2):  N-10%,  P2O5-26%,  K2O-26%,  MgO-
0.3%−1%,  S-2%  (PhosAgro,  Russia)−100  kg  ha−1;  ammo-
nium nitrate−150 kg ha−1. Seeds were treated with fungicides
“Strike  forte” (flutriafol  +  tebuconazole,  75  +  225  g  L−1).
Coordinates of the field: 47°20′09.0ʺ N, 38°18′21.3ʺ E.

Organic  cropping  system  (OCS):  Crop  rotation  was
peas−rye−lentils−spelt.  Crop  rotation  had  been  carried  out
since 2011 (three full cycles of rotation). Seeds were treated
with  biological  preparations “BSKA-3” (Trichoderma  viride,
Pseudomonas  koreensis,  Bacillus  subtilis,  Bradyrhizobium
japonicum)  and “Geostim” (Trichoderma  viride,  Azomonas
agilis,  Azotobacter  chrooccocum)  (Biotechagro,  Russia).
Fertilizers (organic or mineral) were not applied. Coordinates
of the field: 47°20′55.7ʺ N, 38°18′46.3ʺ E.

Soil  sampling  took  place  at  the  end  of  the  crop  rotation
during the growth of  winter  wheat  (СCS) and spelta  (OCS)
Soil  sampling  was  carried  out  during  the  middle  stage  of
plant  growth.  At  each  study  location  (conventional  and
organic  fields),  four  spatially  remote  sites  were  chosen.  At
each chosen site (1 m2),  the upper soil  layer (0–5 cm) and

2 Soil resistome of conventional and organic fields



subsoil  layer  (5–15  cm)  were  collected  using  the “checker-
board” sampling method (four points in the corners and one
in  the  center,  then  pooled  in  a  plastic  bag).  Samples  then
were placed into plastic bags and delivered to the laboratory
within 48 h. The samples were stored at −80°C prior to DNA
extraction.  Soil  DNA  was  extracted  from  250  mg  of  soil
using a Quick-DNA Fecal/Soil Microbe Kit (Zymo Research,
US) according to the manufacturer’s protocol. DNA concen-
tration  was  determined  using  a  Qubit  4.0  Fluorometer
(Thermo Fisher Scientific, US). DNA quality (A260/A280) was
checked by NanoPhotometer N120 (Implen, US).

 2.2 Physico-chemical soil analysis

The  particle  size  distribution  (soil  texture)  was  determined
by  the  Integral  Suspension  Pressure  method (ISP)  (Durner
et  al.,  2017).  The  soil  was  dried  to  an  air-dry  state  and
treated with  a  30% H2O2 solution and a 4% Na4P2O7 solu-
tion. Physical dispersion was performed using a Scientz-IID
ultrasonic probe homogenizer (Ningbo Scientz Biotechnology
Co,  China).  The  soil  texture  was  determined  using  a  Pario
instrument  (Meter  Group,  Inc,  USA;  instrument  error  3%).
The sand fraction was isolated from the suspension by wet
sieving  using  an  Analysette  3  vibrating  screen  (Fritsch,
Germany)  with  0.05,  0.25,  and  0.5  mm sieves.  The  results
were processed using the Pario Control program.

The  soil  texture  was  consisted  of  clay  (28%),  silt  (26%),
and sand (clay loam) (46%). Soil pH was measured according
to  the  international  standard  ISO 10390.  The pHH2O value
was  determined  in  an  aqueous  solution  at  a  soil:solution
ratio  of  1:5  using  a  pH-meter  Orion  Star  A  111  (Thermo
Scientific,Waltham,  MA,  USA)  (Pansu  and  Gautheyrou,
2007).  The  total  carbon  (TC)  and  total  nitrogen  (TN)
contents  were  measured  using  a  Vario  EL  III  elemental
analyzer (Elementar, Langenselbold, Germany). Soil organic
carbon  (SOC)  was  determined  by  pretreatment  of  the
samples  with  10%  HCl  solution  to  destroy  carbonates  and
bicarbonates  (Pansu  and  Gautheyrou,  2007).  Extractable
organic  carbon  (EOC)  and  nitrogen  (EON)  in  the  soil  were
measured according to Vance et al. (1987) and Chen et al.
(2021). A solution of 0.5 M K2SO4 (20 mL) was added to the
soil  samples  (5  g),  then  shaken  for  1  h  on  a  rotator.  The
resulting  extracts  were  filtered,  frozen,  and  dried  under
vacuum,  followed  by  determination  of  the  extracted  carbon
on a Vario EL III C:N analyzer (Elementar, Germany). Deter-
mination  of  soluble  phosphorus  was  performed  as  follows:
5  g  sample  of  soil  was  transferred  to  a  conical  flask  and
25  mL  of  0.2N  hydrochloric  acid  was  added.  3  mL  of  the
filtrate  is  transferred  to  a  flask  and  added  to  40  mL  with
distilled water. 2 mL of a 2.5% solution of ammonium molyb-
date  in  sulfuric  acid  were  added,  followed  by  3  drops  of
stannous  chloride  solution.  The  contents  of  the  flask  were

shaken  and  after  10  min  the  optical  density  of  the  colored
solution was determined at 650 nm.

