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Abstract
The Brazilian agro-industrial chain generates about 291 million/tons/year of wastes, which, if inadequately destinated, could 
originate social and environmental risks. There is a growing need for the use of alternative raw materials to replace that 
originated from fossil resources in the Brazilian industry. Renewable materials play an important role on the sustainability of 
ecosystems and materials’ circularity. The issue has acquired importance in light of recent bio-based agro-fiber development 
potential applications. Considering sustainability guidelines, this study aimed to analyze the main Brazilian agro-industrial 
waste crops (temporary and permanent) as important sources of natural fibers and other raw materials. A systematic review 
of the literature (SRL) about Brazilian researches, based on concepts of industrial ecology, and the creation of a bibliomet-
ric analysis network were carried out. The agricultural biomass related to the main crops presents characteristics making 
them suitable to be applied for textiles, as natural fibers and polymers, in biosorbents for industrial effluents, and cellulose 
obtention and reinforcement material in composites. Thus, scientific investment in researches on materials and technology 
development are necessary to provide applications that could meet current and future demands and expand the scope of new 
materials for sustainability.
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Introduction

In Brazil, agribusiness plays an important role in the produc-
tion, processing, and transformation of food. According to 
the Brazilian Institute of Geography and Statistics (IBGE 
2021), the crop of agricultural production forecasts a record 
2.5% in 2021, and to meet food needs in 2050, it requires 
a 60% increase in the planted area, and in the consumption 
of water in the region amid water crises (Biase 2017). The 
abundance is the result of increased activity in the modern 

agricultural sector, which produces 291.1 million/ton. of 
residues in its largest crops (Schneider et al. 2012). How-
ever, this system presents unexplored economic opportu-
nities, pressuring conservation of resources, polluting and 
degrading natural ecosystems, causing environmental risks 
and contamination to society (Biase 2017; Ellen MacArthur 
Foundation 2017).

The need for renewable manufactured products is a major 
challenge for the Brazilian industry dependent on petro-
chemical resources. For Dungani et al. (2015), agricultural 
waste is the most abundant form of natural fiber. The use, 
processing, and characterization of agro-industrial wastes 
are a great opportunity to generate value and develop by-
products and co-products (Berté 2009; Dahiya et al. 2020; 
Embrapa 2018; Shahid-ul-Islam et al. 2013).

Renewable resources are aimed at the sustainability of 
ecosystems and for maintaining healthy and sustaining the 
textile industry. There is great interest in sustainability by 
industry professionals, including in materials with competi-
tive mechanical properties, lightness, and biodegradability 
of low-cost natural fibers to replace petroleum-based fibers 
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in composites (Alarcon et al. 2021; Atiqah et al. 2020; 
Hoque et al. 2021; Izwan et al. 2021). Indeed, markets for 
products based on the agro-fiber present great potential for 
application in absorbents, technical textiles, geotextiles, fil-
ters, biocomposites, and other automotive and construction 
sectors (Shishoo 2007). Research efforts have been alterna-
tives to different levels of control and management (Chan 
et al. 2021; Onu & Mbohwa 2021d).

The high volumetric rate of agro-industrial residue in 
combination with increased environmental awareness makes 
research into appropriate textile technologies and treatments 
a priority (Madhav et al. 2018). In this way, this study aimed 
to analyze the main Brazilian agro-industrial waste crops 
(temporary and permanent) as important sources of natural 
fibers and other raw materials.

Research Methods

The methodology was based on a bibliographic survey and 
analysis by systematic literature review (RSL) followed 
by bibliometrics. The focus, based on industrial ecology 
concepts (Giannetti and Almeida 2006; Lifset and Graedel 
2015), examined researches on the use of agro-wastes for 
the development of sustainable textile materials. The results 
were compared with data from the Brazilian Ministries of 
Agriculture and Environment and related associations. To 
index a descriptive exploratory bibliometric analysis of the 
data with greater precision to the object of study, it was built 
a network from the grouping of bibliographic sources in the 
Scopus platform (from December 2020 to January 2021 that 
encompass the years from 2021 to 2006) and transcribed by 
Software VOSviewer (Universiteit Leiden). To generate the 
database, the searches performed used the variation of the 
terms “agro-industrial,” “agro,” “waste,” “fiber,” “textile,” 
“fashion,” and “bio-based” limited to Brazil. When diagram-
ming the network, 3,296 significant expressions were identi-
fied, out of the 305 articles selected, of which 2,496 meet 
the correlation requirement. The same database was used 
to develop a diagram focusing on the highest incidence of 
materials citation by classification and types, crops, formats, 
conversion technology, and end-of-use researches. Crops 
were divided following the Food and Agriculture Organiza-
tion of the United Nations (FAO) food classification (FAO 
2021b).

