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1 Introduction

Agricultural productivity and food security need to be achieved
in a more sustainable way in response to growing world
population and climate change (Bruinsma, 2003; Wheeler and
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REVIEW

A B S T R A C T

Intercropping, which gains productivity and ecological benefits through plant facilitative interactions,
is a practice often associated with sustainable agriculture. In such systems, arbuscular mycorrhizal
(AM) fungi and the hyphal networks play key roles in plant facilitation by promoting connectivity,
mediating interplant transfer of metabolic resources, and managing weeds, pathogens, and
contaminants. This review states that the symmetrically or unsymmetrically delivered resources via
AM fungi are imperative to maintain facilitative interactions between intercrops. In addition, the
responses of AM fungi to intercropping are also discussed, including changes in abundance,
diversity, community composition and colonization level. Although general proliferations in AM fungi
via intercropping have been shown, the plant hosts and neighbors may exert different influences on
AM fungi. Therefore, further research is needed in quantifying the mediating role of AM fungi on
outputs of intercropping systems, clarifying the driving forces, and exploring the causation between
these processes and the changes in AM fungi themselves. To conclude, the integration with AM fungi
extends the understanding of key soil biological processes driving plant facilitation and will guide
efforts to optimizing intercropping systems.
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H I G H L I G H T S

•Metabolic and non-metabolic benefits of AM
fungi under intercropping were reviewed.

•Changes of AM fungi themselves respond to
intercropping practices were summarized.

• Mechanistic understanding the synergy
between intercropping and AM fungi is
needed.

• It’s valuable to harness AM fungal benefits
for maximizing intercropping production.

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Article history:

Received January 18, 2021

Revised May 22, 2021

Accepted May 25, 2021

Keywords:

Agriculture sustainability

Contaminant

Mycorrhizal networks

Pathogen

Plant facilitation

Weed



von Braun et al., 2013). Intercropping is the simultaneous
cultivation of more than one crop cultivar (Vandermeer, 1989),
mostly implemented in resource-limited and small-scale
agriculture in tropical, subtropical and temperate areas in
Africa, South Asia, and Central America (Brooker et al., 2015).
Through processes such as niche complementarity and
interspecific facilitation, intercropping systems have potential
benefits in space and resource use, overall yield (Hauggaard-
Nielsen and Jensen, 2005; Li et al., 2014), weed and disease
control (Boudreau, 2013; Gurr et al., 2003), phytoremediation
(Zeng et al., 2019), and soil quality improvement (Arantes et
al., 2020), thereby holding great advantages for improving
stability and sustainability of agroecosystems.

Intercropping can be considered as a practical application
of ecological principles of natural ecosystem, taking the
advantages of biodiversity to realize system productivity
(Malezieux et al., 2009). For example, nitrogen (N)-fixing or
phosphorus (P)-releasing species are commonly applied to
intercropping systems to enhance soil fertility and growth of
companion plants (Gunes et al., 2007; Li et al., 2007;
Thilakarathna et al., 2016; Duchene et al., 2017). However,
a more complex system means more difficulties for manage-
ment and greater challenges to the techniques and concepts
derived from monocropping systems (Malezieux et al., 2009).
Thus, the agronomic and ecological advantages of intercrop-
ping should be further consolidated in order to providing
effective support to smallholdings and being embraced by
industrial farms, and a deeper understanding of the mechan-
isms driving these processes is definitely needed.

Soil microbial communities often positively respond to
increased plant diversity (Montesinos-Navarro et al., 2012; He
et al., 2013; Tang et al., 2014; Gong et al., 2019), in turn, which
play crucial roles in soil nutrient cycling and regulation of
plant-plant interactions. Among soil microbes, arbuscular
mycorrhizal (AM) fungi are obligate biotrophs belonging to
the phylum Glomeromycota, forming symbiotic associations
with the majority of vascular plants, including most agricultural
crops (Smith and Read, 2008; Brundrett and Tedersoo, 2018).
In return for plant carbon (C), delivering nutrients (e.g., P and
N) is the most important benefit of AM symbiosis for plant
hosts (Smith and Read, 2008). There are also multiple
ecological services provided by AM fungi, e.g., abiotic/biotic
stress tolerance and soil structure improvement (Gianinazzi et
al., 2010; Smith et al., 2010; Leifheit et al., 2014). While
legume-based intercropping is widely used as an effective
strategy for utilizing biologically fixed-N, AM fungi are
essentially needed to alleviate the nutrient shortages and
support the extra P need for N fixation (Barea et al., 2005).