 2.3 Metagenomic sequencing

Metagenomic  sequencing  was  performed  using  HiSeq  X
Ten  Illumina  platform and  a  2×150  bp  paired-end  sequen-
cing  reagent  kit.  Raw  reads  were  deposited  in  the  NCBI
Sequence  Read  Archive  (SRA)  under  the  BioProject
PRJNA974203.  Preparation  of  reads  for  metagenome
assembly  was  as  follows.  The  quality  of  received  reads
using  FastQC  v.0.11.9  (available  at  bioinformatics.babra-
ham)  was  checked.  Reads  from  artificial  sequences  and
nucleotides  with  poor  read  quality  using  Trimmomatic
v.0.39  (Bolger,  Lohse  and  Usadel,  2014)  were  cleared.
The  quality  of  cleaned  reads  using  FastQC  was  checked.
Thereafter, sequencing of 16 DNA samples yielded a total of
700 829 024 paired  reads.  After  purification, 407 386 189
paired reads were used for subsequent analysis (Table S1).
Reads  filtered  by  quality  were  assembled de  novo using
metaSPAdes  v.  3.15.0  using  default  options  (Nurk  et  al.,
2017). The quality of the resulting metagenomic assemblies
was assessed using QUAST v.  5.0 (Gurevich et  al.,  2013).
These assemblies had lengths from 144.3 to 202.9 Mb and
their GC (guanine-cytosine) compositions varied from 62.7%
to 65.05%.

Taxonomic affiliation was assigned to qualitatively filtered
reads  using  Kaiju  v.  1.5  with  NCBI  BLAST  non-redundant
protein  database  NR  v.2017-05-16.  The  significance  of
difference  among the  structure  of  microbial  communities  at
the  phylum  level  was  analyzed  by  a  principal  coordinate
analysis  (PCoA)  using  the  Bray-Curtis  distance  with  the
Vegan and ggplot2 packages in R (v. 4.2.1). We implemented
two-way PERMANOVA based on the  Bray−Curtis  similarity
and 9 999 permutations using Past v.4.06b (Hammer et al.,
2001).

The  assembled  metagenomes  were  separated  into  bins
(MAGs) using MaxBin 2.0 (Wu, Simmons and Singer, 2016),
MetaBAT  2  (Kang  et  al.,  2019),  and  VAMB  (Sieber  et  al.,
2018)  before  dereplication  and  refinement  with  the  DAS
Tool  (Okonechnikov  et  al.,  2016).  Genome  coverage  was
assessed using QualiMap 2 v. 2.2.2 and Bowtie 2 v. 2.3.5.1.
Completeness  and  contamination  were  assessed  using
CheckM  v.  1.1.3  (Parks  et  al.,  2015).  Medium-  and  high-
quality MAGs, determined by a completeness of ≥ 50% and
a  redundancy  of  <  10%  according  to  the  MIMAG  standard
(Bowers  et  al.,  2017)  were  kept  for  downstream  analyses.
Open  reading  frames  and  genes  were  predicted  using
Prokka v.1.14.5 (Seemann, T. 2014). The taxonomic position
of the assembled genomes was determined using GTDB-Tk
v. 2.0.0 (Chaumeil et al., 2019). The metagenome-assembled
genomes  were  annotated  using  online  servers  antiSMASH
v.7.0 (Blin et al., 2021) and RGI (Resistance Gene Identifier)
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6.0.1,  Comprehensive  Antibiotic  Resistance  Database
(CARD) v.3.2.6 (Alcock et al.,  2023). The protein functional
annotation was performed using the domain-based annota-
tion tool reCOGnizer (version 1.9.2) (available at anaconda.
org).  The  results  derived  from  the  clusters  of  orthologous
groups of proteins (COGs) database (Galperin et al.,  2014)
and Pfam domens (Finn et al., 2016) were used for functional
categorization.

 2.4 Metagenome analysis: analysis of ARGs

Clipped  paired  reads  were  analyzed  for  the  presence  of
ARGs using the ARGs-OAP 2.0 pipeline as described (Yang
et al., 2016; Yin et al., 2018) using the CARD, the Structured
Antibiotic Resistance Genes (SARG) database. Greengenes
database,  comprising  16S  rRNA  genes,  was  used  for  the
ARGs  abundance  normalization.  The  parameters  used  for
ARG  identification  were  alignment  length  cut-offs  of  75
nucleotides, alignment e value cut-off of 10−7, and alignment
identity of 80%. The abundances of ARGs were normalized
by  16S  rRNA  gene  expressed  using  the  formula  (Li  et  al.,
2015):
 

Abundance =
n∑
1

NARG-like sequence∗ Lreads/LARG reference sequence
N16S sequence ∗ Lreads/L16S sequence

where NARG-like  sequence  is  the  number  of  ARG-like
sequences  (reads)  annotated  as  one  specific  reference
ARG sequence; LARG reference  sequence  is  the  length  of
the  sequence  corresponding  to  a  specific  ARG  reference
sequence; N16S  sequence  is  the  number  of  16S  rRNA
sequences  identified  in  the  metagenomic  data  by  mapping
reads against the Greengenes database using minimap2 (Li
et  al.,  2018); L16S  sequence  is  the  average  length  of  the
16S  rRNA  sequence  in  the  Greenenes  database;  and
Lreads is the length of the Illumina read sequence.

ARG results from ARGs-OAP 2.0 were analyzed for alpha
and beta diversity using the Vegan package in R. The heat
map was visualized using the pHeatmap package in R. Prin-
cipal  coordinate  analysis  using  the  Bray−Curtis  distance
was performed in the Vegan and ggplot2 packages in R.

