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PERSPECTIVE

A B S T R A C T

Microplastics (MPs) and phthalate acid esters (PAEs) co-occur as emerging contaminants of global
importance. Their abundance in soil is of increasing concern as plastic-intensive practices continue.
Mulching with plastic films, inclusion in fertilizers, composts, sludge application, and wastewater
irrigation are all major and common sources of MPs and PAEs in soil. Here, we review studies on the
concentration and effects of MPs and PAEs in soil. While there is limited research on the interactions
between MPs and PAEs in agroecosystems, there is evidence to suggest they could mutually affect
soil ecology and plant growth. Therefore, we propose new research into 1) establishing an efficient,
accurate, and simple method to quantify different types of microplastics in soils and plants; 2)
exploring the behavior and understanding the mechanisms of co-transfer, transformation, and
interactions with soil biota (especially in vegetable production systems); 3) assessing the risk and
consequences of combined and discreet impacts of MPs and PAEs on plants and soil biota, and 4)
preventing or reducing the transfer of MPs and PAEs into- and within- the food chain.
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H I G H L I G H T S

• Microplastics and phthalate acid esters
concentrations are positively correlated in
soils.

• Phthalate acid esters levels are greatest in
Chinese soils.

• Microplastics and phthalate acid esters
share common sources and sinks.

• Microplastics and phthalate acid esters are
taken up by plants.

• Microplastics and phthalate acid esters
exert confounded influences on soil ecosys-
tems.
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1 Introduction

As a result of wide application of plastics, both microplastics
(MPs) and phthalate acid esters (PAEs) are emerging as
troublesome environmental contaminants. PAEs are com-
monly included in plastics owing to their function as
‘plasticizers’ (Staples et al., 1997), while MPs are defined by
their plastic material particle size being less than 5 mm (Qi
et al., 2020). As PAEs are not covalently bonded with plastic
polymers, there is potential for leaching, migration, and
subsequently enhanced abrasion of the plastics containing
them (Steinmetz et al., 2016). Accordingly, plastics abrade
into progressively smaller particles, including MPs and
nanoplastics (NPs) (Duis and Coors, 2016). PAEs and MPs
share some common origins as ‘partners’ in plastic polymers
used in horticulture and farming. Some of these products are
clearly visible on farmlands (plastic films, nets, green
packaging from agronomic products, and shredded compost
contamination), but there are invisible sources, for example,
fragments from fertilizers or colloidal suspensions in irrigation.
Nonetheless, the soil receives both the obvious and more
ambiguous inputs: being the common sink for both MPs and
PAEs.

PAEs (Gu et al., 2017) and MPs (Lv et al., 2018; Qi et al.,
2020) have been widely studied as separate contaminants in
farmland soil. However, the PAE content of MPs is often not
reported, and the affinity and interactions between MPs and
PAEs in the soil have become a subject that cannot be
ignored. A more comprehensive understanding requires us to
elucidate the separate effects of MPs and the PAEs they
contain. Some have monitored the effect of MPs on PAE
migration (Gao et al., 2019; Li et al., 2020). However, as MPs
are also a source of PAEs, it is necessary to study the
interacting ‘co-behaviors’ to be able to more confidently
allocate ecological risks of MPs and associated PAEs in soil.
The present review focuses on the recent progress in
characterizing this pollution, behavior, and the entwined
ecological effects of PAEs and MPs in soil.

2 Occurrence and distribution of PAEs and
MPs in soil

In recent decades, the PAE concentration of agricultural soil
had been widely investigated (Fig. 1). The average concen-
trations of PAEs in the agricultural soil in China were higher
than those elsewhere (Table 1). Di(2-Ethylhexyl)Phthalate
(DEHP) was the most abundant phthalate in all soils, whereas
di-butyl phthalate (DBP) was the second most abundant (Hu
et al., 2003). There is currently no standard approach for the
quantification of plastics in soil, with the separation of MPs
from soils being the most difficult and most crucial step. At
present, the separation methods include screening, density
separation, pressurized fluid extraction, and digestion (He
et al., 2018). Methods for the extraction of polypropylene