In addition, the fungal mycelia simultaneously colonize and
interconnect roots of the same or different plant species,
forming so-called commonmycorrhizal networks (CMNs). The
CMNs allow direct and efficient pathways of resource
transfers between intercrops, and closely bound to the
outcomes of plant facilitative or competitive interactions
(Montesinos-Navarro et al., 2016; Qiao et al., 2016; Dieng et
al., 2017). Furthermore, AM fungi can provide a bunch of

services for plant adaptation under stressful environments
(Gorzelak et al., 2015), facilitating the ecological functions and
wider applications of intercropping (Ehrmann and Ritz, 2014).
In turn, such roles of AM fungi under intercropping systems
should be reflected in their quantity and diversity features. A
diversified AM fungal community enables efficient exploitation
of soil resources and functional compatibility between host
plants, hence regulating plant facilitation and coexistence in
field ecosystems (van der Heijden et al., 1998; Wagg et al.,
2011; Montesinos-Navarro et al., 2012, 2019).

In the review provided by Bainard et al. (2011), the tree-
based intercropping systems generally supported an abun-
dant and diversified AM fungal community compared with
conventional agricultural systems. However, an update of
recent findings regarding how AM fungi respond to interac-
tions between different intercrops, especially for crop species,
is needed. In the current review, we set out to synthesize the
roles and responses of AM fungi in a wider scope of planting
systems, e.g., field crops, forages, trees, or a mixture thereof,
where intercropping strategy has been applied. Such integra-
tion of intercropping and AM fungi is expected to enhance
understanding of key soil biological processes driving plant-
plant interactions, and bring novel insights into future
developments of intercropping systems.

2 The contributions of AM fungi in
intercropping systems

The CMNs allow intra- and inter-specific transfers of
resources, either metabolic (including contaminants), e.g.,
N, P, C, water and metal(loid)s (Martins and Cruz, 1998; Yao
et al., 2003; Egerton-Warburton et al., 2007; Meding and
Zasoski, 2008; Ren et al., 2013), or non-metabolic, e.g.,
allelochemicals and defense signals (Barto et al., 2012).
Therefore, we start by discussing the three major roles AM
fungi play in intercropping systems: 1) mediation of plant
interspecific transfer of C, N, P, and water resources and
facilitative interactions; 2) control of parasitic weeds and plant
pathogens; and 3) remediation of heavy metal(loid)-contami-
nated soil (Fig. 1).

2.1 The mediation of resource transfer and facilitation
between intercrops via CMNs

The facilitative effect of AM fungi on N-fixation by legumes and
subsequent N transfer to companion crops have been
demonstrated by a number of studies using 15N labeling.
Ingraffia et al. (2019) showed that AM fungi accounted for 20%
of increases in the N fixed by faba bean (Vicia faba) and also
in the N transferred to the intercropped wheat (Triticum
turgidum). Wahbi et al. (2016) reported the similar effect, but
variation was shown due to different inoculation rates of AM
fungi. Li et al. (2009) traced the bidirectional N transfer
between mung bean (Vigna radiata) and rice (Oryza sativa),
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the presence of AM fungi increased 15N transfer from mung
bean to rice from 5.4% to 15.7%, while only 2.7% of N was
transferred from rice to mung bean. Zhang et al. (2020a)
reported a more effective N transfer via CMNs than the
indirect pathway via root exudation in an alfalfa (Medicago
sativa) and maize (Zea mays) intercropping system without N
fertilization. The dual inoculation of an AM fungal strain and a
rhizobium strain led to significant increases of N uptake in co-
cultivated soybean (Glycine max) and maize and the
mycelium-derived N transfer from soybean to maize than
any of single inoculation, suggesting the synergistic effect
between AM fungi and rhizobia (Meng et al., 2015).

Compared to N, less attention has been paid to plant
interspecific P transfer via AM fungi. The CMNs allow bi-
directional P transfer among different plant species (Martins
and Read, 1996), and which plant is more benefited may
depend on plant specific needs and mycorrhizal dependence.
Ryegrass (Lolium perenne) showed a higher shoot P content
than neighboring clover (Trifolium pratense), and a lower rate
of P was transferred from ryegrass to clover than from clover

to ryegrass via CMNs (Yao et al., 2003). The interplant P
transfer via CMNs accounted for more P acquisition in the
obligately mycotrophic grass, i.e., indiangrass (Sorghastrum
nutans, >50%) than the facultative grass, i.e., white sage-
brush (Artemisia ludoviciana, 20%) (Wilson et al., 2006).