 2.5 Statistical processing

Averages,  standard  deviations,  fold  change  values  and
Shannon indices of all data were calculated using Microsoft
Excel.  The  correlation  between  microbial  communities  and
ARGs was  examined  by  Spearman’s  correlation  coefficient
Rs.  A  correlation  matrix  was  constructed  by  calculating  all
possible  pair-wise  Spearman's  rank  correlations  between
the  ARG  classes  and  microbial  genera  to  visualize  the
correlations in  the network  interface.  A correlation between
two  items  was  considered  statistically  robust  when Rs was
greater  than  0.8  and  the p-value  was  less  than  0.01.  A
network graph was visualized in OriginPro 2021 (OriginLab
Corporation).  Pearson's  correlation  coefficients  (Rp)
between ARGs and soil chemical properties were calculated
and  visualized  using  Past  v.4.06b.  Redundancy  Analysis
(RDA) was performed in Past v.4.06b

 3 Results

 3.1 The chemical properties of soils and functional potential
of soil microbiome

According to pHH2O, the studied soils were weakly alkaline
and  did  not  differ  from  each  other  (Table  1).  A  significant
increase in the content of total carbon and total nitrogen (by
1.6  times, p <  0.05  and  3.5  times,  respectively)  was
revealed  for  the  subsoil  of  the  conventional  field  (Table  1).
There were no significant differences in the content of SOC

   
Table 1    Chemical properties of the soils.

Soil chemical properties

Cropping systems

Organic Conventional

0−5 cm 5−15 cm 0−5 cm 5−15 cm

pHH2O 7.82 ± 0.47 7.91 ± 0.15 7.65 ± 0.23 7.76 ± 0.28

TC g kg−1 32.06 ± 2.39 29.52 ± 3.36 29.63 ± 4.13 47.37 ± 13.75 *

TN g kg−1 4.24 ± 0.80 4.17 ± 1.00 4.14 ± 0.63 14.44 ± 8.27 #

TC:TN 7.96 ± 1.06 7.53 ± 1.15 7.56 ± 1.45 4.24 ± 2.06 #

EOC g kg−1 2.38 ± 0.14 1.21 ± 0.28 2.80 ± 0.80 1.43 ± 0.12

EON g kg−1 0.56 ± 0.09 0.37 ± 0.14 2.77 ± 2.25 * 1.50 ± 1.09 *

SOC g kg−1 31.39 ± 11.63 27.1 ± 0.00 27.05 ± 3.64 27.83 ± 1.95

AP g kg−1 74.63 ± 1.85 67.06 ± 3.36 15.97 ± 0.70* 13.82 ± 0.83*
The statistical difference between pair “organic-conventional”. # p < 0.05 (two-sample t-test); * p < 0.05 (Wilcoxon signed ranks test).TC, total
soil carbon; TN, total soil nitrogen; EOC, extractable organic carbon; EON, extractable organic nitrogen; SOC, soil organic carbon; AP,
available phosphorus.
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and  EOC  between  the  two  cropping  systems,  but  the
content of EON was higher in the subsoil of the conventional
system  (p <  0.01)  (Table  1).  Interestingly,  the  content  of
extractable  phosphorus  in  soils  of  the  organic  system  was
five times higher (p < 0.05) than that in soils of the conven-
tional system (Table 1).

To understand the functional potential of soil microbiomes
in  nitrogen  cycling,  we  analyzed  the  relative  abundance  of
relevant  functional  genes.  In  the  metagenomic  pools,  10
genes  were  identified  whose  products  are  involved  in  the
decomposition of organic nitrogen, and 13 genes involved in
denitrification  (Fig.  S1).  Among  them,  3  genes  had  signifi-
cantly  different  abundances  in  the  two  studied  fields.  The
nrtA gene  (ABC  transporter  nitrate  binding  protein)  in  the
topsoil  layer  (p <  0.05)  and  the narK gene  (nitrate/nitrite
transporter) in the subsoil layer (p < 0.05) were more abun-

dant in the microbiome of the conventional cropping system
than in the organic microbiome. The nifD gene (nitrogenase
Mo-Fe protein) was more abundant in both topsoil (p < 0.01)
and subsoil (p < 0.01) of  the conventional  cropping system
than  in  the  organic  one.  No  N-cycling  gene  was  identified
that was more prevalent in the organic cropping system than
in the conventional cropping system.

 3.2 Composition of prokaryotes in organic and conventional
cropping systems

It was found that the soil microbial profile on phyla level did
not  depend on the cropping system,  but  differed in  relation
to  the  depth  of  soil  sampling  (Fig.  1A).  Two-way
PERMANOVA test indicated that the sampling depth variable
significantly  affected  the  abundance  of  soil  microbial

 

 
Fig. 1    Beta-diversity of soil microbial community of organic and conventional cropping systems. PCoA analysis of variations in
the relative abundance of prokaryotic phyla (A). Heat map of the most common prokaryotic phyla, built on the basis of the average
abundance for all samples (B).
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community at phyla level (F = 9.78, p < 0.01) (Table 2).
Metagenomic shotgun sequencing revealed 28 prokaryotic

phyla.  Among  these, Actinobacteria (Actinomycetota),
Proteobacteria (Pseudomonadota), Acidobacteria
(Acidobacteriota), Chloroflexi (Chloroflexota), Bacteroidetes
(Bacteroidota), Planctomycetes (Planctomycetota), Thau-
marchaeota, Firmicutes (Bacillota), and Gemmatimonadetes
(Gemmatimonadota)  (Fig.  1B)  were  dominant  phyla  and
together  accounted  for  50%−55%  of  the  total  reads  in  the
studied  soil  groups. Thaumarchaeota, Firmicutes and
Gemmatimonadetes were found to be more abundant in the
topsoil  (0−5  cm)  of  the  conventional  field  soils  than  in  the
organic field soils (p < 0.05) (Fig. 1B). The relative abundance
of  other  dominant  phyla  did  not  significantly  differ  between
the compared groups.  In the subsoil  (5−15 cm), Actinobac-
teria was  more  abundant  in  the  organic  soils,  while
Proteobacteria and Bacteroidetes prevailed  in  the  conven-
tional soils (p < 0.05) (Fig. 1B).