microplastics in swine manure have also been proposed (Wu
et al., 2020). The main qualitative means of analyzing MPs is
attenuated total reflection-Fourier transform infrared spectro-
scopy (Weithmann et al., 2018). Due to the emerging concern
of MPs in aquatic systems, coastal beach sediments in many
coastal areas have been well studied. Although the occur-
rence of MPs in terrestrial ecosystems has been repeatedly
reported, there are significant knowledge gaps. In agricultural
soils, MPs with sizes less than 0.5 mm are the most abundant
(Table 2). However, it is also difficult to quantify MPs of much
smaller size, especially nanoplastics (NPs) with a size range
of 1 to 100 nm.

Environmental concentrations of PAEs and abundances of
MPs are closely linked, as found in surface seawater from
Jiaozhou Bay (Liu et al., 2020b), coastal psammitic sediments
in the tropical Atlantic Ocean (Benson and Fred-Ahmadu,
2020), north China (Zhang et al., 2018), and the urban
channel of the Ria and coast of Campeche in Mexico (Vered et
al., 2019). The concentration of DEHP increased with the
abundance of MPs in wastewater (R2 = 0.97, P<0.05)
(Takdastan et al., 2021). PAEs in the MPs from sandy
beaches of tropical Atlantic ecosystems in Nigeria measured
up to 45.6 mg DEHP kg–1 plastic (Fred-Ahmadu et al., 2020).
PAEs in plastics were even used as tracers to determine the
sources of MPs in road dust (Kitahara and Nakata, 2020).
However, Li et al. (2021) suggested that environmental factors
must be considered to understand the genuinely dynamic
relationship between PAEs and MPs in agricultural soil. While
MP concentrations depend mainly on input levels, PAE
concentrations in soil are more influenced by degradation
and dispersal.

3 Sources of PAEs and MPs in soil

There are many shared routes through which PAEs and MPs
can enter the soil environment, especially for agricultural soils,
including plastic mulching, soil amendment with fertilizers,
contaminated composts and sewage sludge, irrigation, and
atmospheric deposition. In the agricultural context, plastic film
was considered the main source of PAEs (Lv et al., 2018) and
MPs (Zhou et al., 2020b), followed by fertilizers, composts,
and sludges. In gardens and domestic food production,
organic fertilizers from biowaste fermentation (anaerobic
digestate) and composting are a significant but often over-
looked source of microplastics (Weithmann et al., 2018).
Irrigation is an essential source of PAEs (Zhang et al., 2015b)
and MPs (Ding et al., 2021) for soil in wastewater irrigation
areas. Atmospheric deposition introduces both PAEs (Zeng
et al., 2010) and MPs (Zhang et al., 2019d) into remote
areas.

3.1 Plastic film

Plastic films have been used to mulch soil in recent decades
worldwide, bringing significant short-term economic benefits.
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With the extensive use of plastic mulch, PAEs can migrate
directly from films to the soil, but substantial amounts of PAEs
are found resident in discarded plastic residues incorporated
into the soil, which progressively abrade to MPs and NPs. The
average residual rate of plastic mulch was 19.7% following the
bulletin of the first national census on pollution sources in
China (Lv et al., 2018). Such intensive application and poor
disposal of plastic mulch are essential contributors for MPs in
terrestrial environments (Table 2). A significant linear correla-
tion was observed between the amount of film mulching and
plastic residue in soils (Zhou et al., 2020a). Meanwhile, there
was a positive correlation between MPs and PAEs in the
greenhouse soil in Xuzhou, China (Li et al., 2021). Timely
recovery of plastic film waste is the most efficient (medium to
long-term) and effective way to reduce the pollution burden of
MPs and PAEs in soil.