There are also evidences for the involvement of AM fungi in
C and water allocation between intercropping plant species.
With 14C labeling in rice leaves, both enhanced 14C activity in
watermelon (Citrullus lanatus) leaves and increased P uptake
and translocation in rice were shown, thus AM fungus
mediated the C and P trade between intercrops (Ren et al.,
2013). In a growth chamber 13CO2-labeling experiment,
inoculation with AM fungi increased 13C content in maize
shoots and decreased 13C content in soybean roots, indicat-
ing that maize invested less C than soybean into the CMNs
(Wang et al., 2016). Walnut (Juglans nigra) tree showed
higher ∂13C (13C/12C ratio) in leaves but lower ∂13C in root
adjacent mycelium compared to the neighboring maize,
suggesting the potential C transfer from walnut to maize via
the CMNs (van Tuinen et al., 2020). Based on these

Fig. 1 The potential benefits of arbuscular mycorrhizal (AM) fungi in intercropping systems, e.g., overyielding, weed and

disease control, and phytoremediation. Arrows and boxes show proposed mediation of AM fungi for uptake and/or interspecific

transfer of metabolic resources, infochemicals and defense signals belowground.

Minghui Li et al. 321



evidences, it is still not possible to conclude there is fungus-to-
plant C transfer (Robinson and Fitter, 1999). Deep-rooted
pigeon pea (Cajanus cajan) showed a ‘bioirrigation’ effect to
shallow-rooted finger millet (Eleusine coracana) under
drought and the enhanced facilitation by CMN was observed,
however, pigeon pea showed competitive effect over finger
millet at ambient water availability and the CMN also
enhanced the competition (Singh et al., 2020).

Through mediating the N, P, C and water economy,
symmetric benefits for both intercropped partners delivered
by CMNs have been shown (Meng et al., 2015; Kumar et al.,
2016). More frequently, AM fungi provide varying degree of
benefits to different plant species. In legume-cereal intercrop-
ping systems, the preference by CMNs is important in
maintaining the profits of legumes and enabling plant
facilitation (Li et al., 2009; Xiao et al., 2010; Qiao et al.,
2015; Bahadur et al., 2019). However, the opposite direction
of CMNs derived benefits has also been reported. Wheat was
more favored by CMNs with enhanced nutrient uptake rather
than the neighboring annual medic (Medicago scutellate) and
faba bean (Caruso et al., 2018; Ingraffia et al., 2019). Maize
showed the preference by CMNs over the intercropped
soybean (Hamel and Smith, 1991; Wang et al., 2019). When
legumes are not included, pepper (Capsicum annuum) was
the more beneficiary species of CMNs for enhanced P
acquisition and fruit yield when intercropped with maize (Hu
et al., 2019).

The effects of AM fungi on plant interspecific competition
are related to specific plant mycorrhizal traits (Moora, 2014).
The increased competitive ability of N-fixing forbs, the
suppression in fibrous C3 grasses, and unclear effects in C4

grasses, non-fixing forbs and woody species have been
shown (Lin et al., 2015). Soil properties such as pH and
nutrient levels and aboveground factors such as planting
density and shading also exert influences on the magnitudes
and directions of AM fungal mediation (Chifflot et al., 2009;
Menezes et al., 2016; Wang et al., 2016; Ren et al., 2017;
Shukla et al., 2018; Zhang et al., 2020a). For intercropping
patterns involving non-mycotrophic species, e.g., barley
(Hordeum vulgare) and sugar beet (Beta vulgaris) (Hajiboland
et al., 2020), and sesame (Sesamum indicum) and broccoli
(Brassica oleracea) (Tong et al., 2015), AM fungal mycelium
from the co-cultivated mycotrophic species induced changes
in the defense parameters of non-host species, but evidence
of reduced plant growth and fitness was not shown.

2.2 The potential of AM fungi in controlling weeds and
diseases in intercropping systems

The AM fungi supported by intercropping trees enhanced the
competitive strength of sorghum (Sorghum bicolor) against
parasitic striga (Striga hermonthica) (Birhane et al., 2018). In
the extreme case, a significant and negative correlation was
observed between AM fungal spore density and colonization,
and striga counts at the early stage of sorghum growth. In a
facility shed, the suppression of pepper Phytophthora blight

by soil indigenous AM fungi was enhanced by intercropping
with maize, which promoted the propagation of AM fungi and
thereby colonization on pepper roots (Liu et al., 2021).
Similarly, AM fungal inoculation induced a compensation for
the negative effect of Fusarium wilt on the biomass of tomato
(Lycopersicon lycopersicum) intercropped with leek (Allium
porrum), which showed even a 20% higher mycorrhizal
colonization rate than monocropped tomato, and thereby
higher outcome of the bioprotective effects resulting from AM
fungi (Hage-Ahmed et al., 2013).

