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1 Introduction

Biodiversity distribution patterns are not uniform and under-
standing why such patterns exist is challenging ecologists and
biogeographers for long (Gaston, 2000). Mountains are
hotspots of research on biodiversity patterns along environ-
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A B S T R A C T

Collembola are among the most abundant and diverse soil animals contributing significantly to

major ecosystem processes. Global climate changes in temperature and precipitation are

likely to affect their community structure and functioning and this is likely to differ along

altitudinal gradients. In this study, changes in richness, abundance, and body size of

onychiurin Collembola with altitude have been investigated in the Changbai Mountain range of

northeast China. Sampling was carried out on a 30 km long transect along forested slopes of

the Changbai Mountains. Standardized samples were taken from 800 to 1700 m at seven

altitudinal levels. More than 5000 specimens of Onychiurinae representing 13 species were

collected, making Onychiuridae (with the sole subfamily Onychiurinae in Changbai) the most

abundant Collembolan family in the area. The number of species of Onychiurinae slightly

increased along the altitudinal gradient. The average number of species per sample, but not

the total abundance, changed significantly but not monotonically with altitude. Body size of

Onychiurinae species decreased significantly with increasing altitude contradicting Berg-

mann’s rule. Furthermore, the abundance of the three body-size groups differentially

responded to increasing altitude, with the abundance of the large body-size group decreasing

and the abundance of the small body-size group increasing. Our results suggest that the

distribution patterns of Collembola along the altitudinal gradient are complicated and may be

linked to taxonomic groups and bioclimatic zones.
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mental gradients, as natural experimental fields with gradients
in key abiotic factors such as temperature and moisture linked
to elevation (Fischer et al., 2011). Altitudinal diversity patterns
have been investigated in different areas worldwide, and in a
large diversity of taxa, with a strong bias toward vertebrates
and plants (Guo et al., 2013: 222 references for vertebrates
and plants but only 76 for invertebrates; Wu and Lei, 2013).
Changes in species diversity with altitude vary among
different mountain ranges, climatic conditions, and taxonomic
groups (McCain and Grytnes, 2010; Guo et al., 2013).
Regarding invertebrates, most studies focused on insects
with high dispersal ability, being winged (e.g., Lepidoptera,
Coleoptera) or having winged reproductive stages (e.g.,
Formicidae) (Tykarski, 2006; Brehm et al., 2007; Choi and
An, 2010; Zou et al., 2014; Ashton et al., 2016; Nowrouzi et al.,
2016; Orivel et al., 2018). By contrast, soil animals typically
lack wings and therefore have lower active dispersal ability,
likely resulting in more clear-cut distribution patterns along
altitudinal gradients (Gutierrez and Menendez, 1997). Despite
their functional importance and remarkable diversity (Wardle
et al., 2004; Yin et al., 2010), however, they are largely under-
investigated (Decaëns, 2010).

Changbai Mountain, the highest mountain of northeast
China, offers the largest altitudinal range of well-preserved
forest habitats in the region (Shen et al., 2014). It is among the
most studied site worldwide for biodiversity changes with
altitude in plants (Hao and Yang, 2002; Zhao et al., 2004; Cao
and Li, 2008) and soil microorganisms (Shen et al., 2013,
2014). Changes in the community structure of invertebrates
have also been investigated. It has been shown that species
richness of moths (Chen et al., 2007), groundbeetles (Zou et
al., 2014), and soil mesofauna (mostly at the level of
suprageneric taxa; Jiang et al., 2015) decreases with
increasing altitude. This pattern is similar to that in plants
(Hao and Yang, 2002), while diversity of both eukaryotic
microorganisms and bacteria was correlated with pH rather
than altitude (Shen et al., 2013, 2014). Regarding abundance,
taxonomic groups of soil mesofauna in Changbai Mountain
differentially respond to altitude (Jiang et al., 2015).