3.2 Fertilisers, compost, and sludge

The use of organic fertilizers, compost, and sludge in plant
production systems (Lowman et al., 2013) is central to
maintaining nutrient-use efficiency and soil health through
carbon metabolism and ecology of the soil microbiome
(Kibblewhite et al., 2008). However, some fertilizers were
found to contain quantities of PAEs ranging from 0.01 to 2.8
mg kg–1 (Mo et al., 2008), presumably as PAEs leached from
plastic packaging. A positive correlation was observed
between zfertilizer application rate and PAE content in the
soils of Guangdong’s greenhouses (Cai et al., 2005; Cai et al.,
2008a). The application of composted manure adds extra-
neous dissolved organic matter (DOM) to the soil, and DOM
enhances the adsorption capacity of DBP by soils through
partitioning (Wu et al., 2018). Organic fertilizers, manures,
composts, and biowaste fermentation (anaerobic digestate)

Fig. 1 Average concentrations of phthalate acid esters (PAEs) in soil in provinces in China .
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are all known sources of MPs and PAEs in the environment;
16 PAEs were identified in sludge from Shanghai ranging from
22.6 to 1350 mg PAEs kg–1 sludge (dry weight) (Zhao et al.,
2014). MP content was up to 41 particles g–1 in sludge from
fields that underwent sludge applications (Corradini et al.,
2019). Braun et al. (2021) estimated that typical compost
applications drew in plastic loadings of between 84 000 to
1 610 000 plastic items ha–1 per year, equivalent to 0.34 to
47.53 kg plastic. Sludge tends to be destined as a soil
amendment in most countries (Gao et al., 2020a). Investiga-
tions of MPs in sludge amended soils showed a close
correlation to the application rate of sludge-based fertilizers
(Zhang et al., 2020). Limits and standards for MP and PAE
inputs from fertilizers, composts, and sludges will be central to
controlling and managing this growing issue.

3.3 Wastewater irrigation

With shortages in water resources, wastewater and reclaimed
water have been widely used to support agricultural produc-
tion, especially in areas around industrial cities (Hamilton
et al., 2007). Six priority PAEs were found to be ubiquitous
environmental contaminants in topsoil obtained from such
areas (Zhang et al., 2015b). The amount of treated waste-
water used for irrigation is increasing worldwide (Sato et al.,
2013). The abundance of MPs in water was up to 9.0 items L–1

in the Al-Asfar and Al-Hubail lake (Picó et al., 2020), with the
abundance of MPs in soil being affected by the type of
irrigation water (Wang et al., 2020b). During wastewater
treatments, the addition of polymeric flocculants has been
considered a potential source (Hurley and Nizzetto, 2018).

3.4 Atmospheric deposition

Atmospheric PAE deposition and particulate deposition fluxes
were closely related in the subtropical city of Guangzhou,
China (Zeng et al., 2010). Atmospheric transport is also an
essential pathway for the transport of MPs from industrial to
remote areas (Zhang et al., 2019d). In the Pyrenean

Mountains, deposition of MPs was attributed to cities,
agricultural, and industrial areas (Zhang et al., 2019d). Thus
PAEs in the soil and atmosphere are distributed, migrate,
redistribute, and remigrate toward equilibrium (Gu et al.,
2017).

To more accurately describe the movement and impacts of
both classes of contaminants in the environment requires an
understanding of the affinity between them, i.e., the factors
determining their partnership and departure from one another.
While, for the most part, MPs as physical particles can be
seen to move unaffected by their PAE content, there are some
exceptions where the PAE content may affect the movement
of MPs. This is because PAEs modify the physical properties
of a plastic, for example, improving ‘plasticity’ or resilience
against abrasion. Therefore, the PAE content (related to age)
may well affect the abrasion and shedding of these MPs into
the environment. Perhaps the best example can be found in
plastic recreational surfaces. Plastic grass or ‘artificial lawns’
are an increasingly popular way of simulating a lush
ecosystem in gardens and sports venues (Francis, 2018),
but the environmental impacts of abraded dust from cleaning
and wear are still not well understood (Francis, 2018). Artificial
lawns can include PA, or PE-based materials, sewn into an
expanded polypropylene mesh, sometimes combined with
butyl rubber or latex linings, and were previously found to host
a range of plasticizers and PAEs (Celeiro et al., 2018). Over
time, these finely woven plastics are increasingly vulnerable
to physical wear under foot traffic, resulting in the release of
MPs and their associated PAEs into the atmosphere. While
initially resilient, we expect the abrasion of these surfaces to
accelerate as plasticizers are lost from the matrix.

