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* The overall abundance of secondary
metabolites-encoding genes in soil and root
microbiomes is similar.

« Certain biosynthetic gene clusters (BGCs)
are ubiquitous and more abundant in roots
compared with soil.

« The majority of identified BGCs are
potentially novel.
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ABSTRACT

Secondary metabolites (SMs) produced by soil bacteria, for instance antimicrobials and
siderophores, play a vital role in bacterial adaptation to soil and root ecosystems and can contribute
to plant health. Many SMs are non-ribosomal peptides and polyketides, assembled by non-
ribosomal peptides synthetase (NRPS) and polyketide synthase (PKS) and encoded by biosynthetic
gene clusters (BGCs). Despite their ecological importance, little is known about the occurrence and
diversity of NRPs and PKs in soil. We extracted NRPS- and PKS-encoding BGCs from 20 publicly
available soil and root-associated metagenomes and annotated them using antiSMASH-DB. We
found that the overall abundance of NRPSs and PKSs is similar in both environments, however
NRPSs and PKSs were significantly clustered between soil and root samples. Moreover, the
majority of identified sequences were unique to either soil- or root-associated datasets and had low
identity to known BGCs, suggesting their novelty. Overall, this study illuminates the huge untapped
diversity of predicted SMs in soil and root microbiomes, and indicates presence of specific SMs,
which may play a role in inter- and intra-bacterial interactions in root ecosystems.
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1 Introduction

Plant roots closely interact with the microbial community
surrounding them, creating a close and inter-dependent
cross-talk (Schlaeppi and Bulgarelli, 2015; Cordovez et al.,
2019). Plants secrete different exudates through their root
system to ‘attract’ specific assemblages of microbial
communities (Sasse et al., 2018). This ‘selection’ enriches
specific bacterial populations from the surrounding soil, and
different plants share a core root microbiome that is distinct
from the bulk soil, despite belonging to different botanical
families (Levy et al., 2018). Specific root microbial community
members play key roles in plant development, growth and
health through secretion of enzymes and phytohormones,
nutrient provision (e.g., nitrogen and phosphorus) and
production of metabolites that help defend plants against
micro- and macro-pathogens, through direct antagonism or
induced resistance (Tyc et al., 2017; Sharrar et al., 2020).

Polyketides and non-ribosomal peptides are specific
secondary metabolite (SM) families synthesized by large
enzyme complexes termed non-ribosomal peptide synthases
(NRPSs) and polyketide synthetases (PKSs). These enzymes
are typically organized on operon-like structures termed
biosynthetic gene clusters (BGCs), which employ a modular
arrangement composed of repeating domains that assemble
the compound in a step-wise manner (Jenke-Kodama et al.,
2005; McErlean et al., 2019). Polyketides and non-ribosomal
peptides are known for their diverse structure and broad array
of functions, which include antimicrobials, pigments and
siderophores (Wang et al., 2014). While many of these compo-
unds have been exploited in medicine, industry and agricul-
ture, we now realize that soil microbiomes contain a diverse
array of unknown BGCs, and we have only touched the tip of
the iceberg regarding their potential ecological function and
applicativepotentialDror et al., 2020b\WVaschulin et al., 2021).

Most of the research conducted to date on bacterial SM-
encoding activity has focused on individual cultured isolates,
using customized bioinformatic tools (Eastman et al., 2014;
de Bruijn et al., 2015; Nguyen et al., 2018). However, as
most soil bacteria cannot be cultivated by existing methods,
a huge fraction of bacterial SM remains untapped (Bodor et al.,
2020; Droretal., 2020a). To assist in revealing this
‘uncultured fraction’, culture-independent methods and
pipelines have been developed and applied to mine BGC
from environmental microbiomes. These include functional
gene amplicon sequencing and extracting SM-encoding
genes from shotgun meta—omics data (Amos et al., 2015;
Charlop-Powers et al., 2016). By applying these techniques,
we recently found that the composition and diversity of
NRPS and PKS encoding BGCs are distinct in lettuce vs.
tomato roots and that both are significantly different when
compared to bulk soil. We also identified specific BGCs
ubiquitous to plant roots that may play a role in plant growth
and health (Dror et al., 2020b).

This study exploited in-silico pipelines previously develo-
ped in our lab to investigate NRPS and PKS composition,
diversity, taxonomy and potential function in soil and root-
associated microbial communities from a broad range of
geographic regions and plant types. We pinpointed novel
SM families unique to each of these environments, which
may play important ecological functions and can have future
translational potential.