Collembola are the most abundant and diverse microar-
thropods in soil (Hopkin, 1997; Deharveng, 2004). They play
important roles in soil nutrient cycling, formation of soil micro-
structure, improvement of soil properties, and plant litter
decomposition (Rusek, 1998; Chen et al., 2007; Yang et al.,
2012; Rzeszowski et al., 2017), and often respond to physical,
chemical or biological changes in soil associated with
altitudinal gradients (Loranger et al., 2001; Illig et al., 2010;
Orivel et al., 2018). Their distribution patterns with altitude
vary in the different regions investigated (Bedos, 1994;
Loranger et al., 2001; Babenko, 2002; Cutz-Pool et al.,
2010; Greenslade and Kitching, 2011; Maunsell et al., 2013;
Sun et al., 2020). Further, different taxonomical groups of

Collembola respond differently to changing elevation (Cutz-
Pool et al., 2010; Greenslade and Kitching, 2011; Sun et al.,
2020). Species of the subfamily Onychiurinae are the
numerically dominant soil Collembola in Changbai Mountain
(Sun and Deharveng, personal observation1)) and their
diversity is particularly high (Sun et al., 2013a). Onychiurinae
species are probably the most abundant consumers among
Collembola and potentially all arthropods in the soils of
Changbai Mountain, and likely regulate microbial populations
and soil organic matter decomposition (Potapov and Tiunov,
2016). Furthermore, the taxonomy of the group is well known
compared to other Collembola and mesofauna groups (Sun
and Wu, 2011; Sun and Wu, 2012a–d; Sun et al., 2013b; Sun
and Li, 2014). This makes them good model organisms for
studying altitudinal distribution patterns.

Body size is one of the most important biological features of
organisms, assumed to be linked to the environment and to
have an adaptive value (Schmidt-Nielsen and Knut, 1984;
Gaston et al., 2001; Woodward et al., 2005). Since Bergmann
(1847) noted the positive relationship between body size and
latitude among homeotherms, many studies on different
animal groups have been conducted to test the validity of
this “Bergmann’s rule”. Testing this hypothesis has been
extended to non-homeotherm species on one hand, and to
altitudinal patterns on the other hand. However, no clear
general figure has emerged so far, and patterns in body size
along altitudinal gradients remain controversial (Hawkins and
DeVries, 1996; Chown and Klok, 2003; Hodkinson, 2005;
Chown and Gaston, 2010). A number of hypotheses have
been put forward to explain the contrasting patterns in body
size relationships with temperature and latitude (Blackburn
and Gaston, 1999; Stillwell, 2010; Gardner et al., 2011).
However, most of them concern vertebrates (Ashton, 2002; Fu
et al., 2004; Hu et al., 2011; Hsu et al., 2014; Zamora-
Camacho et al., 2014); in invertebrates, changes in body size
with altitude often do not follow Bergmann’s rule. Rather, it has
been shown to decrease with altitude in beetles and butterflies
(Sømme, 1989), and a number of other studies also indicated
converse-Bergmann’s rule or lack of pattern (Whitman, 2008;
Shelomi, 2012; Pallarés et al., 2019). The only case
investigated so far among Collembola in this respect showed,
conform to Bergmann’s rule, that body size increases with
increasing altitude in tropical montane rainforests (Sun et al.,
2020).

The aim of the present study was to investigate the effects
of altitude on abundance, species richness, and body size of
Onychiurinae (Collembola) in temperate forests of northeast
China. We hypothesized that (1) abundance and species
richness of Onychiurinae in Changbai Mountain decrease with
increasing altitude, following the same pattern as in other
invertebrates investigated before in this area (see above), and
(2) body size increases with increasing altitude in agreement

1) Among the 18 families and subfamilies of Collembola present in the Changbai dataset studied here, Onychiurinae are second to
Isotomidae in species number (13 versus 23), as well as in abundance (5551 versus 7097, for a total of 19 733 specimens for all
Collembola).
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with Bergmann’s rule, like in the tropical Collembola commu-
nities studied by Sun et al. (2020).

2 Material and Methods

2.1 Study site

Changbai Mountain is located along the border between
China and North Korea, under temperate climate with a long
cold winter and a short cool summer. The mean annual
temperature and rainfall are 3°C and 700 mm at Erdao (591
m), and -7°C and 1400 mm at Tianshi (2623 m), two
meteorological stations of Changbai Mountain (Chen et al.,
2011). Its highest peak at a latitude of 42°10′ is a non-active
volcano reaching 2745 m, which has generated the same
homogeneous basaltic bedrock (Zhang et al., 2015), with dark
brown forest soil along its forested slopes (Chen et al., 2011).
The study sites were located in the Changbaishan Nature
Reserve. Five distinct altitudinal vegetation types have been
recognized in Changbaishan Nature Reserve (Chen et al.,
2007; Bai et al., 2011; Zou et al., 2014): (1) mixed coniferous
and broad-leaved forest (below 1100 m), (2) mixed coniferous
forest (1100 to 1500 m), (3) sub-alpine mixed coniferous forest
(1500 to 1800 m), (4) birch forest (1800 to 2100 m), and (5)
tundra (above 2100 m). The forests investigated span without
interruption from 700 to 1800 m, the widest altitudinal range of
closed forest in Eastern China. Samples were taken in the
three lower belts, which are largely mixed broadleaf and
coniferous trees, and ill-delimited in the field. Only the highest
sample site at 1700 m was almost pure coniferous forest of
Abies nephrolepis Max. The vegetation zones above 1800 m,
open birch forest (up to 2100 m) and alpine vegetation, were
not considered as preliminary observations showed Collem-
bola species richness and abundance to be considerably
lower than that of the closed forests investigated (X. Sun,
unpublished data).