4 Behavior of PAEs and MPs in soil

The behavior of PAEs in the soil is reasonably well
documented. For example, Wu et al. (2018) found that the
equilibrium adsorption quantity for DBP was positively related
to the soil organic matter content, and hydrophobic partition-

Table 1 Average concentrations of phthalate acid esters (PAEs) in soil in China and other countries (mg kg–1).

Country Soil type PAE concentration (mg kg–1) Reference

Min Max Mean

China Agricultural 0.032 6.29 1.09 Niu et al., 2014

Denmark Agricultural 0.012 1.9 0.39 Vikelsoe et al., 2002

Scotland Surface 0.025 1.6 0.22 Rhind et al., 2013

Netherlands Agricultural ND - 0.032 Peijnenburg et al., 2006

Serbia Surface 0.19 2.12 0.83 Skrbic et al., 2016

UK Agricultural 0.042 0.099 0.071 Gibson et al., 2005

Czech Republic Agricultural 0.21 3.47 - Dankova et al., 2016

“-” means no data.
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ing played a dominant role in the DBP adsorption process.
However, the interaction effects of MP identity and MP particle
size on the adsorption of PAEs are still unknown. While PAEs
can be dispersed into the environment independently of MPs,
the movement of MPs and PAEs through the environment are
coupled in several ways, as they share an affinity for one
another. The first aspect of this affinity is the straightforward
inclusion of PAEs during the manufacture of the original
plastics and subsequent dispersal of the PAEs contained
within as microplastics shed and abrade into the environment:
in this respect, MPs function as a source of PAEs. However,
the second aspect of this affinity operates in the reverse
direction, where PAEs are adsorbed by microplastics.

4.1 Adsorption of PAEs on MPs

Due to their small size and large specific surface area, MPs
are capable of adsorbing large quantities of persistent organic
pollutants (POPs) (Rios et al., 2007), including PAEs. Different
adsorption mechanisms exist between organic pollutants and
microplastics, depending on the chemistry of MP and PAE,
respectively. In aqueous ecosystems, the sorption isotherms
of diethyl phthalate (DEP) and di-butyl phthalate (DBP) on
MPs (PS, PVC, PE) were highly linear. The higher adsorption
rates for DBP relative to DEP and greater hydrophobicity of
DBP again suggested that hydrophobic interactions are of
major importance (Liu et al., 2019). Here, the solution pH and
natural organic matter content had no significant impact on the
adsorption of PAEs to MPs. However, due to the presence of
the salting-out effect, the adsorption of PAEs on MPs was
enhanced by NaCl and CaCl2 (Zhang et al., 2019a).

4.2 Uptake by plants

A positive correlation was observed between contamination
level of soil and plant-uptake of PAEs (Gu et al., 2017). The
pathways of absorption are as follows: (1) Plant roots absorb
PAEs directly from the soil solution and transfer via the xylem
to leaves by transpiration flow, with PAEs accumulating in the
edible parts, as was found with corn and soybeans (Chen
et al., 2005; Cai et al., 2008b; Sun et al., 2010); (2) above-
ground biomass can absorb PAEs directly from the air. With
leafy vegetables, such as Chinese cabbage, this can be
especially problematic (Zeng et al., 2007). MPs are also
understood to be capable of entering into edible biomass.
Polystyrene and polymethylmethacrylate particles with sub-
micron and nanometre sizes were able to penetrate the stele
at sites of lateral root emergence via ‘crack-entry mode’
followed by transport to shoots (Li et al., 2020). High
transpiration rates promoted the uptake of plastic particles,
indicating that transpiration pull was the main driving force of
their movement (Li et al., 2020). However, we know of no
studies on the co-migration of PAEs and MPs from soil to plant
biomass. The interactions in flow and transfer of MPs and

PAEs in soil-plant systems are thus still unclear and need to
be explored if we are to gain control of these phenomena.
PAEs may first adsorb onto MPs which may or may not
facilitate entry. In addition, PAEs already present in submicron
MPs may escape the MPs and relocate/accumulate with an
expected affinity for plant lipids.