The next items discussed respectively the following: (i) 
structural analysis of the textile industry from the perspec-
tive of the progress of synthetic materials, consumption 
patterns, and interaction of the value chain with the agricul-
tural industrial segment; (ii) the dynamics of sustainability 
as a guideline and fundamentals for restructuring cycles of 
agricultural residues; (iii) the Brazilian scenario of produc-
tive insertion (marked by the data analysis network); (iv) 

materials and related applications in Brazilian development 
researches.

Results and Discussion

Textile and Agricultural Sector Challenges

The textile and agricultural industries share challenges 
within the current Brazilian economic system, concerning 
global demand consumption, land use, greenhouse gas emis-
sions, pollution, effluent generation, generation and disposal 
of waste, and recycling (Circular Systems 2020).

According to the Brazilian Association of Artificial and 
Synthetic Fiber Producers (ABRAFAS), the Brazilian pet-
rochemical-textile complex operates on a large scale and is 
responsible for productivity above 380 thousand tons/year, 
between synthetic and artificial fibers and multifilaments 
(ABRAFAS 2020). Brazil is currently the 5th largest textile 
industry in the world and the 4th in the clothing segment. In 
2019, textile production reached an average of 2.04 million 
tons, which represents a turnover of near US$ 36.5 billion 
from the entire chain, investments of about US$ 730 mil-
lion, creating about 1.5 million direct jobs and 8 million 
indirect jobs, of which 75% are female labor, the 2nd largest 
employer in the manufacturing industry, the most complete 
in the West, from fiber production to retail (ABIT 2020; 
Cavalcanti and Dos Santos 2021; Filleti and Boldrin 2020), 
with estimated expansion of 11.5% from 2017 to 2022 in 
apparel retail (Mariano 2018) growth of 10.4% in apparel 
production in volume, reaching 5.5 billion pieces (IEMI 
2021).

The rise in consumption and use of synthetic fibers rep-
resents a major change in the country’s textile chain, which 
until then remained largely with the production of cotton 
and natural fibers (Zeferino 2019), in contrast to the expo-
nential growth of 42.7% synthetic textile fibers over the 
period 2010–2017, while natural fibers did not show sig-
nificant growth worldwide (Cavalcanti and Dos Santos 2021) 
(Fig. 1).

In reason to the expansion of activities in the clothing 
textile industry to meet the growing demand in the clothing 
supply chain, there is a significant and abusive increase in 
the use of inputs such as energy, water, and soil (Barbosa 
et al. 2016).

In the textile sector, with the growing and large consump-
tion demand of natural textile fibers, the production and 
market of synthetic fibers found a great space for expansion 
due to their characteristics of low cost, strength, shine, and, 
mainly, the absence of large agricultural spaces, a special 
type of climate and intensive work (Lobo et al. 2014).

Onu and Mbohwa (2021a) support the argument that the 
continuous application of petroleum derivatives involves 
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high cost, intensive use of energy, and insecurity, while the 
diversity of agricultural residues is the basis for replacing 
the use of non-biodegradable synthetic materials.

Agriculture and food processing plants represent point 
and diffuse sources of agricultural waste that are difficult to 
control (Hanson 2014). The deficiencies of the agricultural 
system attract the interest of effective management, which 
consider the inadequate disposal of material in landfills and 
the distribution of space, facing the challenges of green-
house gases and the toxic runoff of water in useful fertile 
land (Gomiero 2018; Onu & Mbohwa 2021a; Warner 1980; 
Yusuf et al. 2019). In addition to discarded nutritional and 
economic values, environmental, social, and cultural values ​
are wasted. Soil, water, energy, land, logistics, and labor 
are heavily used up in the service of wasted food produc-
tion (Biase 2017; Saath and Fachinello 2018; dos Santos 
et al. 2020). The deterioration of these systems imposes a 
time limit, and their regenerative properties are slow and 
cannot be boosted healthily. For Kapoor et al. (2016), since 
the generation of waste and by-products are consequences 
of all industrial sectors, just like their inadequate disposal, 
the study of recovery and reuse of these by-products must 
be disseminated.

The current degradation reveals an inadequate technol-
ogy, as industrial progress must be more concerned with 
increasing its efficiency more than production, and the con-
sumption scale assumes limitations to the carrying capacity 
(Goodland 1995). In the case of agro-industrial residues, due 
to their abundance, renewability, and use, they are economi-
cally and environmentally advantageous for their low den-
sity, low CO2 emission, and biodegradability characteristics, 
when compared to thermoplastic polymer composites. The 
technology applied for conversion of agricultural biomass 
in products is not being realized in scale-up due to com-
petitiveness with synthetic products (Dungani et al. 2015; 
Prithivirajan et al. 2015; Zeferino 2019).

