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HIGHLIGHTS

* Five methods of soil HM pollution evaluation
based on enzyme activity were reviewed.

* This review examined the performance and
ecological implications of these methods.

* Enzymatic stoichiometry methods reflect
changes in soil functions under HM stress.

* Microbial metabolic limitation is a promising
indicator to assess soil HM pollution.
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ABSTRACT

Soil enzyme activities have been suggested as suitable indicators for the evaluation of metal
contamination because they are susceptible to microbial changes caused by heavy metal stress and
are strictly related to soil nutrient cycles. However, there is a growing lack of recognition and
summary of the historic advancements that use soil enzymology as the proposal of evaluation
methods. Here, we review the most common methods of heavy metal pollution evaluation based on
enzyme activities, which include single enzyme index, combined enzyme index, enzyme-based
functional diversity index, microbiological stress index, and ecoenzymatic stoichiometry models.
This review critically examines the advantages and disadvantages of these methods based on their
execution complexity, performance, and ecological implications and gets a glimpse of avenues to
come to improved future evaluation systems. Indices based on a single enzyme are variable and
have no consistent response to soil heavy metals, and the following three composite indices are
characterized by the loss of many critical microbial processes, which thus not conducive to reflect the
effects of heavy metals on soil ecosystems. Considering the dexterity of ecoenzymatic stoichiometry
methods in reflecting changes in soil functions under heavy metal stress, we propose that microbial
metabolic limitations quantified by ecoenzymatic stoichiometry models could be promising indicators
for enhancing the reality and acceptance of results and further improving the potential for actual utility
in environmental decision-making.

© Higher Education Press 2021

1 Introduction

Heavy metal pollution has become a critical issue within many
soil ecosystems (Facchinelli et al., 2001; Schloter et al.,,
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2017). Even though heavy metals exist naturally in soil,
anthropogenic activities, such as industrialization, agriculture,
mining, and urbanization, are the most significant source
(Bhuiyan et al., 2010; Li et al., 2014; Ali et al., 2017). Heavy
metal pollution leads to a deterioration in soil quality and a loss
of soil functions (Schloter et al., 2017; Wang et al., 2017a),
which is harmful to human health, mainly through soil-plant
systems and soil-crop-food chains (Wood et al., 2016; Shen
et al., 2017). Remediation of heavy metal contaminated soil
has thus become an important and extensively studied topic
(Zota et al., 2009; Violante et al., 2010; Ju et al., 2019). At the
same time, the persistent threat of heavy metal contamination
in soil ecosystems has prioritized the development of strict
directives for soil protection and pollution assessments, which
the European Union (EU) has recently promoted (Schloter
et al., 2017). Accordingly, the importance of developing
reliable, robust, and resilient indicators to monitor soil heavy
metal contamination has been emphasized to establish early
warning and assessment systems.

Soil enzymes are prerequisites of organic matter decom-
position and nutrient cycling, representing microbial metabo-
lism and their response to environmental change (Burns et al.,
2013). Thus, many enzymes are viewed as powerful
biological indicators for evaluating heavy metal toxicity and
soil health (Xian et al., 2015; Wang et al., 2019). Moreover, the
assessment of the microbial metabolic activities can precede
some detectable changes such as soil chemo-physical
properties, which strongly support the utility of using enzy-
matic activity as an early warning tool for monitoring soil
pollution with heavy metals (Wahsha et al., 2017; Schloter
et al., 2017). In particular, among all kinds of evaluation
methods based on enzyme activities, ecoenzymatic stoichio-
metry is an emerging methodology that incorporates multiple
enzyme activities into specific microbial metabolic character-
istics (Moorhead et al., 2016; Cui et al., 2018), reflecting the
intensity of microbial metabolism as well as the ability of
microorganisms to obtain energy and nutrients (Sinsabaugh
et al., 2009). This new methodology has been used to assess
elemental cycles and energy flow within ecological systems
(Tapia-Torres et al., 2015) and to identify microbial response to
environmental change (Cui et al., 2018; Cui et al., 2019a) and
heavy metal contaminate (Wang et al., 2020). However, with
the development of new methods, there is urgency to
compare and review those representative methods for
facilitating future research and improving their practical
application.

In this review, we address how methodological develop-
ments in the last decades have revolutionized our ability to
evaluate soil heavy metal contamination, and how this
knowledge can be used to develop improved indicators of
soil pollution based on enzyme activities. Finally, because of
extracellular enzyme activity representing a characterization of
microbial metabolic response to environmental stress and the
practicability of evaluating indicators, we would recommend
the emerging enzyme stoichiometry models as a promising
methodology in evaluating soil heavy metal pollution.

