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HIGHLIGHTS GRAPHICAL ABSTRACT
« Fertilization had stronger impact on the Network stability
root microbiome than on the soil _

microbiome. NPK+M

¢ Organic-inorganic fertilization led to
higher microbial network stability than
exclusive mineral or organic fertilization.

* The variances of the soil and root
microbiome were attributed to the soil
organic matter and the total nitrogen
respectively.
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Soil microbiome Plant health and performance are highly dependent on the root microbiome. The impact of
Root microbiome agricultural management on the soil microbiome has been studied extensively. However, a

comprehensive understanding of how soil types and fertilization regimes affect both soil and root
microbiome is still lacking, such as how fertilization regimes affect the root microbiome’s stability,
Network stability and whether it follows the same patterns as the soil microbiome. In this study, we carried out a long-
term experiment to see how different soil types, plant varieties, and fertilizer regimens affected the
soil and root bacterial communities. Our results revealed higher stability of microbial networks under

Microbial networks
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Implications for fertilization strategy

combined organic-inorganic fertilization than those relied solely on inorganic or organic fertilization.
The root microbiome variation was predominantly caused by total nitrogen, while the soil
microbiome variation was primarily caused by pH and soil organic matter. Bacteroidetes and
Firmicutes were major drivers when the soil was amended with organic fertilizer, but Actinobacteria
was found to be enriched in the soil when the soil was treated with inorganic fertilizer. Our findings
demonstrate how the soil and root microbiome respond to diverse fertilizing regimes, and hence
contribute to a better understanding of smart fertilizer as a strategy for sustainable agriculture.

© Higher Education Press 2023

1 Introduction

The root microbiota, sometimes known as the “second
genome” of plants (Berendsen et al., 2012), have important
impact on the plant health and productivity (de Vries and
Wallenstein, 2017). By secreting root exudates, plants
selectively attract microbes in the rhizosphere, forming
hotspots different from the bulk soil (Reinhold-Hurek et al.,
2015; Schlaeppi and Bulgarelli, 2015; Zhalnina et al., 2018).
Many prior studies focused solely on the soil microbiome
(Hartmann et al., 2015; Ling et al., 2016), with only a few
taking into account both the soil and root microbiomes. It is
yet still unclear how the root microbiome is affected by
agricultural practices, and whether to the same extent as the
soil microbiome. More integrative studies of the soil and root
microbiome in response to agricultural practices are still
missing.

While changes in the microbiome of bulk soil are linked to
environmental effects, the microbial communities in the
rhizosphere are more directly linked to yield results. The
plant-microbe interactions in the rhizosphere could promote
both plant productivity and agroecosystem sustainability
(Schmidt et al., 2019). Understanding how the soil and root
microbiome respond to various fertilization regimes is critical
for establishing improved fertilization strategies and
enhancing soil fertility and function. It was reported that
fertilization changed the functioning of the soil microbiome,
however, with a soil-specific manner. One example was that
fertilization reduced ammonia-oxidizing bacteria (AOB) and
predatory/exoparasitic bacteria in acidic soils (Zhao et al.,
2020). In addition, bioorganic fertilizer was found to maintain
a more stable soil microbiome than chemical fertilizer for
monocropping (Cai et al., 2017). The phyllosphere and root
endosphere were less affected by fertilization than the soil
microbiome (Sun et al., 2021). However, relatively less is
known about the response of the rhizosphere microbiota.

To disentangle the complexities of the soil and root
microbiome, a system-level understanding of the community
function and structure is needed (Fierer, 2017). In the past
decades, network-based approaches have been found
useful in unravelling microbe-microbe associations in
complex ecosystems such as human intestines, oceans,
and soils (Cram et al., 2015; Sung et al., 2017; de Vries et al.,
2018; Lurgietal., 2019). By investigating co-occurrence
patterns, the network analysis could offer new insights into
potential interactions of community members (Barberan et al.,
2012; Berry and Widder, 2014). However, previous studies

of agricultural management mainly focused on the network
complexity (Banerjee et al., 2019), yet few have considered
the network stability, which is ecologically important.