Goodland (1995) emphasizes that human’s dependence 
on agriculture will always exist, so land and other renew-
able sources are essential. This reflects the concerns of the 
Malthusian theory, addressed by Lambin (2012), that the 
finite stock of land and its inadequate distribution are insuffi-
cient to meet growing demand, causing a decline in welfare. 
Based on the work of Malthus, Moran (2011) argues that, 
since demographic pressure has brought about a rapid agri-
cultural technological innovation, resulting in extensive and 
harmful agriculture, one should expect from its expansion to 
increase the level of deforestation as well. In global studies, 
about 12% of the global surface is used for cultivation; it is 
estimated that 15% of the global surface of land without ice 
could be converted to agricultural land, and more than 40% 
of the available lands were used (Foley 2005; Rockström 
et al. 2009).

The 2017 Agricultural Census recorded an area of 
351.3 million hectares (41.3% of the national territory). 
The area occupied with crops, 63.5 million hectares, rep-
resents 7.5% of the territory with annual, semi-perennial, 
and perennial agriculture (grains, horticulture, fruit, and 
forestry) (Embrapa 2018; Ministério da Agricultura 2019a, 
2019b). Patterson (2012) highlights that population growth 
of advanced per capita consumption, rising temperatures, 
world food, clean water, and fuel supplies are at constant 
risk, putting pressure on declining amounts of farmland 
and mineral and mineral reserves and fresh water (Patterson 
2012). Salleh et al. (2021) raises the issue that natural fiber 
production is expected to decline due to the need for more 
land for food production. Fibrous material is cultivated in 
agriculture (animals and plants) (Tobler-Rohr 2011).

The search for more land is a threat to afforestation and 
increases the impacts of the climate crisis (Campbell et al. 
2018; Onu and Mbohwa 2021c). Brazil faces a growth curve 
in planted area and harvested area in all temporary and per-
manent crops grown in the country (Fig. 2):

Fig. 1   Consumption of natural, artificial, and synthetic fibers and fila-
ments in Brazil, 2013–2018. Source: adapted from ABIT (2018)

Fig. 2   Planted area or destined for harvesting (green line) and har-
vested area (blue line) from temporary and permanent crops. Source: 
adapted from IBGE—Municipal Agricultural Production (PAM 2021)
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Waste from these activities is an example of an expensive 
and inevitable result of human activity that poses a threat 
to the environment, while the decrease in the supply of raw 
materials is also a cause for concern (Dungani et al. 2015; 
Sundarraj and Ranganathan 2018). The threat linked to agri-
cultural exploration activities and the production of materi-
als attracts the attention of both industries, in an attempt 
to balance habitats, protect the ecosystem, and dispose of 
useful land in reversing the loss of biodiversity (Macaulay 
2007; Onu and Mbohwa 2021c, e).

Specific analyses reveal that the increase in temperature in 
Brazil can cause the reduction of suitable regions for cultiva-
tion (Bolfe et al. 2018). The protection until then economic 
extend to biological safety and plant biodiversity (Teix-
eira et al. 2015). The future of agriculture, therefore, must 
encompass sustainable agricultural systems, understood as 
the management and conservation of the natural resource 
base and the orientation of technological changes to ensure 
the achievement and satisfaction of the human needs of the 
present and future generations (do Bezerra and da Veiga 
2000; Bolfe et al. 2018; FAO 2021c; Pinazza and Araujo 
1993; Soglio and Kubo 2016; Vieira and Vieira 2019).

Recent reports by Laudes Foundations reveal that turning 
innovations to the responsible use of agro-waste to generate 
raw materials based on cellulose textiles would not require 
increasing cultivated land or increasing the volume of crops. 
Studies show that there is sufficient residue for fiber reloca-
tion and emphasize the importance of collaborative interven-
tions in textile and agri-food systems to enable scaling of 
materials (Laudes Foundation 2021).

The Agro‑industrial Wastes Issue

The issue of food loss and waste (FLW) is highlighted in 
regional, national, and international political agendas, still 
on the rise in Brazil (FAO 2021a; Henz and Porpino 2017; 
Teuber and Jensen 2020). The Committee on World Food 
Security (CFS) highlights the importance of FLW in the 
search for more sustainable and equitable food systems and 
societies (FAO 2015).

The dumping of agricultural waste is one of the great 
eminent challenges that are highly expensive, harmful to 
soil contamination, greenhouse gas emissions (GHG), toxic 
to local waters, damage to land, and compromise environ-
mental safety and quality of life and regional food (Onu and 
Mbohwa 2021c; Wilts et al. 2020). According to the 2021 
Food Waste Index, 931 million tons of food was wasted, and 
20% of the volume belongs to Latin America, where 55% 
are fruits and vegetables; however, there is no consistent 
information on each developing country (FAO 2016; United 
Nations Environment Programme 2021).

The definitions of food loss and waste take different 
approaches. The loss of food considers the decrease in the 

quality or quantity of food resulting from suppliers along 
the harvest/slaughter/capture supply chain that is not used 
as feed or seed, whereas food waste is related to a decrease 
in the quantity or quality of food from service providers 
and consumers (FAO 2018; SOFA/FAO 2019, 2020).