2 Development of enzyme-related indicators

2.1 Single enzyme index

Extracellular enzymes produced by microorganisms are
susceptible to soil environmental changes, and they are
crucial participants in soil nutrient cycles and functional
sustainability (Sinsabaugh et al., 2009; Duan et al., 2018;
Cui et al., 2018). Over the past two decades, extracellular
enzymes have increasingly been used to evaluate soil heavy
metal pollution (Hagmann et al.,, 2015; Fang et al., 2017;
Wang et al., 2020). Long et al. (2009) reported that alkaline or
acid phosphatase (PHO), which plays an essential role in the
decomposition of organic P compounds, can be used as
bioindicators of heavy metal pollution. Liang et al. (2014) and
Xian et al. (2015) both found that catalase can decompose
H,O, and protect organisms against damage, and thus has
been widely used as a bio-indicator to detect the presence of a
variety of heavy metal pollutants. Hu et al. (2014) proposed
using dehydrogenase (DH) as a catalyst for substrate
dehydrogenation, suggesting that this enzyme can also be
used as an indicator for evaluating heavy metal contamina-
tion. However, we summarized 12 kinds of enzymes reported
in previous studies with inconsistent activity responses to
heavy metals (Table 1). This indicated that enzymatic
activities are highly variable in their response to heavy metals
in soil, which could depend on differences in enzyme
functions, soil properties, heavy metal species, and concen-
trations (Kandeler et al., 2000; Yang et al., 2016; Wahsha
et al., 2017). The inconsistencies in responses imply
incomparability of enzyme indicators in evaluating heavy
metal pollution (Schloter et al., 2017; Duan et al., 2018). As a
result, integrating diverse enzymes widely representative of
microbial metabolism into a comprehensive indicator could be
both necessary and promising for assessing heavy metal
toxicity levels in soil microbes and identifying the ecological
effects of heavy metal pollution in soil systems.

2.2 Combined enzyme index

Many efforts have been made to condense the achieved
information of enzyme activities in a numerical value, an index
capable of differentiating between soils with different quality
features or affected by heavy metal pollution (Rao et al.,
2014). For example, arylsulphatase (ARYL), urease (UR), and
PHO are involved in sulfur (S), nitrogen (N), and phosphorus
(P) cycles, respectively. DH represents a measure of viable
microorganisms and their oxidative capability (Trevors, 1984).
Invertase (INV), B-glucosidase (GLU) and o-diphenol oxidase
(DPO) are three enzymes involving in the carbon (C) cycle,
and fluorescein diacetate hydrolase (FDAH) has also been
often used as a sensor and functional indicator of soil health
(Adam and Duncan, 2001). All of them have been tried as
indicators for the evaluation of heavy metal pollution.
However, the choice of which enzyme activities should be
involved in the index is not straightforward. Nanniperi el al.
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(2002) stated that chosen enzyme activities should be those
involved in a key or particular processes such as organic
matter degradation, N mineralization, or nitrification. At
present, just some indices were applied to a limited number
of soils.

Puglisi et al. (2006) developed a numerical index based on
seven enzyme activities (ARYL, GLU, PHO, UR, INV, DH,
DPO). The enzyme activities were measured in three soils
characterized by contamination by repeated overflowing with
municipal and industrial wastes, intensive cultivation without
either crop rotation or organic fertilization, and irrigation with
brackish water (Gianfreda et al., 2005). At each site,
neighboring soils, having similar properties but not subjected
to degradation or to poor agricultural practices, were used as
control soils. Finally, two indices Al 1 and Al 2 were developed
utilizing canonical discriminant analysis for evaluating soil
heavy metal pollution, one comprising all seven measured
enzymatic activities and another with the most common
enzymatic activities studied in the literature, i.e., GLU, PHO
and UR.

Al 1 = -21.30 ARYL
+35.2 GLU-10.20 PHO-0.52 UR—-4.53 INV
+ 14.3 DH + 0.003 DPP;

Al 2 =7.87 GLU-8.22 PHO-0.49 UR.

However, these empirical indices with fixed coefficients
may not apply to evaluating heavy metal pollution in other
environments. We also note that this principal component
analysis-based approach impedes their practical utility as
ecological indicators such as reflecting microbial metabolic
changes. As a result, the development of soil enzyme index
usable as a reliable measure of soil health and functions after
contaminated by heavy metals is still a key research priority
that requires new approaches, ideas and technologies.

2.3 Enzyme-based functional diversity index

Recent studies further aggregated and integrated the
responses of various soil enzymatic activities to heavy metals
and proposed microbial functional diversity (FD) indices
based on soil enzymes (Lessard et al., 2014). The FD indices
are summarized in Table 2. These enzyme-based aggregated
FD indices provide many advantages because these
enzymes integrated into indices cover most biogeochemical
cycles and may be measured easily and relatively economic-
ally (German et al., 2011; Burns et al., 2013; Lessard et al.,
2014; Hagmann et al., 2015). As a result, various enzymatic
FD indices were developed and used in past studies. One of
the most prevalent categories is associated with the aggrega-
tion of the classic enzymatic responses by the FD indices
conventionally used in structural diversity. For example, the
Shannon index was mainly used (Epelde et al., 2008; Marinari
et al., 2012), and the Simpson and Gini indices were also
reported (Pignataro et al., 2012) as the evaluation indices of

heavy metal pollution. Other studies also used multiple linear
regressions, including many enzymes as independent vari-
ables, to build the comprehensive indices (Puglisi et al., 2006;
Bastida et al., 2008).