2 Methods

2.1 Shotgun metagenome datasets

Assembled soil and root-associated shotgun metagenomes
were searched and downloaded from the MG-RAST and
JGI-IMG repositories using the keywords: ‘shotgun
metagenome’, ‘terrestrial biome’, ‘root’ and ‘rhizosphere’.
The source of each dataset was validated by referring to
publications linked to the data. Only well characterized
datasets with sufficient metadata and >200 000 contigs
were selected for further analyses (Table 1). Soil texture and
pH for the selected samples were obtained from the website
www.SoilGrid.com, using coordinates provided in the
repositories or associated manuscripts.

2.2 NRPSs/PKSs mining and annotation

Raw metagenome FASTA files were filtered to include only
contigs longer than 300 bp. These were used as input for
ORF prediction with Prodigal, and filtered again for ORFs
> 80 bp. To avoid redundancy, CD-HIT was applied (using a
>97% identity cutoff), and subsequently, ORFs were
randomly selected from each dataset using the seqtk
sample command to avoid dataset size bias. NRPS/PKS
annotation was performed by aligning sampled ORFs to AD
or KS domains (for NRPSs and PKSs, respectively)
downloaded from the antiSMASH-DB API platform (Blin
etal.,, 2019) using DIAMOND blastx (>50% identity, >50%
query cover, max E value 10719). Only alignments longer
than 70 bp were used for downstream analyses.

2.3 Taxonomy annotation

Annotated AD and KS genes were taxonomically assigned
by running Diamond against the non-redundant (nr) Blast
NCBI database (08/2016 version). The lowest common
ancestor classification was determined using MEGAN
V6.21.12 (Huson et al., 2016) by taking the top 20 percent of
the hits and filtering for a minimum score of 50 and
maximum expect value of 0.0. Genes identifiers were then
converted to full taxonomy using the mapping feature
provided by MEGAN (11.2018 version). A custom Python
code was used to aggregate all genes by environment (soil
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Table 1 Datasets included in the study.

Number Dataset Environment  Acession No. Latitude Longitude Location Soil type pH
1 Tomato Roots PRJNAG602301 31.606 34.791 Israel Loamy sand 7.9
2 Lettuce PRJNA602301 31.606 34.791 Israel Loamy sand 7.9
3 Wheat PRJNA664890 31.990 34.820 Israel Clay 7.8
4 Arabidopsis 1119352 (JGI) 35.908 -79.051 North Carolina, USA  Loam 5.5
5 Corn mgm4504797.3 41.770 -92.961 lowa, USA Silt loam 6.3
6 Poplar 3300009147 35.844 -83.961 Tenesee, USA Silt loam 55
7 Switchgrass mgp6787 42.395 -85.374 Michigan, USA Sandy loam 6
8 Miscanthus mgp6787 42.395 -85.374 Michigan, USA Sandy loam 6
9 Potato mgm4599960 4.745 -75.440 Colombia Loam 5.4
10 Paramo mgm4599954 4.732 -75.734 Colombia Clay loam 5.5
11 Cucumber SAMNO02202255  31.410 35.167 Israel Sandy loam 7.79
12 Peat Soil 3300018086 4.063 -73.195 Colombia Clay loam 5.3
13 Desert 3300034008 34.300 -117.610 California, USA Silt loam 7.3
14 Tundra 3300025774 71.299 -156.610 Alaska, USA Loam 5.5
15 Forest soil 3300024284 40.445 -87.030 Indiana, USA Loam 6.2
16 Florida 3300033158 26.500 -80.300 Florida, USA Sandy loam 6.3
17 Prairie mgm4504798.3 41.771 -92.961 lowa, USA Silt loam 6.4
18 Amatitan 3300030511 21.053 -103.902 Mexico Clay loam 6.8
19 San Felipe 3300014488 21.766 -100.163 Mexico Sandy loam 6.25
20 Colorado 3300044737 40.368 -106.174 Colorado, USA Sandy loam 7.5

and roots) and according to different taxonomic levels.
These outputs were visualized using R.

2.4 Statistics

Statistical analyses were performed using R. Statistical
differences in the presence of AD and KS sequences
between studied environments (soil vs. roots) were
determined using the Student t-test (following Shapiro-Wilk
test for normality). Alpha and beta diversities of samples
were calculated using the R package vegan (Oksanen et al.,
2013), with Aitchison transformation to account for
compositional data. To assess differences in diversity
between environments, principal coordinate analysis (PCoA)
and analysis of similarity (ANOSIM) were performed.
Differences were considered statistically significant when P
values were lower than 0.05. Python and R scripts can be
found on github using the link https://github.com/barakdror/
microbial_ecology R.