Waste is liquid or solid materials that are gener-
ated from agricultural activities, direct consumption, 
or industrialization, and are not useful to the process, 
which assumes concepts such as reduction, reuse, and 
recycling (Loehr 1974; Nguyen and Schnitzer 2008; Onu 
and Mbohwa 2021d). Some of the influencing factors are 
topography, precipitation, cover crop, season, and loca-
tion, and even the chemicals, cultivation practices, and 
fertilizers used, which make impact assessments and meas-
urements difficult (Hanson 2014).

In large volumes, the residues are in the form of straw, 
stems, bark, wood, and forest residues, and commonly 
occupy land in the form of disposal by burning, which 
allows the start of fires and the proliferation of diseases. 
Residues and by-products are rich in lignocellulosic mate-
rials that can be recovered through chemical, physical, and 
biotechnological treatments (Bigdeloo et al. 2021; Dietrich 
et al. 2016; Scarlat et al. 2010).

Five segments classify the types of FLW, namely the 
following: (i) agricultural production (mechanical dam-
age and harvesting operations); (ii) post-harvest handling 
and storage (spill and degradation); (iii) processing (indus-
trial and domestic); (iv) distribution (market and retail 
systems); and (v) consumption (household) (FAO 2011). 
Considerations involve FL as unintentional reduction of 
food available for human consumption as a result of inef-
ficiency in the production and supply chain, and FW to the 
intentional disposal of food items, particularly by retailers 
and consumers (CEDES 2018). Groups can also be divided 
into food losses (during processing); unavoidable (perish 
during the consumption stage, e.g., husks and pits); and 
avoidable (suitable for food, but wasted in the period of 
human consumption) (Ahmad et al. 2021) (Table 1).

About 45% of fruit and vegetable biomass is wasted 
during agriculture, post-harvest, processing, distribution, 
and consumption. Residues such as fruits and vegetables 
can be considered valuable raw materials, as they are pro-
duced in large quantities all over the world (Dietrich et al. 
2016).

Losses and waste are classified into four categories 
along the supply chain: (i) primary and post-harvest pro-
duction; (ii) processing and manufacturing; (iii) wholesale, 
food retail, service, and distribution; and (iv) consumption 
or household waste (WRAP 2009). For Six et al. (2016), 
biomass recovery can be divided into groups of direct use 
(unchanged), material recovery (biochemical extraction, 
conversion of biomass and useful products), and energy 
recovery (biogas/energy content). Developing countries, 
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such as Brazil, face a higher rate of waste in the primary 
stages (FAO 2020; Henz and Porpino 2017; Júnior 2020).

There is insufficient world data on the edible fraction of 
food waste (UNEP 2021), although fruit processing residues, 
as parts of the entire food waste processing sector, such as 
bagasse (peel, seed, and pulp), bark, seeds, and stems can 
be considered unavoidable residues (Kavitha et al. 2020; 
Kosseva 2020b, 2020a). Currently, the methods used in 
FW organizations are animal feed, mainly composed of 
organic fertilizer, anaerobic use, carbonization, and landfill; 
no method has been supported for the ecologically correct 
use of FW. Therefore, FW can be used in the production of 
biocomposites using sustainable FW management methods 
(Blakeney 2019). For Dai et al. (2018), lignocellulosic bio-
mass resources do not affect the food supply chain.

Brazil follows a waste management structure similar to 
developed countries (Nascimento et al. 2015). The Brazil-
ian Solid Waste Plan (PNRS), law n. 2305/2010, valid since 
2010, prioritizes non-generation, reduction, reuse, recycling, 
waste treatment, and, finally, the final disposal of waste. In 
theory, all the possibilities of recovering available and eco-
nomically viable technologies were considered (BRASIL 
2010; Henz and Porpino 2017; Nascimento et al. 2015).

Efforts are aimed at reducing the amount of waste accord-
ing to the stipulated hierarchy, a large amount of unavoid-
able waste remains being generated. Therefore, agricultural 
innovation should apply sustainability at different levels and 
structures. Sustainable agriculture can facilitate technologi-
cal integration and facilitate the production and processing 
of food as fiber and green resources, as greater knowledge of 
processes becomes presuppositions for significant advances 
(Onu and Mbohwa 2021e, 2021a; Shahid-ul-Islam et al. 
2013).

Taking into account the growing scarcity of ecosystem 
services, the question would be how to reallocate the struc-
ture between the raw materials needed for production and 
survival. Otherwise, allocation strategies must be judged for 
their sustainability, fairness, and efficiency (Farley 2010).