Communities that make less adaptations in response to
environmental disturbances are thought to be more stable,
and they are more likely to return to their previous state after
the disruption (Shade et al., 2012; Griffiths and Philippot,
2013; Coyte et al., 2015). The gut microbiome, for instance,
is known for its stability, which is important for the health
and well-being of the host (Faith et al., 2013). In natural
systems, the stability of microbial networks decreased with
increasing environmental stress (Hernandez et al., 2021).
Although theoretically related to community functions, there
is a scarcity of data on network stability in agro-ecosystems.
The impact of agricultural management on microbial networks,
particularly fertilization regimes, is poorly known.

With these ideas in mind, we conducted a large-scale
experiment using amplicon sequencing and network analysis
to assess the impact of soil types, plant types and fertilization
regimes on the soil and root (rhizosphere) microbiomes. We
addressed the following questions: (i) Are there differences
in the responses of soil and root microbial populations to
fertilization practices? (ii) Which bacteria serve as indicators
for different fertilization regimes? (i) What effect does
fertilizer have on the stability of soil and root microbial
networks? Our work will contribute to a better understanding
of smart fertilizer as a strategy for sustainable agriculture.

2 Materials and methods

2.1 Site description

The samples were collected from 9 sites in China (Additional
file 1). All sites are long-term fertilization research fields and
have been under consistent treatment since establishment.
The sampling sites spanned from the North-east Semi-
humid Plain to the Huanghuaihai Semi-humid Plain,
representing 3 typical soil types in China, namely black sail,
cinnamon soil, and fluvo-aquic soil. The sampling sites were
distributed in 3 provinces, i.e., Jilin (black soil), Beijing
(cinnamon soil), and Henan (fluvo-aquic soil).

In black soil (North-east Semi-humid Plain), two plant
types, spring maize (in open fields) and eggplants (in the
greenhouse), were selected. The sites were treated with
inorganic N, P and K fertilizers (NPK) for 4 years. In fluvo-
aquic soil (Huanghuaihai Semi-humid Plain), the fields were
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cropped with winter wheat from October to June and
summer maize from June to September (i.e., wheat maize
rotation). All fluvo-aquic soil sites were fertilized with mineral
NPK for 11 years. In cinnamon soil (Huanghuaihai Semi-
humid Plain), spring maize, wheat maize rotation, as well as
fallow fields were also sampled. For spring maize, five
different kinds of fertilization were applied, including
inorganic P and K fertilizers without N (PK), inorganic N, P,
and K fertilizers (NPK), half substitution of the inorganic
fertilizer by manure (1/2NPK + 1/2M), and equal substitution
of the inorganic fertilizer with manure (M), respectively. For
wheat maize rotation, five fertilization regimes were applied,
namely no fertilization (CK), NPK, inorganic fertilization plus
straw (NPK + S), inorganic fertilization plus 22.5 t ha™"
manure (NPK + M), and inorganic fertilization plus 33.75t ha™"
manure (NPK + 1.5M). The sites were under consistent
long-term treatment up to 28 years (Additional file 1). The
fertilization details were recorded in Additional file 1.

2.2 Sample collection

The soil and root samples were collected two days after
plants were harvested. Fields cropped with spring maize
were sampled in the early September of 2018. Fields
cropped with summer maize or eggplants, as well as the
fallow fields were sampled in the later September of 2018.
Each treatment in each site has three replicates. In total, 95
samples were collected (one sample was missing), including
51 soil samples and 44 rhizosphere (hereafter as root)
samples (2 agro-climatic area, 3 soil types, 4 plant types, 8
fertilization treatments) (Additional file 2).