Eight  phyla were identified as having a moderate level  of
presence,  since  they  accounted  for  2.86%−4.29%  of  the
total  reads  in  the  studied  soil  groups.  Only  one  phylum,
Candidatus Rokubacteria,  was  significantly  more  abundant
in the organic soils  (p < 0.05).  Among the minor presented
phyla  (0.23%−0.46%),  candidate  phyla Eisenbacteria and
Dormibacteraeota were the taxa that were more abundant in

the organic soils (5−15 cm) than in the soils of conventional
field (Fig. 1B).

Analyzing  the  soil  taxonomic  compositions  at  the  level  of
genera, we found that the Shannon indices of soil microbial
diversity in the organic and conventional fields did not differ
between  the  two  cropping  systems  (p >  0.05)  (Fig.  2A).
However, differences were found in the relative abundances
of  14 genera in the topsoils  (Fig.  2B) and 53 genera in the
subsoils  (Fig.  2C,  Table  S2).  In  the  topsoil, Streptomyces
(−5.54  ±  3.86  log2fold, p <  0.05)  was  less  abundant,  while
Streptosporangium (6.17  ±  2.68  log2fold, p <  0.01)  were
more  abundant,  in  the  conventional  field  soils  than  in  the
organic  field  soil  (Fig.  2B).  In  the  subsoil  all  53  genera
predominated in the conventional field soil (Fig. 2C). Among
them,  the  difference  in  the  relative  abundance  of Massilia,
Skermanlla,  Pseudomonas,  Gemmata,  and Bradyrhizobium
was  calculated  as  having  a  log2-fold  change  value  greater
than 1.0 (Fig. 2C).

Two-way PERMANOVA indicated that sampling depth (F =
2.84, p <  0.05)  and  cropping  system  (F =  2.50, p <  0.05)
variables  contributed  significantly  to  the  difference  in  the
relative abundance of microbial genera (Table 2).

RDA was performed to analyze the relationships between
the  relative  abundance  of  microorganisms  at  phylum  level
and environmental factors (soil sampling depth and cropping

   
Table 2    Two-way PERMANOVA based on Bray−Curtis similarity output of the effects of cropping systems, sampling depth and their inter-
actions on soil microbial communities and ARGs.

Microbial phyla

Source Sum of sqrs df Mean square F p

Sampling depth 0.019 557 1 0.019 557 9.782 2 0.000 3

Cropping systems 0.005 148 1 0.005 148 2.574 7 0.071 1

Interaction 0.005 608 1 0.005 609 2.805 3 0.058 6

Residual 0.023 991 12 0.001 999

Total 0.054 304 15

Microbial genera

Source Sum of sqrs df Mean square F p

Sampling depth 0.091 005 1 0.091 01 2.837 0.016 5

Cropping systems 0.080 175 1 0.080 18 2.499 0.026 7

Interaction 0.128 887 1 0.128 89 4.018 0.000 7

Residual 0.384 935 12 0.032 08

Total 0.685 15

ARGs

Source Sum of sqrs df Mean square F p

Sampling depth 0.004 198 1 0.004 198 1.918 0.128 1

Cropping systems 0.007 532 1 0.007 533 3.441 0.031 1

Interaction 0.002 268 1 0.002 268 1.036 0.366 6

Residual 0.026 265 12 0.002 189

Total 0.040 264 15
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system)  showed  dependence  of Actinobacteria on  the
topsoil,  while Acidobacteria showed  stronger  dependence
on  the  subsoil;  the  abundance  of Proteobacteria was
strongly  determined  by  the  conventional  cropping  system
(Fig. S2A). (R = 0.64, F = 11.42, p < 0.01).

 3.3 Analysis of metagenome-assembled genomes

The  raw  reads  were  filtered  and  then de  novo assembled
using  metaSPAdes.  The  resulting  metagenomes  were
further divided into bins, resulting in the reconstruction of 46
metagenome-assembled genomes belonging to the bacterial
and archaeal domains (Table S3). Analysis using Resistance
Gene  Identifier  to  predict  AGR  presence,  revealed  that
genomes  of  JAFAQB01  (Nitrososphaeraceae)  (n =  7),
Entotheonellia bacterium (n = 1), did not contain any ARGs
(Table 3).