Agro‑industrial Waste and Industrial Ecology 
for Materials Circularity

Sustainability has multifaceted concepts (Salleh et al. 2021). 
The Science of Sustainability affirms the need to be able to 
integrate such a range of temporal scales (Becker 2014). 
Sustainable development is defined as “meeting the needs 
of the present without compromising the ability of future 
generations to meet their own needs” (Keeble 1988). The 
Brundtland report also highlights an interest in three main 
pillars: (i) environmental preservation; (ii) social equity; and 
(iii) economic growth (Akiyode et al. 2017). In 2015, the 
Sustainable Development Goals (SDGs) were re-adopted 
to address climate change and environmental protection, Ta
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divided into 17 goals that address social and economic 
issues. These are directly linked to sustainable industry, 
infrastructure, clean energy, and responsible consumption 
and production, which relate to the efficient use of natural 
resources and reduction of waste (Ishak et al. 2021). The 
promoted actions by World Summit on Sustainable Develop-
ment in 2000 reveal that resource management and distribu-
tion are approaches to controlling global depletion in ecosys-
tem conservation (Onu and Mbohwa 2021b). Regarding the 
2030 Agenda with a focus on food and agriculture transfor-
mation, the 2nd key principle for sustainability is “protecting 
and enhancing natural resources,” which includes “improv-
ing soil health and restoring the land; protect water and man-
age scarcity; conserve biodiversity and protect ecosystem 
functions; reduce losses and encourage reuse and recycling 
and promote sustainable consumption” (FAO 2018, p.18). 
Onu and Mbohwa (2021d) highlight that all Sustainable 
Development Goals (SDG) centers contribute resources to 
these biodiversification opportunities.

The life cycle of textile products is one of the shortest due 
to the logic of the fashion industry (Lopes et al. 2021). The 
linear model of the textile industry causes restrictions in the 
supply of products and high costs and environmental risks 
(Gardetti 2018; Senthil Kumar and Femina Carolin 2018). 
Industrial systems follow the context of open flow, that is, 
the use of materials and energy that generate non-usable 
waste. The current situation does not yet cover the closing 
of the cycle efficiently (Coste-Maniere et al. 2018). Biofibers 
are among the most researched and demanded materials in 
the twenty-first century (Nishino 2017). Studies reveal that 
mentions of sustainability have increased. For two-thirds of 
respondents, sustainability has become a priority in combat-
ing climate change after COVID-19 (Arici and Lehmann 
2020; Lehmann et al. 2019; Wong et al. 2021). For Textile 
Exchange Institution (2019), the textile industry acts primar-
ily in 14 of the 17 UN SDGs (Textile Exchange 2019).

Industrial ecology definitions comprise similar attributes 
and different emphases (Clift and Druckman 2015). Among 
these, El-haggar (2007a, b, c, d) highlights, in short, a sys-
temic and balanced view of the interactions between indus-
trial and ecological systems, based on the study of flows and 
transformations of materials and energies, as an ideal model 
for the management of natural resources and waste indus-
trial. Cooperation between industrial processes and envi-
ronmental sustainability (El-Haggar 2007c, d). Authors talk 
about industrial ecology integrating the circular economy in 
search of eco-efficiency.

Ayres (2002) exemplifies the field of Industrial Ecology 
as an enhancer, which can highlight the importance of effi-
cient biogeochemical cycles through concepts, metaphors, 
applications, and analyses, comprising technological knowl-
edge and environmentally informed processes for this pur-
pose. The author identifies that the study of material flows as 

raw materials has a great contribution to the development of 
types of efficiency and cycling of materials already produced 
by natural ecosystems (Ayres 2002). Ayres (2002) exempli-
fies the field of Industrial Ecology as an enhancer, which can 
highlight the importance of efficient biogeochemical cycles 
through concepts, metaphors, applications, and analyses, 
including technological knowledge and environmentally 
informed processes for this purpose. The author confirmed 
that the study of material flows as raw materials has a great 
contribution to the development of types of efficiency and 
cycling of materials already produced by natural ecosystems 
(Giannetti and Almeida 2006).

Thus, adding value to agro-waste by converting it into 
useful products is currently one of the main areas of basic 
laboratory research, and will soon reach an economic poten-
tial that can collaborate with green technologies (Kapoor 
et al. 2016).

Efforts are aimed at reducing the amount of waste accord-
ing to the stipulated hierarchy, a large amount of unavoid-
able waste remains being generated. Therefore, agricultural 
innovation should apply sustainability at different levels and 
structures. Sustainable agriculture can facilitate technologi-
cal integration and facilitate the production and processing 
of food as fiber and green resources, as greater knowledge of 
processes becomes presuppositions for significant advances 
(Barker and McLemore 2005; Onu and Mbohwa 2021e, 
2021a; Shahid-ul-Islam et al. 2013).