In each plot between plant rows, five soil cores (at 0-20
cm depth) were collected and pooled as one bulk soil
replication. Each replicate contained around 80 g of bulk
soil. About 10 g of each well-mixed bulk soil replicate were
put into sterile falcons on ice, transferred to the laboratory
immediately and stored at =80 °C until DNA extraction. The
rest bulk soil was used for physiochemical analysis.

In each sampled subplot, five plants were selected. Plant
roots were taken out from the soil and shacked to remove
the loosely-attached bulk soil. The remaining soils attached
to plant roots including that need to be brushed off from
plant rhizoplane were sampled and mixed as the
rhizosphere. The rhizosphere samples were treated in the
same way as the bulk soil described above and were stored
at —80 °C. The rest rhizosphere was used for physioche-
mical analysis.

2.3 Physiochemical analysis

The samples were sieved through 2 mm and kept at 4 °C.
Samples were analyzed for water content, pH, total nitrogen
(TN), NO5™-N, NH,*-N and soil organic matter (SOM). The
properties were determined according to the methods
described in previous studies (Gai et al., 2018).

2.4 DNA extraction, PCR, library preparation, and
sequencing

The DNA was extraction using Griffiths’ protocol (Griffiths
et al., 2000). The primer pair 515F and 806R were used for
DNA amplification (Caporaso et al., 2011). PCR reactions
were carried out in 30 pL reactions containing 15 pL
Phusion® High-Fidelity PCR Master Mix (New England
Biolabs, UK), 0.2 puM primers, 10 ng template DNA and
sterile distilled water. The PCR cycles were set as 98 °C for
1 min, followed by 30 cycles of 98 °C for 10 s, 50 °C for
30 s, and 72 °C for 30 s, followed by 72 °C for 5 min.
Triplicate PCR products were then purified with GeneJET
TM Gel Extraction Kit (Thermo Scientific, US) according to
the manufacturer’s instructions.

Following the manufacturer's instructions, libraries were
created using the lon Plus Fragment Library Kit 48 rxns
(Thermo Scientific, US). After quality test and quantification
on the Qubit@ 2.0 Fluorometer (Thermo Scientific, US),
the libraries were pooled into equal concentrations. The
library was sequenced via the lon S5 TM XL platform
(Thermo Scientific, US). The clean reads were deposited
under the accession number CRA003656 in the GSA
database.

2.5 Bioinformatics

The raw sequences were quality-filtered and de-multiplexed
using Cutadapt (v1.9.1) (Martin, 2011). Barcode and primer
sequences were thus truncated. Chimeric sequences were
screened using UCHIME (Edgar et al., 2011) against the
Silva database (v138) (Quastetal., 2013) and removed.
The clean reads were denoised using the unoise3 algorithm
(Edgar, 2016a) implemented in usearch (v11). The denoised
sequences, which are the correct biological sequences in
the reads, are called “zOTUs” (zero-radius OTU) (here after
OTUs). Taxonomy assignment was performed using the
RDP training set v16 (Maidak et al., 2001) with the SINTAX
taxonomy prediction algorithm (Edgar, 2016b) implemented
in usearch (v11). Reads which were assigned to chloroplast,
mitochondria and archaea were filtered out.

2.6 Statistical analysis

All statistical analyses were conducted in R (v4.0.2). Figure
S1 depicts the process of the analysis procedures discussed
below, as well as the figures created by each phase
(Additional file 3).

2.6.1 a-diversity

The a-diversity was calculated at each rarefaction level in
usearch (v11). We tested the effects of compartments, soil
types, plant types and fertilization in overall samples and in
subset samples respectively. The normality of the data set
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was checked using Shapiro-Wilk test and the homogeneity
of variance across groups was computed using Levene's
test. For the two-group comparison, the differences were
tested using Student’s t-test if the data set is normally
distributed, or Wilcoxon test otherwise. For comparison of
more than two groups, the differences were tested using
one-way ANOVA if the samples have equal variance, or
Kruskal-Wallis test otherwise. Tukey’s Honest Significant
Differences test was carried out for pair-wise comparison
using the R package TukeyC (Fariaetal.,2018) if
applicable.