4.3 Degradation of PAEs and MPs

As the main process of removing POPs, microorganisms play
a major role in PAE degradation in the environment under
various conditions (Staples et al., 1997). As a new habitat for
bacterial growth, MPs could affect the composition of the
bacterial community in environmental media (Chi et al., 2021).
Laboratory experiments show that the addition of microplas-
tics with a higher affinity for DBP inhibited the degradation of
DBP in sediments (Chi et al., 2021). The effect of MPs on the
degradation of PAEs may be related to other characteristics,
which need further investigation.

Tillage, digging, bioturbation will all increase specific
surface area. Old and degraded plastics eventually become
fragile and decompose into smaller and smaller microparti-
cles, becoming microplastics. Mechanical erosion of plastic
surfaces led to delamination of the surface then produced
microplastic particles (Browne et al., 2007; Barnes et al.,
2009). As PAEs are not covalently bonded into the polymer
structure, the fragmentation of macroplastics may accelerate
the release of PAEs and MP/NP-facilitated transport.

5 Impact of PAEs and MPs on soil ecosystems

Ecotoxicological studies on PAEs or MPs have focused
primarily on the simple deleterious effects of one or the other
on plants, fauna, and microorganisms. However, a more
accurate description of the consequences of co-pollution
requires a multidirectional approach. This includes under-
standing the factors governing the migration of microplastics
and PAEs in biological context: which requires an under-
standing of biological vectors, especially changes in the
behavior of influential soil organisms.

5.1 Soil macrofauna

A dose-response relationship between DNA damage in
earthworm cells and exposure concentrations of PAEs was
studied. With the extension of exposure time, PAEs can cause
a decrease in foraging and metabolism, weight loss, swelling,
congestion, and even ulceration of earthworms (Wang et al.,
2010). The biota-to-soil accumulation factors of DEHP in
earthworms (Eisenia fetida) were 0.17 and 0.07 in agricultural
and forest soil, respectively (Hu et al., 2005). Earthworm
(Prendergast-Miller et al., 2019) burrowing, feeding, and cast
behavior (which governs the distribution of many substances
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and associated biota) were found to be significantly affected
by ingestion of polyester MP fibers (Prendergast-Miller et al.,
2019). Effects such as these will impact upon a range of
critical soil properties, with cascading consequences. How-
ever, it is not known if the effects were due specifically to the
physical MPs themselves or MP-resident PAEs. Other studies
of the same model earthworm (Lumbricus terrestris L.) found
MP particle-size selectivity for polyester (Lwanga et al., 2016).
Soil fauna facilitated the horizontal and vertical transport of
MPs in the work of Xu et al. (2020). A simulated experiment
confirmed that exposure to high levels of PE MPs (>28%, not
environmentally realistic) inhibited the growth and increased
earthworm fatality, while the reproduction rate was unaffected
(Zhu et al., 2018). Nonetheless, manual addition of more
realistic quantities of low-density polyethylene fragments in
the field significantly affected the composition and decreased
the abundance of microarthropod and nematode communities
(Lin et al., 2020). PAEs and MPs may have synergistic effects
causing damage to soil fauna, and the PAE content may be
the more influential component explaining the observed
impacts of MPs.

5.2 Soil microorganisms

The effect of PAEs on microbial community in soils
depends on the specific identity and concentration of the
PAE. Dimethyl phthalate (DMP) or DEP with the concentra-
tions of £50 mg kg–1 soil showed little effect on the microbial
activity, whereas concentrations ³ 100 mg kg–1 soil had
statistically significant and deleterious effects (Chen et al.,
2013). DOP (Chen et al., 2013) and DEHP (Cartwright et al.,
2000) do not exhibit any significant impact on soil microbial
activity; even at 100 mg kg–1, DEHP had no effect on
membrane fluidity (Cartwright et al., 2000). DBP was found to
inhibit the activity, diversity, and heterogeneity of microorgan-
isms in the soil, and also increased microbial utilization of
amines and carboxylic acids and decreased the utilization of
carbohydrates and amino acids (Gao et al., 2020b).