The genomes (n = 9) of genus WHTF01, which belong to
Binatia class  in Binatota phylum (Chuvochina  et  al.,  2019),
were reconstructed with an average completeness of 72.06 ±
6.4%. Analysis using the CARD database revealed the pres-
ence of resistance genes vanT and adeF, which are associ-
ated  with  lipopeptide  and  tetracycline-fluoroquinone  resis-
tance, respectively (Table 3). Additionally, annotation of the
genomes  for  the  presence  of  biosynthetic  gene  clusters
(BGCs)  revealed  the  presence  of  the  sequences  that  are
associated with BGCs involved in biosynthesis of carotenoid,
zeaxanthins  and  others  (Table  3).  Genomes  (n =  3)  of
JACDAN01 bacterium belonging to Gaiellaceae family were
assembled  with  average  completeness  60.04  ±  7.25% and
contained  sequences  assigned  to  tetracycline  and
vancomycin resistance genes (Table 3). Nitrososphaera sp.
genomes (n = 16) were assembled with average complete-
ness  91.27  ±  3.04%,  and  only  one  annotated  genome
contained  a  sequence  identified  as catI gene,  which  deter-
mines resistance to phenicol antibiotic (Table 3). Genome of
Nitrospira_C sp.  (Nitrospiraceae)  was  reconstructed  from
conventional (5−15 cm) field soil with completeness 60.03%
and found to contain sequence assigned to the glycopeptide
resistance  gene  cluster  (Table  3). Propionibacteriaceae
genomes (n = 8) were reconstructed with average complete-
ness  76.53  ±  10.5%  and  contained  the  glycopeptide  resis-
tance gene cluster vanW (Table 3). It  was found that many
of the annotated taxa are potential producers of antimicrobial
metabolites (Table 3). Genome annotation showed that only
Nitrososphaera sp.  and Nitrospira_C contained  both  ARGs
and  clusters  for  ribosomally  synthesized  and  post-transla-
tionally modified peptide classes (RiPPs).

 3.4 Resistome composition and abundance in soils of
organic and conventional cropping systems

ARGs were identified across all sample types, with the ability
to  confer  resistance  to  21  different  antibiotic  classes.  The
abundance of these genes ranged from 10−4 to 10−1 copies
of  ARG  per  copy  of  the  16S  rRNA  gene.  Vancomycin,
aminoglycosides,  and  multidrug  resistance  were  the  most
abundant  ARG classes across all  samples (Fig.  3A).  While
most of the ARGs were present in all samples, trimethoprim,

 

 
Fig. 2    The differences in soil bacterial community compositions of
organic and conventional cropping systems. The Shannon biodiver-
sity  indices  of  soil  microbial  communities  of  the  various  cropping
systems and sampling depths (A). The relative abundance of micro-
bial  genera  expressed  as  the  log2fold  change  values  between
conventional  and  organic  cropping  systems.  Only  genera  with
significance  difference  (p <  0.05,  two-sample t-test)  between  two
cropping systems are presented. Soils were sampled at the topsoil
(0−5 cm) (B) and the subsoil (5−15 cm) (C).
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bleomycin,  carbomycin,  and  pyromycin  were  only  sporadi-
cally  detected.  Principal  coordinate  analysis  revealed  that
ARG  abundance  was  distributed  differently  across  study
groups  (Fig.  3B).  Two-way  PERMANOVA  showed  that  the
soil cropping system is the significant variable (F = 3.44, p <
0.05),  while the sampling depth is not significant (F = 1.92,
p >  0.05)  (Table  2).  Calculated  Shannon  diversity  indices
suggested  that  all  study  groups  had  similar  ARG  alpha-
diversity (Fig. 3C). RDA showed interrelationships of amino-
glycoside, bacitracin, rifamycin with the topsoil,  and of MLS
and  vancomycin  with  the  subsoil.  At  the  same  time,  the
abundance  of  tetracyclin  and  multidrug  ARGs  was  deter-
mined  by  the  organic  and  conventional  cropping  systems,
respectively (Fig. S2 B) (R = 0.34. F = 3.34, p < 0.05).

Comparing the relative abundance of  ARGs between two
cropping  systems,  we  found  that  the  studied  samples  had
differences in the copy number of 6 ARGs (Fig. 3D). In the
organic field topsoil,  there were significantly more copies of
genes  resistant  to  tetracycline  and  macrolide-lincosamide-
streptogramin  (MLS)  than  in  the  corresponding  layer  of
conventional  field  soil.  In  the  organic  field  subsoil  only
quinolone  ARG  was  found  to  be  prevalent.  Beta-lactams,
fosmidomycin,  and multidrug ARGs were significantly  more
abundant  in  the  conventional  field  soil  than  in  the  organic
soil (Fig. 3D).

The investigation into the resistome composition uncovered
23 distinct families of ARGs (Fig. 4A). The genes resistant to
the glycopeptide antibiotic vancomycin were the most abun-
dant,  including vanY,  vanR,  vanH,  vanT, vanW and vanX,

among  which vanW and vanY genes  were  present  in  the
largest  number  of  copies  (Fig.  4A).  In  addition,  genes
encoding  three  types  of  different  efflux  pumps  were  found,
among which the major facilitator superfamily (MFS) antibiotic
efflux  pump was dominant  (Fig.  4A).  Other  common ARGs
included  the  aminoglycoside  O-phosphotransferase  family
gene  APH(3 ′),  which  determines  resistance  to  aminoglyco-
side  antibiotics  (Fig.  4A).  Genes  conferring  resistance  to
tetracycline  (tetracycline-resistant  ribosomal  protection
protein)  and  chloramphenicol  (chloramphenicol  acetyltrans-
ferase  (CAT))  also  constituted  a  pool  of  abundant  ARGs
(Fig. 4A).