The aggregated soil enzymatic response was calculated
using a weighted and geometric mean and the conventional
FD indices, which have been listed in Table 2. Since the units
of soil enzyme activities vary widely, the activities of each
enzyme are normalized before being summed up by dividing
the individual enzyme activities of each contaminated soil by
the individual enzyme activities of its paired reference soil
(Lessard et al.,, 2014). The aggregated FD indices are
equivalent in terms of reducing the various enzymatic
variables into one. A principal component analysis (PCA)
was carried out in parallel to validate whether the total
variance of the data set is mainly explained by a single
principal component. However, the main issue of this
approach is the lack of flexibility of the proposed equation.
In addition, dimensionality reduction analysis to values of
enzyme activity of different functions loses much valuable
information such as characterization of specific nutrient
cycles.

2.4 Microbiological stress index

It is well known that microorganisms play determinant roles in
maintaining the sustainability of soil ecosystem function and
services (Bahram et al.,, 2018). Assessment of combined
effects of heavy metals at the ecosystem function level could
help address the ecological significance of toxic effectsand
improve the ecological risk assessment (ERA) framework for
heavy metal pollution in soils. The integrated functional
sensitivity and stability of soil microbial communities, may
gauge changes in ecological functions, characterize the
stressed soil ecosystems and contribute essentially to
maintaining soil ecosystem function and services when
additional environmental disturbances arise (Griffiths and
Philippot, 2013). Therefore, these two attributes appear to be
exceptionally reasonable and applicable assessment end-
points in evaluating the realistic toxic effect of contaminants
on the functioning process of soil ecosystem (US Environ-
mental Protection Agency, 2016; Jiang et al., 2019). The terms
of soil resistance (the inherent capacity of soil to withstand
stress/disturbance) and resilience (the ability of soil to recover
after stress/disturbance) were introduced to quantify the
stability of soil microbial communities subjected to different
types of stress/disturbance (Griffiths et al., 2001).
Consequently, the stress index (Sl) is used to quantify the
sensitivity of soil microbial communities to stress such as
heavy metal contamination (Wang et al., 2017b). Dagnino
et al. (2008) proposed that the SI can be evaluated by
comparing the relative stress response (RSR) with the critical
threshold values. Specifically, the integrated functional sensi-
tivity (MSI), resistance (MRS) and resilience (MRL) of soil
microbial communities were also proposed and formulized,
which can be seen in Wang et al. (2017b) and Jiang et al.
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(2019). However, these protocols require microbial extraction
and cultivation, representing only a tiny part of microbial
metabolisms, and other biogeochemical cycles such as S, P
and N cycles are not taken into account. These two factors
constitute important limits that impede the methods of wide-
spread use (Lessard et al., 2014; Jiang et al., 2019).

2.5 Ecoenzymatic stoichiometry models

Heavy metal contaminants could be a significant threat to soil
functions (e.g., C cycling) due to their chronicity and
universality in soil (Wang et al., 2020). Therefore, it is also
essential to establish robust indicators that report on the
changes of microbial metabolisms and thus soil functions.
Ecoenzymatic stoichiometry is an emerging methodology that
incorporates multiple parameters associated with enzyme
activities into specific indices (Sinsabaugh et al., 2009;
Moorhead et al., 2016), which reflects the microbial metabolic
limitations as well as soil nutrient status. Corresponding
ecoenzymatic stoichiometry models typically incorporate
multiple enzyme activities in the soil C, N, and P cycles
(Table S1). As a result, this new methodology has been used
to assess soil nutrient cycles and microbial metabolic
functions within ecological systems (Tapia-Torres et al.,
2015; Cui et al., 2019b) and to identify microbial response to
environmental change (Cui et al., 2018, 2019a). Up to now,
five common ecoenzymatic stoichiometry models were
proposed (Table 3), which are robust and concise means to
characterize the metabolic characteristics of microorganisms
in responding to various environmental changes.