In addition to nutritional compensation, CMNs also serve as
potential ‘superhighways’ for transferring systemic allelo-
chemicals and defense signals across plant species (Barto
et al., 2012; Schuman and Baldwin, 2018). Experimental
evidences indicated that AM fungal hyphae increased soil
accumulation of allelochemicals, e.g., imazamox and thio-
phenes from signet marigold (Tagetes tenuifolia) (Barto et al.,
2011) and juglone from walnut (Achatz and Rillig, 2014), thus
triggering growth inhibition in the receiver plants, lettuce
(Lactuca sativa) and tomato, respectively. Furthermore,
belowground transportations of defense signals through
CMNs between trifoliate orange (Poncirus trifoliata) seedlings
(Zhang et al., 2018b), tomato (Song et al., 2010, 2015), and
faba bean (Babikova et al., 2013) were also shown. However,
it remains unclear whether communication between plants via
CMNs can be maintained when scale up to diverse AM fungal
communities and among multiple plant species under field
conditions.

2.3 The function of AM fungi for soil remediation in
intercropping systems

Another applicable area of intercropping is phytoremediation,
e.g., using metal(loid)-accumulating companion plants to
ensure crop safety in contaminated soils, where AM fungi
may play a crucial part either by mediating metal(loid) transfer
between plants, or alleviating toxicities in plants. For example,
AM fungal inoculation enhanced cadmium (Cd) acquisition by
Alfred stonecrop (Sedum alfredii) over the neighboring upland
kangkong (Ipomoea aquatica), increased soil P availability
through activating phosphatase activity, and reduced soil
available Cd concentrations via elevating soil pH (Hu et al.,
2013a, 2013b). In a recent study reported by Yang et al.
(2021), AM fungal inoculation also reduced Cd concentration
in upland rice through regulating Cd transporter genes in rice,
increasing the root surface area and Cd acquisition of the
intercropped black nightshade (Solanum nigrum), and mod-
ulating root exudation and rhizosphere pH to decrease Cd
availability for rice and increase that for nightshade. In a heavy
metal-polluted soil, AM fungal inoculation alleviated the
toxicity level and increased the yield of garlic chives (Allium
tubersosum) intercropped with sunflower (Helianthus annuus)
via enhancing soil phosphatase activity and plant P acquisi-
tion, along with increased availabilities of heavy metals in soil
and acquisitions by sunflower (Zhang et al., 2019). Through
mediating plant P nutrient, AM fungi were also involved in the
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adaptations of the mix-cropped ryegrass and clover, and
alfafa (Medicago sativa) and pepperweed (Lepidium apeta-
lum), to arsenic (As) contamination (Dong et al., 2008; Zhang
et al., 2018a).

3 The responses of AM fungi to intercropping

The colonization level and abundance of AM fungi are
important indicators reflecting plant growth performance and
soil nutrient activation. With the diversified C resources and
spatial patterns of soil properties under agroforestry manage-
ment (Thevathasan and Gordon, 2004), increases of root
colonization and soil sporulation of AM fungi were shown in
intercropping systems of sorghum and ana tree (Faidherbia
albida), and soybean and peacock flower (Albizia gummifera)
or broad-leaved croton (Croton macrostachyus) (Birhane et
al., 2018; Hailemariam et al., 2013). Mycorrhizal colonization
of both seedling and mature tree roots of grandis gum
(Eucalyptus grandis) was stimulated through intercropping
with Buddha belly tree (Acacia mangium) (Bini et al., 2018;
Pereira et al., 2018). Referring to mixtures of field crop, there
were increases of mycorrhizal colonization for wheat and
maize intercropped with faba bean (Wahbi et al., 2016) and
soybean (Meng et al., 2015), respectively. With different
combinations of pigeon pea, cowpea (Vigna unguicularta),
and maize, there was no difference in mycorrhizal colonization
level among crops in the growing season, whereas increased
mycorrhizal colonization of maize in the following year was
shown (Njira et al., 2017). However, factors such as soil
nutrient conditions, aboveground management, and plant
characteristics all can affect AM fungi in intercropping
systems. The survey of 23 tree, crop and vegetable species
of Ethiopia agroforestry systems showed that colonization and
spore density of AM fungi favored moderate to low P and N
levels (Dobo et al., 2018). The seeding density of neighboring
palisade grass (Urochloa brizantha) negatively affected maize
root colonization and soil population of AM fungi (de Freitas et
al., 2018). Mycorrhizal colonization of tomato either increased,
not changed, or decreased when intercropped with leek,
cucumber/basil, and fennel, respectively (Hage-Ahmed et al.,
2013), indicating a neighbor effect on plant-fungal interac-
tions.