Analyzing  the  distribution  of  ARGs  by  resistance  mecha-
nism, four mechanisms were identified, with antibiotic target
alteration  being  the  predominant  mechanism  and  antibiotic
inactivation being a minor mechanism. When comparing the
samples to each other, no predominance of any cell detoxifi-
cation mechanism was found (Fig. 4B).

 3.5 Correlation analysis

Spearman’s correlation coefficient showed significant corre-
lations (positive and negative) among 18 genera and 6 ARG
abundances grouped by drug class. Beta-lactam drug class
positively correlated with 8 genera (Fig. 5A). Interestingly, all
these  genera  prevailed  in  their  relative  abundance  in  the
subsoil  layer of  the conventional  field.  Multidrug class ARG
showed positive Spearman’s correlation with 3 genera, all of
them were more significantly abundant in the subsoil layer of

   
Table 3    Annotation of assembled genomes for ARGs and biosynthetic gene clusters.
Taxon ARG family Drug class Resistance mechanism BGCs

WHTF01
(class Binatia)

vanT, glycopeptide
resistance gene cluster

Glycopeptide antibiotic Antibiotic target alteration Terpene (carotenoid) APE
Vf, aryl polyenes

adeF, Resistance-
nodulation-cell division
(RND) antibiotic efflux
pump

Fluoroquinolone antibiotic,
tetracycline antibiotic

Antibiotic efflux

Not identified genus (class
Entotheonellia)

Redox-cofactors (lankacidin
C), phosphonate, hglE-KS,
terpene, aryl polyenes

JACDAN01 (family
Gaiellaceae)

vanW, glycopeptide
resistance gene cluster

Glycopeptide antibiotic Antibiotic target protection

otr(A)S.rim Tetracycline-resistant
ribosomal protection protein

Antibiotic target protection

Nitrososphaera sp. catI, chloramphenicol
acetyltransferase (CAT)

Chloramphenicol antibiotic Antibiotic inactivation Thioamitides
RRE-containing

JAFAQB01 (family
Nitrososphaeraceae)

RRE-containing, RiPP-like

Nitrospira_C (family
Nitrospiraceae)

vanT glycopeptide
resistance gene cluster

Glycopeptide antibiotic Antibiotic target alteration RRE-containing, RiPP-like,
phosphonate, terpene, aryl
polyenes,

Not identified genus (family
Propionibacteriaceae)

vanW glycopeptide
resistance gene cluster

Glycopeptide antibiotic Antibiotic target alteration

Not identified genus
(order Solirubrobacterales)

Beta-lactone
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the conventional  fieldthat  that  in  the organic  field  (Fig.  5A).
Rifamycin  and  trimethoprim  positively  correlated  with
Terrabacter and Momomurae,  respectively  (Fig.  5A),
however  the  relative  abundance  of  these  genera  did  not
differ  between  organic  and  conventional  cropping  systems.
MLS and quinolone drug classes showed negative correlation
with 1 and 4 genera, respectively (Fig. 5A).

Choosing  an  ARG  and  assuming  the  genera,  which  are
highly correlated to the ARG, to be the ARG predictors, we
may apply multivariate regression technique to establish the
“weight” of each predictor in the corresponding approximate
expression  for  the  ARG  quantitative  characteristic
(Alexopoulos  2010; Rubinfeld  2011).  We  considered
multidrug and its expected predictors (according to Fig. 5A):
Aeromicrobium, Lysobacter,  and Pseudomonas.  The
normalized “weights” of Aeromicrobium, Lysobacter,  and
Pseudomonas were 1, 2.32, and 1.01, respectively, and the

quantitative  characteristic  of  multidrug  ARG  was  approxi-
mated as follows:

multidrug = 6.27 × Aeromicrobium + 14.55 × Lysobacter +
6.33 × Pseudomonas + 11.97 (Fig. 5B).

The  coefficient  of  determination R2 in  this  approximation
model  is  0.83.  According  to  the  correlation  analysis,  beta-
lactam  may  have  eight  predictors: Altererythrobacter,
Chitinophaga, Deinococcus, Devosia, Pedobacter, Pheny-
lobacterium, Ramlibacter, and Sphaerobacter. Similar analy-
sis yields the results depicted in Fig. 5B, and an approximate
model of  the quantitative characteristic of  beta-lactam ARG
could have R2 = 0.9. However, analysis of covariance of the
quantitative  characteristics  of  these  predictors  reveals  that
they  are  rather  highly  correlated  (in  the  case  of  multidrug,
there  is  no  significant  correlation  between  the  predictors)
(Fig. S3).

Pearson  correlation  analysis  between  ARGs  and  soil

 

 
Fig. 3    Heatmap showing the abundance of ARG classes across various cropping systems and soil sampling depth (A). PCoA
analysis  of  ARGs distribution  across  the  samples  (B).  Shannon diversity  indices  of  soil  resistomes  (C).  The  histogram of  the
distribution of ARGs among the soil samples studied, selected from the topsoil (0−5 cm) and subsoil (5−15 cm) of conventional
and organic cropping systems. Only antibiotics for  which differences between samples were significant (p < 0.05, two-sample
t-test) are shown (D).
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chemical  properties  showed  strong  positive  relationships
among beta-lactam and TC (Rp = 0.61, p < 0.05), MLS and
pHH2O (Rp = 0.52, p < 0.05); multidrug and EOC (Rp = 0.63,
p < 0.05), EON (Rp = 0.65, p < 0.05); quinolone with pHH2O
(Rp = 0.61, p < 0.05) and AP (Rp = 0.55, p < 0.05) tetracycline
and AP (Rp = 0.54, p < 0.05) (Fig. 5C). Negative correlations
were established for beta-lactam and pHH20 (Rp = −0.52, p
<  0.05);  MLS  and  EOC  (Rp =  −0.50, p <  0.05)  (Fig.  5 C).
Thus,  pH of  soils  and content  of  carbon and nitrogen were
the  most  significant  soil  properties  that  determined  ARG
abundance.