2.2 Sampling

Seven plots were sampled every 150 m of elevation from 800
to 1700 m on a 30 km long transect along the western forested
slopes of Changbai Mountain in September 2013 (coordinates
information – 800 m: 42.07404° N, 127.52343° E; 950 m:
41.86137 N°, 127.70569° E; 1100 m: 41.85086° N,
127.87048° E; 1250 m: 41.82897° N, 127.92445° E;
1400 m, 41.80373° N, 127.93859° E; 1550 m: 41.77326° N,
127.94021° E; 1700 m: 41.75743° N, 127.94588° E). At each
altitude, five samples were taken randomly. Minimum distance
between the samples at each altitude was 50 m. Samples
were taken by picking up 250 cm3 of litter (thickness 2 to 5 cm)
using a small shovel. Soil samples were not considered in our
study as the mineral soil is poorly colonized by Collembola
(X. Sun, unpublished data1)). Litter arthropods were extracted

in the laboratory using Berlese-Tullgren extractors without
heating.

2.3 Species identification

All Onychiurinae species were sorted under the stereomicro-
scope, identified to species and counted. The specimens for
morphological examination were cleared in lactic acid,
mounted in Marc André II solution, and studied using a
Nikon Eclipse 80i microscope. The identification of species
was based on morphological characters according to relevant
publications (Lee, 1974; Weiner, 1994; Pomorski, 2001;
Pomorski and Sveenkova, 2006; Sun and Wu, 2011; Sun
and Wu, 2012a–d; Sun and Zhang, 2012; Sun et al., 2013b).
In the text, species richness is the number of species and
abundance is the number of specimens.

2.4 Body size

The body shape of all Onychiurinae species of Changbai
Mountain is sub-cylindrical with similar length-diameter ratio
(Fig. 1), making body length a good proxy of body size.
Notably, body length varies markedly among the studied
Onychiurinae species, while, unlike in most Collembola
(Salmon et al., 2014), other major traits are similar, i.e., they
all are without furca, eyes, and pigmentation. The body length
of species used for the analyses was taken from original
descriptions. Species were ascribed to three length classes,
i.e., large (1.46–2.30 mm), medium (0.70–1.45 mm) and small
species (0.45–0.69 mm), with each comprising a similar
number of species (four in the small and medium size class
and five in the large size class; Table 1).

1) Very few individuals of Collembola have been found in soil samples.

Fig. 1 Different body sizes of Onychiurinae in the study

region. The color of arrows indicate the three size groups

distinguished: large (red), medim (blue) and small (green).

Species names: A, D: Heteraphorura seolagensis (Lee,

1974); B,C: Protaphorura changbaiensis Sun, Zhang and

Wu, 2013; E–H: Allonychiurus songi Sun andWu, 2012; I–

P: Sensillonychiurus virginis Pomorski and Sveenkova,

2006.
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2.5 Statistical analyses

Sample-based accumulation curves were used to evaluate
sampling exhaustivity and the predictable number of species
per altitude. Prior to further statistical analyses, the number of
individuals in each sample was log10(n + 1) transformed to
improve homogeneity of variances. One-way ANOVA was
performed to analyze variations with altitude in species
richness, abundance, and body size. Tukey’s HSD test
(α<0.05) was used to identify significant differences between
means. Linear regression analysis was carried out to inspect
changes in number of species (pooled) and body size groups
with altitude. The analyses were performed in R 3.4.3 using
the vegan, multcomp, ggplot2 packages.

3 Results

3.1 Community composition

In total, we collected 5551 specimens of Onychiurinae
comprising 13 species belonging to 10 genera (Table S1).
The fauna exhibited clear relationships with that of Far-East
Russia, Korea, Japan, and Western North-America. The
species accumulation curve based on the pooled samples
almost reached an asymptote, with only one species found in
a single sample, suggesting that sampling was representative
of the local Onychiurinae fauna (Fig. 2). The dominant species
were Protaphorura changbaiensis at 800, 950, and 1100 m,
Sensillonychiurus virginis at 1250, 1400 and 1700 m, and
Allonychiurus songi at 1550 m (Fig. 1).