3 Results

3.1 Soil and root shotgun metagenome datasets

Over 100 metagenome datasets were initially screened for
our analysis, however, following a robust filtering process to
prevent methodological biases, only 11 root-associated and
9 soil metagenomes (primarily from North and South

America) were selected for in-silico analyses (Table 1). The
root-associated datasets included a variety of host
vegetables (tomato, lettuce, cucumber, and potato), cereals
(wheat, corn, switchgrass and miscanthus) and trees

(poplar).

3.2 NRPSs and PKSs abundance and presence in
rhizospheres and soils

We aligned the predicted ORFs within each dataset against
a reference database composed of antiSMASH-generated
adenylation (AD) and ketosynthase (KS) domain sequences
(markers for NRPSs and PKSs, respectively), and subse-
quently calculated the percentage of AD and KS genes in
each dataset (i.e., number of unique AD/KS genes found
divided by the total number of ORFs predicted in the
dataset). Generally, we saw a significant positive correlation
between the relative abundance of AD and KS domains
(Fig. 1A, R=0.85, p-value< 0.01, Pearson correlation). This
trend was not related to sample environment (roots vs. soil),
as among the top five AD/KS domains-rich datasets, three
were root-associated (tomato, wheat and lettuce) and two
were soil-associated (Colorado and San Felipe). Moreover,
we saw no significant difference in the presence of AD or KS
domains in root vs. soil samples when pooled together
(Fig. 1B and C, respectively). We also did not find any
correlation between AD or KS domain abundance and soil
pH or latitude (Figs. S1 and S2).
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Fig. 1 Pearson correlation of %AD vs. %KS in studied samples (A). Percentage was calculated as number of AD/KS

genes/total ORFs in each dataset. Boxplots figures of %AD (B), and %KS (C) of soil and root-associated datasets (NS=non-

significant, Student t-test).

3.3 Diversity and taxonomy of NRPSs and PKSs in studied
samples

No statistical differences were detected in alpha diversity of
soil- and root-associated samples for either NRPS or PKS
associated genes (Shannon index, Student t-test, p-
value>0.05, Fig. S3). However, principal coordinate analysis

revealed significant differences in the composition of root-
associated NRPS and PKS relative to those from bulk soil
samples, based on analysis of AD (ANOSIM R=0.16, p-
value<0.05, Fig. 2A) and KS domains (ANOSIM R=0.21, p-
value<0.05, Fig. 2B), respectively.

We assessed whether the observed difference in NRPSs
and PKSs composition between soil and roots derives from
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Fig. 2 Nonmetric multidimensional scaling using Aitchison dissimilarity of NRPS (A) and PKS (B) genes found in studied samples.
ANOSIM statistics: R=0.16, p-value <0.05 for NRPS, R=0.21, p-value<0.001 for PKS, calculated with >1000 permutations.
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an inherent difference in the taxonomy of the bacteria
harboring these genes. We taxonomically annotated both
the total ORFs sampled within each dataset, and the mined
NRPS and PKS within these datasets using the NCBI nr
database. Resulting annotations were taxonomically
assigned using MEGAN and grouped at different taxonomic
levels. At the class level the overall bacterial communities
were phylogenetically diverse and soil samples were
substantially different than roots. However, the taxonomic
affiliation of NRPS and PKS was much narrower, and these
communities were primarily annotated to Actinobacteria,
Alphaproteobacteria and Betaproteobacteria (Fig. 3A). In
addition, ~35%-40% of the NRPS and PKS in both soil and
roots datasets could not be assigned to specific bacterial
taxa (compared with ~10%-15% of the total soil and root
ORFs). A similar trend was observed at the family level
(Fig. 3B). Most of the NRPSs and PKSs in soil and root
samples could not be taxonomically characterized (~70%-—
75%), though some root-associated NRPS and PKS were
associated with Streptomycetaceae and Mycobacteriaceae,
whereas certain soil NRPS and PKS were associated with
Corynebacteriaceae and Bradyrhizobiaceae.
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3.4 Commonality and novelty of NRPSs and PKSs in soil vs.
root-associated environments

Analysis of the distribution of extracted NRPSs and PKSs
between soil- and root-associated datasets, revealed a
relatively low fraction of common SM-encoding genes
between environments (Fig. 4). To identify potentially novel
NRPSs and PKSs, we aggregated the soil and root
associated AD and KS domains, and divided them into three
groups (70%-85%, 85%—-97% and >97%), based on identity
of amino-acids to antiSMASH-DB reference sequences.
Overall, most of the AD and KS hits in both soils and roots
were classified as potentially novel (70%-85% identity,
Fig. 5), whereas a very small fraction (less than 4%) were
classified as known (i.e., identified in previous studies,
>97% identity to reference sequences).