2.6.2 B-diversity

With all of the samples combined, we ran a general study of
B-diversity on the bacterial populations, followed by more
specific hypothesis testing. We then carried out uncons-
trained principle coordinates analysis (PCoA) using Bray-
Curtis dissimilarities. Constrained analysis of principal
coordinates (CAP) was employed for in-depth investigation.
The R package “phyloseq” was used for all ordination studies
(McMurdie and Holmes, 2013). The community dissimilarity
in PCoA and CAP were tested using adonis and permutest
in R package “vegan” respectively (Oksanen et al., 2013).
Pairwise comparisons, where applicable, were performed
with the R package RVAideMemoire (Hervé, 2018).

2.6.3 The microbiome network construction and analysis

OTUs with a relative abundance no less than 0.05% in at
least one third samples were selected for co-occurrence
networks using Spearman correlations with R package
“psych” (Revelle, 2017). Significant correlations (r > 0.7 and
FDR adjusted p < 0.001) were visualized by Gephi (Bastian
et al., 2009) with the Fruchterman-Reingold layout.

We then calculated cohesion (Herren and McMahon,
2017) and modularity (Hernandez et al., 2021) as properties
of network stability. Modules were identified with the Clauset-
Newman-Moore algorithm (greedy_modularity_communities)
from the Python package networkx (Clauset et al., 2004).
Cohesion was calculated using ‘taxa shuffle’ null model with
the provided R code (Herren and McMahon, 2017).

2.6.4 Identification of fertilization sensitive OTUs (fsOTUs)

We first carried out correlation based indicator species
analysis with the R package indicspecies (De Caceres et al.,
2010). Furthermore, OTUs differed in abundance among
fertilization regimes (false discovery rate (FDR) corrected p
value < 0.05) were identified with the R package edgeR
(Hobbs et al., 2008). The fertilization sensitive OTUs
(fsOTUs) were then classified as OTUs that were confirmed
by both methods. Bipartite networks were used to illustrate
the fsOTUs with the R package ‘“igraph” (Csardi and
Nepusz, 2006).

2.6.5 Identification of key drivers in networks

The soil and root communities under each fertilization
regime were combined to construct meta-networks. Four
meta-networks were constructed consequently, in
accordance with the fertilization regime NPK, M, NPK + M,
and NPK + 1.5M.

To define the topological properties of individual nodes
(OTUs), we employed a set of parameters (i.e., within-
module connectivity (Zi) and connectivity among modules
(Pi)) (Guimera and Amaral, 2005). The distribution of nodes
in the networks was visualized using R package ggplot2.
Based on the values of Zi and Pi, nodes might be divided
into four subcategories (Olesen et al., 2007): (i) highly linked
connector nodes (Zi < 2.5, Pi > 0.62), (ii) module hubs (Zi >
2.5, Pi < 0.62), (iii) network hubs (Zi > 2.5, Pi > 0.62), and
(iv) peripheral nodes (Zi < 2.5, Pi < 0.62).

We also used the method NetShift (Kuntal et al., 2019) to
find key microbial taxa that act as “drivers” between two
networks.

3 Results

3.1 The main drivers of the soil and root microbiota

We conducted bacterial community profiling of 51 soil and
44 root samples from 9 sites with 3 different soil types, 4
plant types and 8 fertilization regimes. A total of 2 758 622
high-quality sequences was yielded (range 8165-57 939;
median 28 701; Additional file 2). In sum, we identified 18 097
bacterial zOTUs (zero radius OTU) across all samples.

The major phyla of the bacterial community were
Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria,
and Firmicutes (Fig. S2). Soil and root, as different microbial
habitats, were found inhabited by specific sets of microbes
(Fig. 1A). Principal coordinate analysis (PCoA) indicated
that microbial communities were clearly separated by soil
types, when taking all some samples into consideration
(Fig. 1B; Table S1). The discrete outlier in the bacterial
communities was consistent with TN (Fig. S3b) and SOM
(Fig. S3c). Soils exhibited a higher diversity than rhizos-
phere (Fig. S4 and Table S2).