Taking into account the growing scarcity of ecosystem 
services, the question would be how to reallocate the struc-
ture between the raw materials needed for production and 
survival. Otherwise, allocation strategies must be judged for 
their sustainability, fairness, and efficiency (Farley 2010). 
Regarding the 2030 Agenda with a focus on food and agri-
culture transformation, the 2nd key principle for sustainabil-
ity is “protecting and enhancing natural resources”, which 
includes “improving soil health and restoring the land; pro-
tect water and manage scarcity; conserve biodiversity and 
protect ecosystem functions; reduce losses and encourage 
reuse and recycling and promote sustainable consumption” 
(FAO 2018, p.18). Onu and Mbohwa (2021d) highlight that 
all Sustainable Development Goals (SDG) centers contribute 
resources to these biodiversification opportunities. Target 
12.3 addresses the issue of food waste and loss, which con-
tributes not only to SDG 12, but also SDGs SDG 2 (“Zero 
hunger and sustainable agriculture”), 6 (“Drinking water and 
sanitation”), 13 (“Action against global climate change”), 
14 (“Life in the water”), and 15 (“Terrestrial life”) (Filho 
et al. 2021).

For Barket (2005), the difficulty in finding new sources 
of raw material while the safe disposal of waste is scarce, 
makes hierarchy and the total use of waste a necessity. Mini-
mization is a priority in the hierarchy of waste management 
strategies, rather than treating the end of the tube; however, 
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there is no economic incentive and technology available, 
turning the importance of waste recovery as opportunities 
for sustainability (Herrero et al. 2020; Sillanpää and Ncibi 
2019c).

The LCA methodology can define the main impact areas, 
assess potential environmental threats, make environmental 
decisions, and ensure the labeling and ecological certifi-
cation of textiles (Eryuruk 2015). For Laudes Foundation 
(2021), conscious sourcing decisions contribute to help 
farmers, agricultural communities, and the textile industry 
to achieve greater sustainability, ensuring a possible balance 
of resources and people (Laudes Foundation 2021).

By-products from the food industry can be seen as waste 
or resources when recovery technologies are implemented 
(Herrero et al. 2020). However, the reprocessing of organic 
matter does not include the recovery of energy used in the 
recycling process (Wiesmeth 2021). For this, the concepts 
of circularity become restricted when focused only on waste 
management (Sillanpää and Ncibi 2019b, 2019a, c). There-
fore, sustainable development represents a shared com-
mitment to stable economic growth in the satisfactory and 
available management of resources. The allocation of these 
resources can be solidly directed to ensure new supplies (El-
Haggar 2007a; Vivien 2011).

Brazilian Biomass Scenario

According to the Confederation of Agriculture and Live-
stock of Brazil (CNA), agribusiness is recognized as a great 
vector of expansion and Brazilian economic growth (CNA 
2020). The agricultural productive harvest forecasts a record 
increase of 2.5% for Brazil in 2021 (IBGE 2021). Its abun-
dance is the result of increased activity in the modern agri-
cultural sector, which annually wastes 1.3 billion tons of 
food along the production chain (FAO 2013; Zaro 2018). 
Agroindustry accounts for approximately 5.9% of the Bra-
zilian gross domestic product (GDP), promoting integration 
with the economy (EMBRAPA 2020; Torrezan et al. 2017).

The “Panorama of Solid Waste in Brazil 2020” by the 
Brazilian Association of Public Cleaning and Special Waste 
Companies (ABRELPE) highlights that organic matter 
comprises 45.3% of the total solid waste generated in 2020, 
approximately 170 kg discarded per person/year, and it is 
estimated that this waste will increase 50% by the year 2050 
(ABRELPE 2020). In contrast, this report reveals that the 
total amount of waste generation and final destination remain 
inadequate, growing respectively 19% and 16%, even after 
the implementation of the Brazilian PNRS in 2010, which 
institutes the plan for integrated management, responsibil-
ity, and economic instrumentation applicable to solid waste 
(ABRELPE 2020; de Campos and Goulart 2017; Freiria 
2011).

Biomass was defined as “any material, excluding fos-
sil fuel, which was a living organism that could be used as 
fuel directly or after a conversion process” (ASTM 1995). 
According to EMBRAPA, Brazil is responsible for 140 giga-
tons of agro-industrial residues, in which there are different 
types of biomasses of heterogeneous chemical composition 
from different physical states, such as oily biomass, sac-
charide biomass, and starchy and lignocellulosic biomass, 
which is more abundant (Júnior 2020). Worldwide, the main 
crops responsible for agricultural residues are rice, wheat, 
cotton, and corn (El-Haggar 2007b).

Therefore, the report by the Institute of Applied Eco-
nomic Research (IPEA) of Organic Waste (2012) was 
based on 7 temporary crops (Table 2) and 7 permanent 
crops (Table 3), which are the greatest representation ones 
in Brazil. Among the permanent crops, the following were 
selected: coffee (beans), cocoa (almonds), bananas (bunch), 
oranges, coconuts, cashew nuts, and grapes. For the tem-
porary crops, in turn, the following were selected: soy (in 
grain), corn (in grain), sugar cane, beans (in grain), rice (in 
husk), wheat (in grain), and cassava. It highlights that these 
14 largest crops in the country produce a total of 291.1 mil-
lion tons of waste per year (Schneider et al. 2012).