 4 Discussion

There  are  many  factors  that  determine  the  shape  of  a  soil
resistome, among which the anthropogenic one is the most

important  because it  can be legally controlled.  In this work,
we  conducted  a  comparative  study  of  soils  of  organic  and
conventional  cropping  systems  in  order  to  determine  how
differences  in  land  use  determine  the  differences  in  their
resistome  and  which  microorganisms  are  interconnected
with these differences. The selected fields were characterized
by  similar  parameters;  the  soils  were  represented  by  one
type (Chernozems); the fields were sown with similar crops;
the  sites  were  located  at  a  distance  of  500  m  from  each
other; crop rotation was used in both systems. The essential
difference between them is the use of  mineral  nitrogen-rich
fertilizers in the conventional cropping system.

Available  studies  indicate  that  the  ARG  classes  that  are
widespread  in  soils  include  multidrug  resistance,  beta-
lactam  resistance,  tetracycline  resistance,  and  vancomycin
resistance (Nesme and Simonet, 2015; Lawther et al., 2022;
Delgado-Baquerizo  et  al.,  2022;  Liu  et  al.,  2023).  In  our

 

 
Fig. 4    Heatmap of distribution of ARG gene families (A) and resistance mechanisms (B) across the study soil groups. Data are
presented  as  the  mean  gene  copy  numbers  (A)  and  percent  (B)  in  soils  across  various  cropping  systems  and  soil  sampling
depth.
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study  the  dominant  classes  of  ARGs  were  vancomycin,
tetracycline and multidrug resistance. The two studied crop-
ping  systems did  not  differ  in  biodiversity  of  ARGs,  but  did
differ in the abundance of particular ARGs. It was found that
the multidrug ARG was more abundant in the subsoil of the
conventional  cropping  system;  ARG  for  tetracycline  was
more  abundant  in  the  topsoil  of  organic  system;  the  abun-
dance  of  ARG  for  vancomycin  did  not  differ  between  the
compared  groups.  Two-way  PERMANOVA  calculations
suggest  that  land  use  is  the  driving  factor  for  resistome  of
the studied soils.  Interestingly, soil  depth also turned out to
be  a  significant  factor  determining  the  differences  between
the compared groups.

There  are  limited  number  of  works  on  the  study  of  soil
resistomes that take into account the soil depth. The depth-
based  data  collected  in  the  work  of Cadena  et  al.  (2018)
revealed  that tet(L)  gene  was  detected  more  frequently  in
the surface soils (0–7.1 cm) than in subsoils (7.1–15.2 cm);
the amounts of organic nitrogen, and of nitrate, were higher
in  surface  soil  than  in  subsoil  (Cadena  et  al.,  2018).
Recently,  a  further  study  assessed  the  biodiversity  and
distribution of ARGs at different soil depths and it was found
that  the  composition  of  ARGs in  unfertilized  soils  and  soils
fertilized  with  inorganic  fertilizers  was  similar  at  0–40  cm

depth (Li et al., 2023).
It  is  well  known  that  the  diversity  and  abundance  of  the

resistome  are  closely  dependent  on  the  microbial  commu-
nity,  which  in  turn  is  modulated  by  the  physicochemical
properties  of  soils  (Fosberg  et  al.,  2016; Hao  et  al.,  2021;
Rchiad et al., 2022). Availability of organic carbon, nitrogen,
and  other  nutrients  in  soil  varies  with  depth.  For  example,
the work by Zhang et al. (2016) showed that the concentration
of  organic  nitrogen,  and  of  carbon,  was  greater  in  the
surface layer (0−10 cm) than in the subsoil (10−30 cm), the
same dependence  on  depth  was  shown  by  the  analysis  of
the  microbial  biomass  of  these  layers.  Shotgun  metage-
nomics  have  previously  revealed  that  functional  genes
related  to  phosphorus  metabolism,  were  particularly  abun-
dant  at  30–60  cm,  while  functional  genes  related  to
metabolism  of  nitrogen,  sulfur  and  carbohydrates,  were
more abundant in the topsoil depth (0−15 cm) (Rchiad et al.,
2022).

Our study shows a similar relationship between the depth
of  the  soil  layers  and  the  content  of  carbon  and  nitrogen.
The  conventional  system  was  characterized  by  a  large
difference  between  the  topsoil  and  the  subsoil  in  terms  of
TC  and  TN  content.  We  assume  that  the  applied  mineral
fertilizers  moved  downward  along  the  soil  profile  under  the

 

 
Fig. 5    Correlation  analysis  between  genera,  ARGs  and  soil  chemical  properties  across  all  soil  samples.  Only  genera  with
significative  correlation  (Spearman Rs >  0.8  and p <  0.01)  with  at  least  one ARGs are  represented  (A).  Relative “weights” of
predictors for multidrug and beta-lactam ARGs based on their abundance in soils (B). Heatmap of Pearson’s correlation coefficients
of the relative abundance of ARGs and the chemical properties of the soils (p < 0.05).
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influence of rainfall. Also, the applied N-rich mineral fertilizers
determined a higher concentration of EON in the soils of the
conventional system than in the organic systems.