For the in-depth analysis, we employed the canonical
analysis of principal coordinates (CAP). Soil types could
explain 13% of the variance in the soil microbiome and 15%
of the root microbiome, both of which were confirmed by
pairwise PERMANOVA tests (Fig. S5; Table S3). A higher
diversity of the soil and root microbiome was found in
cinnamon soil than in fluvo-aquic soil by the comparison of
Shannon index. Unexpectedly, no differences were
observed in the o-diversity between black and cinnamon
soil, though black soil is considered more fertile in general
(Fig. S5; Table S4).

We further analyzed samples under the sample soil type
and the same fertilization regime. Both the soil microbiome
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Fig.1 The main drivers of soil and root microbiome. (A) The plot

displays the abundance patterns of bacteria in soil and root
microbiomes. X-axis reports average OTU abundance (as counts
per million, CPM), and Y-axis log,-fold change (root relative to soil).
Root and soil-specific OTUs are colored in green and brown,
respectively. Non-differentially abundant OTUs are colored in gray
(likelihood ratio test, p < 0.05, FDR corrected). (B) Unconstrained
PCoA ordinations of bacteria. Percentage of variation given on each
axis refers to the explained fraction of total variation in the
community. Symbols refer to the different fertilization treatments.
Figure (B) are colored by soil types and compartments.

and the root microbiome were clearly separated by plant
types, confirmed by both PCoA plots and PERMOVA tests
(Fig. S6; Table S5), indicating that plant type is a driving
factor in shaping both soil and root microbiome. However,
no statistical differences of a-diversity were found between
different plant types (Fig. S7; Table S6).

We further investigated the fertilization impacts on soil and
root bacterial communities. Clear differences of beta
diversity among fertilization regimes were indicated by CAP
and PERMANOVA tests (Fig. 2; Fig. S8).

The impact of fertilization on a-diversity was only observed
in the root microbiome but not in the soil microbiome,
regardless with crop types (Fig. S8; Table S7). The lowest
a-diversity of the root microbiome was observed under
fertilization regime PK, where N was missing. Unexpectedly,
the root microbiome without fertilization and fertilized with
NPK did not differ in the a-diversity. Interestingly, the
addition of organic materials (straw and manure)
significantly lowered the a-diversity. In particular, the
addition of the straw (NPK + S) showed the lowest o-
diversity, much lower than the addition of the manure (NPK
+ M and NPK + 1.5M).

3.2 Fertilizatiton sensitive OTUs

We identified OTUs varied in abundance among different
fertilization regimes confirmed by both indicator species
analysis and likelihood ratio tests. The resulted fertilization
sensitive OTUs (hereafter: fsOTUs) were summarized in
bipartite networks (Fig. 2; Fig. S9). The patterns resembled
those observed in the beta diversity analysis. A specific
subset of soil and root microorganisms is supported by each
fertilization regime. Particularly, we noted that Actinobacteria
was enriched in the soil microbiome under inorganic NPK
fertilizer. Instead, Acidobacteria and Bacteroidetes largely
dominated the root microbiome, and were enriched with the
addition of organic fertilizer. Firmicutes was enriched under
organic fertilization as well. Around 28% fsOTUs identified in
root belonged to Acidobacteria, while only half of fsSOTUs in
soil (14%) were assigned to Acidobacteria.

3.3 Network properties under different fertilization regimes

We constructed co-occurrence networks of bacterial
community under each fertilization regime. The overall
community taxonomy was changed by fertilization practices
(Fig. 3). We further quantified the network stability via
modularity, a reflection of how compartmentalized the
network is, and cohesion, a metric quantifying the degree of
community complexity, respectively.