According Table 2, only soybean crops correspond to 
49% of the planted area in Brazil, producing about 2,700 

Table 2   Data about the main Brazilian temporary crops

Sources: adapted from ABIB (2011), Matos (2005), Schneider et al. 
(2012), and Silva et al. (2007)

Temporary crops Waste, million/ton Residual factor

Soybeans (grain) 41,862,129 73%
Corn (grain) 29,432,678 58% (straw and cob)
Sugar cane 201,418,487 30%
Beans (grain) 1,847,984 53%
Rice (paddy) 2,530,355 20%
Wheat (grain) 3,033,315 60%
Cassava 23,786,281 -

Table 3   Data about the main Brazilian permanent crops

Sources: adapted from ABIB (2011), Mello (2006), RezzadoriI and 
Benedetti (2009), Silva et al. (2009), and Vale (2007)

Permanent crops Waste, million/ton Residual factor

Coffee (beans) 1.220.029 45-55% (husks and straw)
Cocoa (beans) 83.025 38%
Banana (bunches) 99.640 50% (husks and stalks)
Orange 8.825.276 50%
Coconut 405.009 60%
Cashew nuts 80.484 73%
Grapes 300.459 40%
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tons of residues for every 1 thousand processed grains; 
around 73% of residues are generated from processing 
(MATOS 2005; Schneider et al. 2012). This percentage is 
visible for each crop in Tables 2 and 3. Sugarcane crops 
stand out, distinguishing residues in liquid vinasse, filter 
cake, and bagasse. There is no estimate of percentage of 
waste generation for cassava crops.

The Systematic Survey of Agricultural Production 
(LSPA) by period (April 2021) highlights that the aver-
age yield per harvest of these main selected crops pre-
sents a stable growth variation in the country’s agribusi-
ness, which consequently projects a greater number of 
residues than those currently presented in Tables 2 and 3: 
according to productive amounts, respectively, sugar cane 
(654,727,996); cereals, pulses, and oilseeds (264,453,928); 
soybean (131,927,408); corn (1st crop 25,771,50/2nd crop 
76,727,987); cassava (18,708,437); orange (18,708,437); 
rice (11,081,650); wheat (7,394,918); banana (6,915,259); 
beans (1st crop 1,281,098/2nd crop 1,111,999/3rd 
crop 562,935); Arabica coffee and canephora coffee 
(2,820,596); grapes (1,416,398) and cocoa (280,661). 
There is no data for “coco-da-baía” (Brazilian coconut 
varieties) crops (LSPA/IBGE 2021). In network analysis, 

it is possible to observe the large incidence of these crops 
(Fig. 3).

Through the network analysis, it is possible to observe 
the scientific advances in Brazil regarding the main materi-
als used, formats, and applicability. The main agro-waste 
correlated terms in intensity are as follows: “sugar cane,” 
“fruit,” “soy straw,” “cassava,” and “rice.” The main formats 
indicated are for “bagasse,” “biomass,” “fiber,” “nanocrys-
tals,” and “polymer.” The main applicability involves 
“absorption,” “enzymes,” “wastewater,” “textile fibers,” 
and “ethanol.” There is a great interest in the study of the 
physicochemical performance of materials, paying atten-
tion to the number of researches involving “crystallinity,” 
“pH,” “mechanical properties,” “chemical composition,” and 
“thermogravimetry.”

The term “cellulose” is the most used term with full link 
strength of 3098 and 108 co-occurrences, while “lignin” is 
linked in 1245 and 38 co-occurrences, which demonstrate 
the interest in biomass supply and possible inclusion of 
lignin studies for product development, adhering to terms 
such as “Cellulose derivates,” “nanocellulose,” “cellulose 
nanocrystals,” and “particle size.” The term “Textile Indus-
try” is only presented in 10 co-occurrences, with total link 

Fig. 3   Scientific literature database network built with VOSviewer software (Universiteit Leiden) through the analysis of 305 articles and co-
occurrence of 2,496 specific expressions. Source: authors
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strength at 425 in the document, while the term “textile fib-
ers” has 12 occurrences and 384 total links, and “textile,” 
has only 273 links to the name, and 8 co-occurrences, show-
ing a small impact on the Brazilian textile industrial scenario 
in scaling materials.

The Brazilian Agroindustry Profile Report of the Institute 
for Applied Economic Research (IPEA) states that the inven-
tories of existing products, material flows, and the function-
ing of circuits are still some of the challenges found in its 
main structure (IPEA 2013), although, according Organic 
Waste Report, wastes from the country’s main crops present 
distributive potential and Brazilian legal support for reverse 
logistics projects (Schneider et al. 2012).