Fig. 2 Species accumulation curves of Onychiurinae of the studied altitudinal transect. Means from 50 iterations.

Table 1 Body length of the Onychiurinae species investigated in the present study.
Taxon Body length

(mm)
Size group

Allonychiurus songi Sun and Wu, 2012 0.55–0.67 S

Bionychiurus changbaiensis Sun and Wu, 2012 1.70–2.00 L

Heteraphorura seolagensis (Lee, 1974) 1.90 L

Hymenaphorura nearctica Pomorski, 2001 1.80–2.30 L

Micraphorura sp. 0.75 M

Micraphorura changbaiensis Sun and Wu, 2012 0.70–0.82 M

Oligaphorura koreana (Weiner, 1994) 1.00–1.45 M

Leeonychiurus gulinensis (Sun and Zhang, 2012) 1.70–2.00 L

Protaphorura changbaiensis Sun, Zhang and Wu, 2013 1.45–1.80 L

Psyllaphorura raoheensis Sun and Wu, 2013 0.92–1.20 M

Sensillonychiurus pseudoreductus Sun and Wu, 2012 0.52–0.60 S

Sensillonychiurus reductus Sun and Wu, 2012 0.50–0.60 S

Sensillonychiurus virginis Pomorski and Sveenkova, 2006 0.45–0.50 S

Body length values as in original descriptions except for Micraphorura sp. Size groups: S, small; M, medium; L, large; see text for details.
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3.2 Species richness and abundance

The pooled number of species of Onychiurinae slightly
increased along the altitudinal gradient (r2 = 0.60, P =
0.025) (Fig. 3A). The average number of species per sample
changed significantly, but not monotonically, along the

altitudinal gradient (F = 3.90, P = 0.006) (Fig. 3B), being
highest at 1400 m (6.20±0.37) and lowest at 1100 m (4.20±
0.49). The abundance of Onychiurinae also followed a non-
monotonic pattern, but was not significantly correlated with
altitude (Fig. 3C).

3.3 Body size

The mean body length of Onychiurinae species significantly
varied with altitude and decreased with increasing altitude,
except for the 1250 m site (F = 5.74, P = 0.001) (Fig. 4). Mean
body lengths were longer at lower altitudes (1.26±0.15 mm at
800 m, and 1.24±0.13 mm at 950 m), and shorter at higher
altitudes (0.68±0.06 mm at 1250 m, 0.72±0.09 mm at 1550
m, and 0.67±0.05 mm at 1700 m) (Fig. 4). The three body-
size groups differentially responded to altitude. The abun-
dance of the large body-size group decreased significantly
from 800 m to 1700 m (r2 = 0.57, P<0.001) (Fig. 5A); by
contrast, the abundance of the small body-size group
increased (r2 = 0.19, P = 0.005) (Fig. 5B). The abundance
of the medium-size group was not significantly correlated with
altitude (r2 = 0.02, P = 0.648).

4 Discussion

4.1 Onychiurinae diversity across published studies

The closest locality to Changbai Mountain where litter
Collembola diversity has been studied along an altitudinal
gradient is the Putorana Plateau in Siberia (Babenko, 2002).
Both localities are located in the Eastern Palaearctic, their
bedrock is volcanic, and their Collembola fauna is diversified
from a pool of Siberian species, where Onychiurinae are
dominant. They also have a similar number of Onychiurinae
species along their altitudinal gradient (13 in Changbai and 12
in Putorana), in spite of very different bioclimatic conditions,
with Putorana located about 20° more north than Changbai

Fig. 3 Effects of the altitude on (A) the number of

species pooled per altitude, (B) the mean number of

species per sample, and (C) the abundance of Onychiur-

inae along an altitudinal transect from 800 to 1700 m in

Changbai Mountain, China; (A) blue line indicates the

model prediction and gray area indicates 95% confidence

interval; (B) and (C) means±SE; bars sharing the same

letter do not differ significantly (Tukey’s HSD test,

P<0.05).