4 Discussion

The rhizosphere microbiome is a subset of the surrounding
soil microbial community, however, the organic oasis
created by root exudates and mucilage facilitate proliferation
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Fig. 3 Class-level (A) and family-level (B) taxonomy of total ORFs vs. NRPSs and PKSs found in soil- and root-associated
datasets, based on shotgun metagenome predicted ORFs. Only classes with >2% and families with >1.5% relative abundance

are shown.

Soil

Roots

Fig. 4 A Venn diagram of extracted NRPSs (A) and PKSs (B) sequences found in soil- and root-associated datasets (following
a random rarefaction of total ORFs within each dataset to avoid datasets uneven sampling bias).
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Fig. 5 Amino acid identity of NRPSs and PKSs ORFs annotated using the antiSMASH-DB database for soil-associate (A) and
root datasets (B) clustered into three groups based on %similarity. NRPSs and PKSs were pooled together by environment.

of specific bulk soil populations, whose composition are
dictated by specific plant species (Peiffer et al., 2013;
Kawasaki et al., 2016; Qiao et al., 2017). Secondary
metabolites (SMs) are believed to play a critical role in both
soil and root-associated microbiomes (Tyc et al., 2017), but
little is known about the abundance and potential function of
SMs in these environments and their distribution in soil vs.
root ecosystems. In this study, we explored and characte-
rized soil- and root-associated SM-encoding genes
specifically focusing on root-associated SMs with potential
impact on host plants.

The composition of bacterial NRPS and PKS differed
between soil and roots, implying a distinct SM-encoding
capacity within each environment. While the observed
pattern may stem from issues related to the complexity of
the soil versus the root microbiome and consequently from
sampling depth as the rhizosphere microbiome is a
derivative of the larger soil microbiome pool, our findings
point toward the selective power the host plant may have on
the surrounding bacterial community. These results coincide
with previous studies that found the rhizosphere microbiome
to be enriched in genes related to ecosystem-specific
functional processes such as transport, primary metabolism
(Yanetal., 2017; Leeetal,2019), nitrogen cycling
(Schmidt et al., 2019), motility, chemotaxis and plant cell-
wall degradation (Ofek-Lalzar et al., 2014).

We also found soil and root microbial communities are
rather similar in their potential to encode for NRPS and PKS,
regardless of soil pH. However, there was a clear and
significant positive correlation between NRPS and PKS
ratios in individual samples. This can reflect the presence of
SM-rich bacterial taxonomic families within some samples,
and their absence in others. This is supported by previous
studies that found soil bacterial structure and functional
traits to differ between biomes (Fierer et al., 2009; Noronha

etal, 2017). We found that in root-associated samples,
NRPSs and PKSs were commonly associated with
Actinobacteria, Alphaproteobacteria, Betaproteobacteria,
Gammaproteobacteria and Bacteroidetes, whereas in soil
they were exclusively linked to a higher share of
Actinobacteria and Alphaproteobacteria. The fact most of
the mined NRPSs and PKSs had low identity (70%—-85%)
when compared to the antiSMASH-DB database, empha-
size the huge untapped diversity of these SM families.
Comparative analysis of environmental shotgun metageno-
mic data such as the one presented here, have the potential
to link functional genes and processes to specific ecosys-
tems, and therefore, future research should complement this
study and expand the number of datasets used, to quantita-
tively determine the abundance of selected NRPSs and
PKSs in soil vs. root environments. However, as previously
discussed (Eckert et al., 2020; Vangay et al., 2021), a large
fraction of environmental shotgun metagenome data is not
deposited into public repositories, and those that are
frequently lack details and metadata that is crucial for
enabling robust comparative analyses. There is a vital need
for repositories to draft submission standards or adopt
previously established guidelines (e.g., MIxS) (Yilmaz et al.,
2011) that will ensure a minimal set of background data for
submission of environmental shotgun metagenome.

5 Conclusions

This study found soil and root microbial communities to
differ in their SM-encoding genes at a global scale,
regardless of plant host and soil properties. We found this
distinction is likely derived from specific taxonomies of the
bacterial strains residing in each environment. Given the
immense amount of potentially novel sequences that likely
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encode metabolites with unknown function, future research
will aim to pinpoint, characterize, and express root-specific
BGCs in order to elucidate their in-vitro and in-planta
function. This process also needs to be conducted for BGC
that are profuse in soil and root environments that encode
for metabolites that are currently only known for clinical
activity.

Electronic supplementary material

Supplementary material is available in the online version of this
article at https://doi.org/10.1007/s42832-022-0146-2 and is
accessible for authorized users.
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