In both the soil and root microbiome, combined fertilization
led to the highest modularity, indicating higher community
stability (Fig. 4). Organic fertilizer resulted in higher soil
network modularity than inorganic fertilizer. However, the
opposite trend was observed in the root microbiome, where
bacterial networks showed higher modularity with inorganic
fertilizer than organic fertilizer.

Similarly, both the highest negative and positive cohesion
metrics were observed with combined fertilization (p < 0.01,
ANOVA), indicating higher network stability (Fig. 4).
However, no statistical differences of cohesion were found
between inorganic and organic fertilization. As to the soil
microbiome, the differences among fertilization regimes
were only found with negative cohesion but not positive
cohesion (p < 0.05, ANOVA). As like in the root microbiome,
combined fertilization showed higher negative cohesion than
inorganic NPK or organic manure alone, but no differences
were found between organic and inorganic fertilization.

We further carried out canonical correspondence analysis
(CCA) to investigate the environmental variables correspon-
ding with fertilization practices. SOM and pH were found
significantly correlated with the soil microbiome, while TN
was found significantly correlated with the root microbiome
(Fig. S11).

3.4 Key drivers in network shifting

The soil and root microbiota under each fertilization regime
were combined to construct meta-networks. Consequently,
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we obtained four meta-networks in accordance with the
fertilization regime NPK, M, NPK + M, and NPK + 1.5M. We
identified a series of module hubs (nodes highly connected
to other members in a module) and connectors (nodes
linking different modules) based on their within-module
connectivity (Zi) and among-module connectivity (Pi), which
could be regarded as keystone nodes that play key roles in
shaping network structure. (Fig. 5). The number of module
hubs were highest under combined fertilization and lowest

under inorganic fertilization, which is in line with the results
of modularity analysis. Under inorganic fertilization, nearly
one fourth of the connector OTUs with NPK were assigned
to Acidobacteria, which was less abundant in connector
OTUs of other networks. Instead, Firmicutes and Candidatus_
Saccharibacteria became prominent as connectors under
organic and combined fertilization, whereas they were
absent in the connector OTUs with the inorganic fertilizer.
We further explored the potential “driver microbes” in
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shaping microbial networks under different fertilization
regimes using the newly-developed method “NetShift.” The
taxon that has a different set of relationships (recognized by
a high Neighbor shift (NESH) score) while becoming more
relevant for the entire network (identified by a positive delta
betweenness (B) score) is predicted as a “driver.” Accor-
dingly, we selected top 30 taxa of highest NESH score with
positive AB values (Fig. 6). In the shift from inorganic (NPK)
to organic (M) fertilization, Bacteroidates and Verrumicro-
biota stood out as the most prominent drivers, as both of
their NESH and AB score were high. In comparison with

exclusive organic fertilization (M), Bacteroidates, Acidobac-
teria, Firmicutes, BRC1, and Gammaproteobacteria
(Pseudomonadales and Xanthomonadales) contributed as
important members in driving network changes under
combined fertilization (NPK + M). In the shift of fertilization
regime from NPK + M to NPK + 1.5M, Turicibacter and
Bacillus from the phylum Firmicutes were identified as the
key drivers with the highest NESH and AB score. Besides,
increased number of Proteobacteria, particularly Rhizobiales,
were found among the driver taxa.
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4 Discussion

4.1 Combined fertilization leads to higher microbial network

stability

In this study, we characterized the soil and root microbiome

from 3 different soil types, 4 plant types and 8 fertilization
regimes in a long-term field experiment. While soil types
could largely determine microbial communities, fertilization
practices were found as a primary factor in shaping the soil
and root microbiota under the same soil type. Our results
indicated that combined organic-inorganic fertilization
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resulted higher modularity and cohesion values in both soil
and root microbial networks than exclusive inorganic or
organic fertilization.