Recently, we have also carried out a series of studies on
ecoenzymatic stoichiometry in association with contaminated
environments, particularly in heavy metal contaminated soils
(Wang et al., 2020). We used extracellular enzyme stoichio-
metry models to identify the response of microbial metabolism
to various heavy metal contaminants and the revealing

potential implication of heavy metal contaminants in soil
ecosystems. Studies found that microbial metabolism was
restricted by soil C and P within a heavy metal polluted area in
North-west China. Heavy metal stress significantly increased
microbial C limitation while decreasing microbial P limitation.
However, microbial C and P limitations both responded
consistently to different heavy metals (i.e., Cd, Pb, Zn, and
Cu). Heavy metals had the most significant effect on microbial
C limitation compared to other soil properties, and soil with the
lowest heavy metal concentration exhibited the lowest
microbial C limitation (Unpublished data). These results
indicated that microbial metabolic limitation could robustly
and sensitively reflect the degree of heavy metal pollution in
soil. Additionally, increased microbial C limitation caused by
heavy metals could potentially escalate soil C release by
promoting organic matter decomposition and increasing
investments in enzyme production and the maintenance of
metabolic processes (Fig. 1).

Xu et al. (2018) also reported a reduction in microbial C use
efficiency (CUE) in heavy metal contaminated soil. Specifi-
cally, microbial CUE values were 0.35, 0.29, and 0.31 in Cd,
Pb, and Cd + Pb spiked soil, respectively, while it was 0.41 in
uncontaminated soil (Xu et al., 2018). Consequently, potential
C loss induced by heavy metal pollution on soil ecosystems
may be extensive and significant. These results suggest the
usefulness of extracellular enzyme stoichiometry as a new
method for evaluating the ecological effects of heavy metal
pollution, while microbial metabolic limitation could be a
promising indicator (Fig. 1). Additionally, the metabolic
limitation of soil microorganisms is both typical and highly
variable in diversified ecosystems (Sinsabaugh et al., 2009;
Moorhead et al., 2016; Cui et al., 2018), which indicated that
microbial metabolic limitation is also highly sensitive to
environmental change. However, many ecoenzymatic stoi-
chiometry models contain empirical parameters or assump-
tions, which may significantly reduce the accuracy of
predicting the responses of microbial metabolism to heavy

Table 3 The main models of ecoenzymatic stoichiometry for identifying the microbial metabolic limitation or resource allocation.

Names Methods or functions Performance Sources

Ratio model 10ge(C): loge(N), 10ge(C): loge(P) Microbial relative C limitation, N Sinsabaugh et al., 2008
and loge(N): loge(P) or P limitation

TER model TERc.Nn = (EEAcN X Ben)/no; Microbial N and/or P limitation ~ Sinsabaugh et al., 2009

TERcp = (EEAC:F’ X BC:P)/po

Vector analysis model Length = SQRT (x2 + y?);

Resource allocation models

Ecosystem C dynamic models

Angle (°) = DEGREES (ATANZ2 (x, y))

CUE = CUE™ x [Sc.n/(Ken + Sen)]
= An X Ben/TERe:N;

NUE = NUE™ x [Sn.c/(Kc + Snc)l;
PUE = PUE™ x [Sp.c/(Kc + Sp.c)]

CUE, x CUE,, = pu/GPP;
(CUE, x CUE,)/(1-CUE,) = u/GPP

Relative C limitation, N or P
limitation

Moorhead et al., 2016

Microbial CUE, NUE and PUE  Sinsabaugh and Follstad Shah,

2012

Ecosystem carbon budget
forecast

Sinsabaugh et al., 2017

Note: The calculation and interpretation of the models can be seen in the corresponding references.
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Fig. 1 The potential utility of ecoenzymatic stoichiometry as a new methodology for evaluating heavy metal soil contamination.

metals. As a result, more experimental evidence are needed
to further support and verify the reliability and practicability of
the ecoenzymatic stoichiometry methodology in evaluating
soil heavy metal pollution.

3 Conclusions

This review unquestionably showed and commented on the
utility of enzymes as tools for evaluating heavy metal pollution
in soils. We also highlight that the advent of ecoenzymatic
stoichiometry methodology offers a new avenue for evaluating
heavy pollution in soils, potentially overcoming the limitations
of classical enzymatic methods. More importantly, results from
ecoenzymatic stoichiometry indicated that the methods
provided new insight into the development of a promising
indicator by which to monitor and assess heavy metal
contamination and increase our understanding of the effects
of heavy metal pollution in soil ecosystems. Several research
directions will contribute to enlarge more and more the
potentialities of soil enzymes and their exploitation for
environmental purposes. First, advanced molecular biology
techniques can help us identify and understand the physio-
logic responses at the molecular and genetic levels of
microorganisms under heavy metal stress. While research in
soil proteomic, metabolomic and transcriptomic studies is
probably the most crucial challenge that soil enzymologists
have faced. Secondly, in situ zymography techniques can
further improve the determination accuracy of enzyme
activities, thus improving the reliability of the enzyme-based
methods. In addition, the optimization of relevant model

parameters could eventually improve our assessment of the
ecological effects of heavy metal pollution.
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