With the accumulation of MPs in the environment, MPs may
gradually affect the bacterial community in environmental
media (Julia et al., 2018). MPs in agricultural soils were found
to accumulate colonizing microorganisms (Zhang et al.,
2019b), with MPs possibly serving a role in the attraction of
hydrophobic C sources (Hirai et al., 2011). Additions of MPs
have been found to significantly affect soil microbial respira-
tion and activity of soil b-glucosidase, urease, and phospha-
tase (Yang et al., 2018). In the study of Gao et al. (2020a), MP
addition promoted soil carbon dioxide emissions, and even
accelerated succession of the soil bacterial community (Wang
et al., 2020a). We infer that PAEs and MPs may have
antagonistic effects on the abundance and diversity of a range
of microorganisms: except for those responsible for metabo-
lizing organic compounds with an affinity for microplastics.
Considering the increasing abundance of MPs and PAEs in
soils, these trends may continue.

5.3 Plants

The migration of pollutants in soil-plant systems is of
paramount importance for food quality, and human health.
Accumulation of PAEs in plants affects germination, growth
and development as well as interfering with plant metabolism-
which in turn affects pigmentation, osmolytes, stress biomar-
kers and activities of antioxidative enzymes– thus reducing
the edible yield and quality (Kumari and Kaur, 2020). In this
instance, DBP accumulation decreased soluble protein
content and increasing nitrate content of Brassica napus
(Kong et al., 2018), with DBP again emerging more toxic than
DEHP (Ma et al., 2018).

Direct toxicity and indirect effects (altering bioturbation, soil
structure, nutrient immobilization, transporting or adsorbing
contaminants) were considered the main mechanisms for
microplastic effects on plants (Rillig et al., 2019). MPs of 100
nm strongly inhibited seedling establishment and growth of
Arabidopsis thaliana (Sun et al., 2020), but the joint toxicity of
PAEs and MPs still needs disentangling. In hydroponic
systems, the addition of exogenous MPs increased growth
inhibition by DBP in lettuce by aggravating photosynthetic
activity (Gao et al., 2019). DBP and polystyrene MPs could
also disturb microalgal growth. When the concentration of
MPs was less than 10mg L–1, low concentrations of DBP were
antagonistic to MPs inhibition of microalgal growth, while a
high concentration of DBP enhanced the negative impact of
MPs (Li et al., 2020).

Both PAEs and MPs can negatively impact plant growth.
The accumulation of MPs in the edible parts of plants
increases the risks of human intake of sorbed POPs, and
especially PAEs. Risk assessment of PAEs for multiple
exposure routes has been established, including inhalation
and dermal contact (Wang et al., 2021), and oral intake (Wang
et al., 2015). However, the current understanding of the
potential impacts on human health associated with an
abundance of MPs is limited and insufficient to accurately
assess the health risks of consuming them.

6 Conclusions and perspective

MPs comprise the crushed debris of various plastic polymers
and can both be a source or a sink of PAEs. While ‘straight’
PAE effects have been widely studied in soils, the interactions
with related MP content, soil health, and ecosystem
processes need urgent attention. The interactions between
PAEs and MPs– including adsorption and degradation–
affects both their behavior and persistence in the environ-
ment. However, their entwined behavior still lacks sufficiently
descriptive data, especially regarding their co-migration and
departure from one another. Many challenges remain to be
tackled, including the methodologies for extraction and
characterization of MPs and PAEs. Specific issues need to
be addressed: 1) establishing an efficient, accurate, and
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simple method to quantify different types of microplastics in
soils and plants; 2) exploring the behavior and understanding
the mechanisms of co-transfer and transformation as inter-
acting with soil biota (especially in vegetable production
systems); 3) assessing the risk and consequences of
combined and discreet impacts of MPs and PAEs on plants
and soil biota, and 4) preventing or reducing the transfer of
MPs and PAEs into - and within - the food chain.
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