Network complexity relates with the total number of
interacting species (network size). The connectance,
measuring the proportion of realized interactions among all
the possible ones in a network, is also a commonly-used
indicator of complexity (Landi et al., 2018). Stability of an
ecosystem can be understood as its propensity of returning
to its functioning regime after a stress or a perturbation in its
biotic components or abiotic components (Landietal.,
2018). The two metric cohesion and modularity together
could be used as an indication of microbial stability together
(Yuan et al., 2021).

The stability of microbial networks has been successfully
predicted using network properties (de Vries et al., 2018;
Hernandez et al., 2021; Yuan et al., 2021). Communities
with a higher level of modularity, less positive relationships
between taxa, and more negative associations between taxa
are more stable. By limiting the impact of losing a taxon to
its own module, high modularity could help communities
stay stable (Stouffer and Bascompte, 2011; Girilli et al.,
2016). Negative cohesion (negative relationships) indicates

disparate niches and/or negative interactions between taxa,
whereas positive cohesion (positive relationships) indicates
considerable niche overlap and/or positive interactions
between taxa (Herren and McMahon, 2017; Yuan et al.,
2021). It is argued that positive associations can lead to
dependency and mutual downfall (Coyte et al., 2015).
Negative co-occurrences/interactions, on the other hand,
may dampen positive feedbacks and hence increase
stability (Hernandez et al., 2021).

In this study, we found higher modularity and connectivity
(i.e., cohesion) as well as a dominance of negative
correlations in  microbial networks under combined
fertilization, indicating that combined fertilization leads to
microbial community with higher network stability. Notably,
the response of modularity in root and soil to organic and
inorganic fertilizer were opposite. One possible explanation
is that the nutrient availability and demands of the two
niches are different. The soil microbiota require more carbon
to grow, while the rhizosphere microbiota require more
nitrogen as a change for the carbon released from plants.
Consequently, the organic fertilizer may favor the soil
microbiota, whereas the inorganic fertilizer may favor the
rhizosphere microbiota (due to the readily-available N). That
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may also explain why the combined fertilization leads to the
highest modularity of both the soil and root microbiome, as
combined fertilization satisfied the urgent need of both soil
and root microbiota.

A recent study provided evidence that naturally-occurring
microbiome display properties characteristic of unstable
communities when under persistent stress (Hernandez et al.,
2021). Networks with higher stability are more resistant to
environmental changes (Santolini and Barabasi, 2018). In
this sense, our findings may suggest that the microbiota
under combined fertilization is more resistant to
environmental challenges. In addition, pathogen invasion
success in the rhizosphere has been linked to the network
structure of resident bacterial populations (Wei et al., 2015).
Therefore, the structure and stability of root communities are
highly important for the plant health and fitness.

Indeed, our previous results showed combined fertilization
resulted higher crop yields than exclusive manure applica-
tion than solely mineral fertilization (Gai et al., 2018). The
yield increase by combined fertilization was also confirmed
in other long-term experiments (Wei et al., 2016), with enhan-
ced soil nutrient availability, microbial biomass, enzymatic
activities and soil nitrogen processes (Zhao et al., 2016).
After 35 years of fertilization, the combination of inorganic
fertilizer and cow manure produced the most resistant
microbial community, which was related with the lowest
relative abundance of possible fungal plant diseases (Fan et
al., 2020). In brief, our results are in line with the notion that
host can benefit from increased microbiome stability.

4.2 Fertilization had stronger impact on the root microbiome
than on the soil microbiome

Interestingly, our results suggested that the influence of
fertilization is stronger on the root microbiome, but less
significant on the soil microbiome, indicating compartment-
specific responses of bacterial communities. Our CAA analy-
sis revealed that TN is the environmental factor responsible
for the community variation of the root microbiome, whereas
pH and SOM explained the soil community differences.
While pH is well-known for its decisive role in selecting
bacterial community, it seems that C and N factors drive the
soil and root microbiome respectively. Studies have shown
that the quantity and quality of SOM following N enrichment
were linked with soil microbial communities and the associ-
ated enzyme activities (Craine et al., 2007). The organic
fertilizer is known to enhance SOM and improve soil fertility
(Li et al., 2021). A recent study indicated that the carbon loss
under alpine permafrost deterioration is linked to decreasing
microbiological stability (Wu et al., 2021). In line with previ-
ous reports, our results indicated that organic fertilization
and combined organic-inorganic fertilization increased the
microbial stability mainly by the increase of SOM, as SOM
was found correlated significantly with the soil microbiome
under different fertilization regime by CCA analysis.