With interactions between intercrops, changes in the
diversity and community composition of AM fungi have been
demonstrated. Bainard et al. (2012) showed that intercropping
with trees increased AM fungal diversity in a maize-planted
soil, while tree species exerted different neighboring effects
on the community composition. There were decreases of soil
spore density and shifts in root and rhizosphere AM fungal
community composition of oriental arborvitae (Platycladus
orientalis) via neighboring with the leguminous tree, i.e., black
locust (Robinia pseudoacacia); while neighboring oriental
arborvitae only had influence on the rhizosphere AM fungal
community composition of black locust (Chen et al., 2018).
Gao et al. (2020) reported corresponding responses of soil

AM fungal abundance to intercropping derived asymmetric
effects on tomato and potato onion (Allium cepa var.
aggregatum) growth, while the community composition of
AM fungi only shifted in the rhizosphere of potato onion.
According to Zhang et al. (2020b), intercropping increased soil
AM fungal diversity in the rhizosphere of soybean, whereas no
such effect was shown in the neighboring maize. Also, there
were opposite trends of change in the relative abundance of
dominant genus (Glomus) between soybean and maize with
increasing level of N application. However, a number of other
studies suggested no guarantee for higher AM fungal diversity
or shifted community composition through intercropping
(Rajeshkumar et al., 2015; Menezes et al., 2016; Furze et
al., 2017).

4 Conclusion and prospects

The roles of AM fungi for plant interspecific resource transfer
and facilitative interactions in intercropping systems have
been thoroughly summarized in the current review. Despite of
accumulating evidences of AM fungi-mediated N, P, C, and
water allocations between intercrops, there are still doubts
about the significance of such mycelia-derived resource flows
and whether resources are directly transferred through CMNs
or indirectly through soil, and further developments of tracing
and modeling methods are still needed (Simard and Durall,
2004). There are either symmetric or unsymmetric benefits
provided by AM fungi, enhancing facilitative or sometimes
competitive interactions between intercropped species. The
underlying mechanisms driving plant interspecific facilitation
and AM fungal mediation in intercropping systems need to be
better understood. On the other hand, the identified plant and
environmental factors worth further consolidation, which are
crucial in defining the application scopes of intercropping and
AM fungi.

Besides metabolic regulation, the contributions of AM fungi
for the ecological/environmental applications of intercropping,
e.g., weed and pathogen control and soil remediation, were
discussed in this review. There are also possible roles of AM
fungi in coping with insects via transferring herbivore-induced
signals between plants (Babikova et al., 2013) and dissipating
organic pollutants via a synergistic effect by intercropping, AM
fungi, and soil bacteria (Shan et al., 2018). Intercropping
approaches need to show enough advantages to offset the
costs of sophisticated managements and technical develop-
ments, and these non-metabolic prospects can provide
significant argument to intercropping. While a better under-
standing of the mechanisms driving plant-plant communica-
tions and exchanges via CMNs is needed. Further focuses
should also be given to the cooperation among intercropping,
AM fungi, and organic amendments, which hold great
potential in solving soil depletion, contamination, and con-
tinuous cropping obstacles (Hu et al., 2014; Kumar et al.,
2016; Liu et al., 2020).

The general proliferations in AM fungal abundance and
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diversity have been suggested by studies of intercropping
systems, while AM fungi may show different responses to
intercropped species depending on the strengths of neighbor-
ing effects and relative changes in soil environment (Chen et
al., 2018; Gao et al., 2020). However, current information
about intercropping-induced changes in AM fungal community
is very limited and it is difficult to link such changes with
interactions between plant species. Also, further investiga-
tions on the relationship between the changes within AM fungi
and their nutritional and ecological functions in intercropping
systems are needed.

Consequently, a mutually beneficial relationship between
intercropping and AM fungi is suggested, AM fungi are
necessarily involved in interspecific facilitation and ecological
services of intercropping systems, and intercropping leads to
improvements of mycorrhizal colonization and development of
AM fungal community. Understanding the inextricable links
between intercropping and AM fungi will guide the optimiza-
tion in productivity and broader-scale applications of inter-
cropping.
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