Fig. 4 Changes in body size of Onychiurinae along the

studied altitudinal transect from 800 to 1700 m in

Changbai Mountain, China; means±SE. Bars sharing

the same letter do not differ significantly (Tukey’s HSD

test, P< 0.05).
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and covered with very different vegetation. The species
richness in Onychiurinae of these two localities contrasts with
that reported from other altitudinal gradients documented in
the literature. Eight Onychiurinae species was found by Bedos
(1994) along a transect of the Doi Inthanon in tropical
Thailand, but their taxonomic status remains uncertain, and
most were in fact collected in soil (A. Bedos, pers.comm.).
Other transects have much lower richness in litter Onychiur-
inae, for instance, four species in the French Alps (Loranger
et al., 2001), two species in a high altitude forest in Mexico
(García-Gómez et al., 2009), and a single species in the
Andes of southern Ecuador (Sun et al., 2020). Greenslade
and Kitching (2011) do not report any Onychiurinae in their
samples collected from surface litter along temperate and
tropical Australasian altitudinal transects. Overall, this is in line
with the diversity pattern of the subfamily on earth, which
peaks in the northern Holarctic region, with a fast decrease
southwards (Sun et al., 2013a). These patterns limit straight-
forward comparison of factors driving the diversity of
Onychiurinae in Changbai Mountain and altitudinal transects
of other regions in the world.

4.2 Species diversity along the altitudinal transect

Species richness of Onychiurinae significantly varied with
altitude investigated in our study, but it did not follow a
monotonic nor a hump-back pattern, the dominant patterns
observed previously (Guo et al., 2013). Similar to Onychiur-
inae in this study, species richness of the whole group of
Collembola did not change in a monotonic way along an
altitudinal transect in France (Loranger et al., 2001) and
Tasmania (Greenslade and Kitching, 2011). Conversely, the
transects analyzed by Babenko (2002) in Siberia, Cutz-Pool
et al. (2010) in Mexico, and Greenslade and Kitching (2011) in
Solomon islands showed a continuous decrease in the
diversity of Collembola with altitude. A hump-back pattern
has been reported by Loranger et al. (2001) for the French
transect cited above when species numbers were pooled per
altitude, and by Greenslade and Kitching (2011) for transects
in Queensland and Tasmania. The study of Bedos (1994) on
Collembola diversity change with altitude on the Doi Inthanon
(Thailand) stands out from other studies as changes in
diversity were shown to differ between soil layers, seasons,
and sampling methods, with the patterns varying from hump-
back to a monotonic decrease with altitude. A monotonic
increase in diversity with altitude has not been reported for
Collembola. A pattern of increasing biodiversity could be
expected among Onychiurinae in southern temperate regions
of the Palaearctic where the subfamily is diversified as its
species often prefer low temperatures, but this has not been
observed so far. A uniform change in species richness of
Collembola along altitudinal transects therefore may not exist.
Rather, among other factors, patterns may be linked to
biogeographic region and studied Collembola taxa. Interest-
ingly, considering a wider taxonomic context, our results are
not consistent with those observed in other invertebrates
studied along altitudinal transects in Changbai Mountain, such
as moths (Chen et al., 2007; Liu et al., 2007) or beetles (Zou
et al., 2014), that all showed a general decrease in diversity
with increasing altitude.

In addition to bioclimatic conditions, sampling design may
explain in part the contrasting patterns in diversity change with
altitude documented in the literature (Guo et al., 2013), as the
range as well as the altitude of the studied transects for
Collembola vary considerably, e.g., 60–1000 m for the
Siberian transect (Babenko, 2002) and 2750–3440 m for the
Mexican transect (Cutz-Pool et al., 2010). Further, the number
of sampling sites investigated along altitudinal transects may
also affect the patterns observed; in particular a small number
of sampling sites increases the risk of missing the peak in a
hump-back pattern. Our transect in Changbai Mountain
ranged from 800 to 1700 m, with seven sampled altitudes.
These very important differences in sampling design might
contribute to explain differences in patterns.