The root microbiome, however, are dynamically influenced

by both the edaphic environment and the host plant.
Compared with bulk soil, a higher demand of N is required
by plants. The amount of accessible nitrogen that plants can
absorb is highly influenced by root-associated microbial
guilds (Moreau et al., 2019). For instance, the ability of
arbuscular mycorrhizal fungi to transmit nitrogen to plants
was recently discovered, and the uptake of nitrogen by the
fungal symbiont was facilitated by carbon provided by the
host plant (Fellbaum et al., 2012). Mounting evidence reveals
that rhizosphere priming appears to be a crucial strategy for
plants to receive organic nitrogen (Phillips et al., 2011).

4.3 Microbial shifts in response to different fertilization
regimes

We found that Actinobacteria was prominently enriched in
the soil microbiome under mineral fertilization. Many
members of Actinobacteria were consistently identified as
consumers of labile C substrates in stable-isotope probing
(SIP) experiments (Krameretal., 2016). The selective
enrichment of Actinobacteria in the NPK fertilized soil
indicated a community more reliant on simple C substrates
and less adapted to complicated C breakdown and nutrient
mineralization.

Our results showed that Bacteroidates and Verrumicrobiota
were among the most important drivers in the shift from
inorganic fertilization to organic fertilization. Bacteroidetes
are primary degraders of biomass derived from complex
carbohydrates (Thomas et al., 2011; Lapabie et al., 2019).
Members of Verrucomicrobia were identified by SIP experi-
ments as consumers of more complex C compounds, such
as cellulose (Pepe-Ranney et al., 2016). Cultured members
of these phyla have genetic mechanisms for breaking down
complicated plant-derived polysaccharides. Considered
together, they may play important roles in the decomposition
of complex organic matter, and thereby contribute to the
community shift from inorganic to organic fertilization.

With extra manure applied (i.e., NPK + 1.5M), a
dominance of Firmicutes was observed as the potential
drivers. Firmicutes are likely to increase in nutrient-rich
conditions (Fierer et al., 2007). For instance, the increase in
Firmicutes in gut microbiota is often correlated with obesity
(Ley et al., 2006). In our case, the large dominance of
Firmicutes under the fertilization regime NPK + 1.5 M might
be an indication of over-fertilization. Fertilization regimes
that rely solely on inorganic inputs may cause root selection
of microbial communities that are more reliant on readily
available C, disrupting the plant's ability to select for a
prokaryotic population that mineralizes nutrients from
existing organic matter.

5 Conclusions

Overall, we found that fertilization regimes impacted both
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the soil and root microbiome. The network analysis with
modularity and cohesion indicated a higher stability of
microbial networks under organic-inorganic fertilization than
those relied solely on inorganic or organic fertilization. In
addition, the response of the root microbiome to fertilization
was stronger than the soil microbiome and exhibited
different patterns. While TN contributed mostly to the
variance of the root microbiome, pH and SOM could largely
explain the differences in the soil microbiome. Bacteroidetes
and Firmicutes were found to be major drivers in the soil and
root microbiome when organic fertilizer was added, but
Actinobacteria was found to be enriched in the soil
microbiome when only inorganic fertilizer was used. Our
study implied that combined organic-inorganic fertilization
might be a sound practice better than exclusive mineral or
organic fertilization. However, the risk of over-fertilization still
need to be taken care of.
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