The  use  of  mineral  fertilizers  was  reflected  in  a  predomi-
nance in  number  of  some microbial  genera.  In  this  work,  a
two-way  PERMANOVA  study  showed  that  land  use  deter-
mined differences in ARG abundance and microbial genera
abundance. Existing research shows that the use of fertilizers
directly stimulates the growth of specific microbial populations
that  increase  the  organomineral  content  and  fertility  of  the
soil (Epelde et al., 2018; Dinca et al., 2022). It is necessary
to  understand  how  soil  microbiomes  specifically  change
under application of fertilizers, considering that organic fertil-
izers  have  a  notable  impact  on  altering  resistomes,  in
contrast to mineral fertilizers, which do not exhibit significant
effects (Liu et al., 2017; Xie et al., 2018; Wang et al., 2020A;
Liu  et  al.,  2022).  In  soils  fertilized  by  organic  amendments
specific  microorganisms  that  prefer  nutrient-rich  environ-
ments  are  prevalent  (Francioli  et  al.,  2016).  NPK-fertilizers
increased abundance of bacteria involved in N-cycling (Sun
et al., 2015; Bill et al., 2021; Dinca et al., 2022). The potential
of microbial communities for N-cycling has been identified in
our work through metagenomic profiling of functional genes.
It  was  found  that  the  functional  potential  for  decomposition
of organic N and denitrification of the microbial community of
the  conventional  system  exceeds  that  of  the  organic  one.
Can  typical  soil  microorganisms  be  a  source  of  ARG,
perhaps involving those taxa that are involved in the assimi-
lation of inorganic fertilizers?

Spearman  correlation  analysis  revealed  a  significant
correlation between the ARGs profile and bacterial commu-
nities  at  the  genera  level.  Three  taxa  of  bacteria  have  a
strong  positive  correlation  with  multidrug  ARG: Pseu-
domonas,  Lysobacter and Aeromicrobium. Interestingly,
according  to  calculation,  the  contribution  of  the Lysobacter
was  significantly  greater  than  that  of  the Pseudomonas.
Bacteria  of  the  genus Lysobacter are  less  studied  in  terms
of  beneficial  properties  than Pseudomonas,  but  there  is  a
growing body of  work  reporting on the production of  antibi-
otics and ability to fix nitrogen (Jochum et al., 2006; Ji et al.,
2008; Iwata  et  al.,  2010; Puopolo  et  al.,  2010; Xu  et  al.,
2016; Brescia  et  al.,  2021).  Thus,  it  is  possible  that  rhizo-
sphere  and soil  bacteria  of  the  genus Lysobacter are  even
more  important  as  carriers  of  ARGs  than Pseudomonas.
Overall,  strong  positive  correlations  were  established  for
bacterial genera, among which there were taxa that produce
antibiotics  and are  resistant  to  them,  as  well  as  typical  soil
microorganisms.

Shotgun  sequencing  provides  opportunity  to  study  a
microorganism's genome without isolation of  microbial  cells
in pure culture (Rodríguez-Ramos et al.,  2022; Zishu et al.,
2023).  One of  the  main  taxa present  in  all  the  investigated
soil samples was the genus WHTF01 belonging to the class

Binatia (phylum Candidatus Binatota (UBP10)). The genome
of  this  non-cultivable  bacterium  encodes  the  capacity  for
aerobic  methylotrophy  using  methanol,  methylamine,
sulfomethanes,  and chloromethanes as substrates (Murphy
et al., 2021; Rodríguez-Ramos et al., 2022). In addition, this
bacterium has  genes  involved  in  the  oxidation  of  ammonia
(Venturini  et  al.,  2022).  Previously,  the  presence  of  ARGs
for Binatia was  not  reported.  In  our  study,  the  assembled
Binatia genomes were also characterized by the presence of
biosynthetic gene clusters encoding terpenes. It is significant
that  in  the  assembled  genomes of  WHTF01,  the  sequence
similar  to  vancomycin  resistance  gene  (vanT)  and  gene
coding multidrug efflux pump (adeF) were found. In addition
to Binatia,  annotation  of  the  genomes  of Nitrospira_C and
Nitrososphaera sp.,  which  are  bacteria  and  archaea
involved  in  N-cycling,  revealed  ARGs  for  chloramphenicol
(catI) and glycopeptide (vanT) resistance. Thus, the hypoth-
esis  of  the  presence  of  ARG  in  soil  microbial  community
represented by chemolithotrophs was confirmed.

 5 Conclusion

In summary, this study showed that the shape of the microbial
community  and  resistome  of  the  organic  cropping  system
without  the use of  mineral  fertilizers  can be quite  similar  to
that of the conventional cropping system. However, the long-
term use of nitrogen-rich mineral fertilizers in the conventional
farming  system  is  accompanied  by  the  accumulation  of
microorganisms involved in the utilization of inorganic nitro-
gen,  which  leads  to  a  difference  in  the  ratios  of  microbial
taxa between conventional and organic systems and deter-
mines  the  revealed  differences  in  their  resistomes.  As  has
been  shown,  even  typical  nitrogen-assimilating
chemolithotrophs  are  still  an  underestimated  group  of
microorganisms in terms of dissemination of ARGs.
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