Beside biogeographical history, sampled habitats along
altitudinal transects yield taxonomically very different collem-
bolan communities. For instance, the transect in Mexico

Fig. 5 Abundance [log10 (abundance + 1)] of (A) large

(1.45–2.30 mm) and (B) small species (0.45–0.67 mm) of

Onychiurinae along an altitudinal transect from 800 to

1700 m in Changbai Mountain, China; blue line indicates

the model prediction and gray area indicates 95%

confidence intervals.
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concerned moss on bark, a microhabitat particularly respon-
sive to short-term changes in ecological conditions (Cassag-
nau, 1961), that is mostly populated by xero-resistant species
absent in the litter. Malaise traps were used in Tasmanian
sites (Greenslade and Florentine, 2013) and provided a very
impoverished subset of the surface litter community sampled
by pitfall traps at the same sites. At other sites, litter was
sampled like in Changbai Mountain or the litter surface
(Greenslade and Florentine, 2013) or litter and soil (like
Loranger et al., 2001), with the collected fauna largely
dominated by litter species. These Collembola communities
also differed in their functional composition, e.g., the propor-
tion of euedaphomorphic species (sensu Deharveng and
Bedos, 2018), particularly Onychiurinae. A number of traits of
this group are considered to be highly functional, particularly
for dispersion (absence of jumping apparatus, short appen-
dages) and sensory perception (no eyes) (Salmon et al.,
2014; Pey et al., 2014). Onychiurinae are also strongly
responsive to local environmental conditions such as humus
form and soil chemistry, particularly acidity (Ponge, 2000;
Rusek, 2007). As these conditions varied among the studied
transects, the Onychiurinae data set of Changbai Mountain
also cannot be compared easily to other data sets. Further
studies investigating changes in functional traits along
altitudinal transects and considering different taxonomic
groups of Collembola are clearly needed to identify how
Collembola communities adapt to changes in environmental
conditions.

4.3 Body size and altitude

The overall morphology of Onychiurinae is rather uniform, with
little variations in appendage length, pigmentation, and
mouthpart structure (Pomorski, 1998; Weiner, 1996). By
contrast, body size is the most obvious morphological trait
that differs between many Onychiurinae species. In the
present study, mean body size of Onychiurinae significantly
decreased with increasing elevation, due to both the decrease
in abundance of large-species and the increase in abundance
of small species. These results contradict Bergmann’s rule,
but also results of an earlier study investigating changes in
body size of Collembola in tropical montane rainforests in
Ecuador, however, at these sites Onychiurinae were virtually
absent (except of one species; Sun et al., 2020). Smaller body
size at lower altitude in this study were hypothesized to be
linked to high metabolic costs due to high temperature at low
altitude which cannot be compensated for by increased
feeding rate (Sun et al., 2020). A similar interpretation was
given by Brehm et al. (2007) for changes in body size of
Lepidoptera along a tropical altitudinal gradient in Costa Rica.
These cases are in agreement, at the community level, with
the temperature-size rule (Atkinson, 1994), which states that
lower temperatures are associated with increasing body-size
at the organism level. Increasing body size associated with
increasing altitude, as predicted by Bergmann’s rule, how-

ever, is less common among invertebrates than the converse,
and both patterns are less frequent than the no-cline pattern
according to Shelomi (2012). Mousseau (1997) argued that
body size often correlates with development time, resulting in
a converse-Bergmann cline, i.e., decreasing body size with
shorter growing season at higher altitude, and this is conform
to our observations in Onychiurinae at Changbai Mountain.
According to the hypothesis of Mousseau (1997), the very
different patterns between the study by Sun et al. (2020) in
Ecuador and the present study therefore may be related to the
lack of season in the tropical forests in the Ecuador transect.
Overall, considering that body size is a master trait driving
fundamental characteristics of food webs, its study along
altitudinal gradients under different bioclimates may allow
better understanding of the factors driving elevational patterns
in the community structure of Collembola and invertebrates in
general.

5 Conclusion

In summary, richness, abundance, and body size of Onychiur-
inae in the Changbai Mountain range of northeast China
respond differently to altitude. The pooled number of species
slightly increased, while the average number of species per
sample changed significantly, but not monotonically, along the
altitudinal gradient. By contrast, the abundance of Onychiur-
inae was not significantly correlated with altitude. The mean
body length of Onychiurinae decreased significantly with
increasing altitude contradicting Bergmann’s rule. Further,
Onychiurinae of different body-size did not respond in the
same way to altitude, e.g., the abundance of Onychiurinae of
large body-size decreased significantly with increasing
altitude, whereas the abundance of Onychiurinae of small
body-size increased. Our results are not consistent with those
observed in other invertebrates studied along altitude in this
region, nor with patterns observed in different groups of
Collembola from other biogeographic regions. The proposition
that Collembola generally follow Bergmann’s rule or any
common pattern is clearly challenged by available studies.
The results suggest that to improve understanding of the
drivers of the observed patterns further investigations on
changes in Collembola communities along altitudinal gradi-
ents should consider different taxonomic groups and biocli-
matic contexts and use similar sampling designs.
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