The Application of Agro‑industrial Wastes in Textile 
and Other By‑products in Brazil

The water content, pathogenic potential, and biological 
instability make the disposal of waste difficult to control, 
directing it generally to animal feed (Dietrich et al. 2016). 
In the same way, the administration of large residues leads 
agrarian communities to opt for low-cost and low-effort 
options, such as burning to clear the scums for the next har-
vests (Textile Horizons International 1993). The content of 
organic matter prioritizes its application on 4 main fronts: 
(i) animal fodder; (ii) briquetting; (iii) biogas; and (iv) com-
posting; moreover, there is a surplus input for exploration in 
other industrial applications (El-Haggar 2007b). One of the 
main difficulties in the converting process of biomass into 
products is the transport and storage protocol, in addition to 
the knowledge of the operational techniques that should be 
applied (Onu and Mbohwa 2021b). For Laudes Foundation 
(2021), the domestic uses such as forage, animal bedding, 
mulch, and compost use a small part of the waste. Among 
the benefits of using waste materials are the protection and 

maintenance of natural resources, protection of human 
health, and reduction in resource extraction (Ahmad et al. 
2021).

The world’s largest production crops such as sugarcane, 
corn, rice, and wheat are in discussion as food and fuel com-
modities as well as due to their important source of hemicel-
lulose and lignocellulose for industrial manufacture. Waste 
treatment and disposal are only part of agricultural waste 
management systems (Loehr 1974). For Shishoo (2007) and 
Yu (2009), agricultural-based fibers should present special 
quality criteria as follows: strengthening potential (strength), 
stiffness, wear resistance, brittleness, moisture-related prop-
erties (aging, dimensional stability, swelling), heat stability, 
purity, resistance to microorganisms, non-odor, resistance to 
chemicals, etc.

The use of solid potential fibers, lack resilience and have 
low elasticity and elongation potential, being mixed with 
other sources of natural fibers can have better performance 
(Laudes Foundation 2021; Salleh et al. 2021). Some textile 
innovations such as Orange Fiber, Green Whisper, AltMat 
(Fig. 4), and Agraloop, in collaboration with Fashion For 
Good, enable alternatives through bio-based products, pro-
cesses, and technologies in the production of fibers from 
pineapple, hemp, banana stem, fruit residues citrus, and food 
crops for textile and clothing manufacturing (FFG 2021; 
Laudes Foundation 2021).

Sharma et al. (2016) highlight that fruit and vegetable 
wastes mainly contain soluble materials and fibers, but 
they are the most commonly discarded in landfills and rot 
in industrial and retail establishments. Vegetables, cereals, 
roots and tubers, and fruits are the most promising resources 
for value-added production (Galanakis 2012).

The adaptation of fibers to consumption needs, in order 
to be employed in conventional technologies and applica-
tions, has increased tremendously their market potential 

Fig. 4   AltMat representation 
processes. Source: AltMat 
(2021)
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(Narasimhan et  al. 2016). Depending on the extraction 
methods, fibers can be prepared in various forms, such as 
long continuous fibers, processed fibers, short-staple fibers, 
and powdered microfibers or nanometric fibers. The most 
common source of natural fiber reinforcement extraction is 
from stems (bast fibers), while leaves are the least reported 
in previous studies (Izwan et al. 2021). Worldwide, residues 
such as corn husks, rice, sorghum stalk and leaves, banana 
leaves, pineapple leaves, and others have been studied to 
develop new cellulose fibers with similar mechanical prop-
erties as those of common textile fibers (Reddy and Yang 
2005, 2009). Companies that embrace the concept of circu-
larity of materials claim that banana crops, pineapple leaves, 
rice straws, and sugarcane husks together can provide more 
than 250 million tons of fiber per year, meeting 2.5 times the 
world demand for fibers (Biomimicry 2020).

In Brazilian scenario, agribusiness has gained great noto-
riety in the context of studies and political-economic-institu-
tional focus (ABRA 2013). There is a movement of research 
in the country in order to create viable alternatives for the 
relocation of waste. According the Brazilian Agricultural 
Research Corporation (EMBRAPA), the industrial process-
ing of agricultural biomass from waste can be distributed in 
the generation of materials (polymers, resins, and fibers), 
energy, food and animal feed, chemical inputs (biofertiliz-
ers, surfactants, esters, acids organic), and biofuels (ethanol, 
biodiesel, and biogas) (Júnior 2020).

Soy straw, in particular, is an abundant and renewable 
form of biomass with enormous potential as a cheap and 
sustainable source. According to Martelli-Tosi et al. (2017), 
soy is a very significant agricultural commodity (Martelli-
Tosi et al. 2017). However, its application in by-products 

is mainly used for rural energy, animal feed, and disposal 
in the field (Liu et al. 2015). Araújo et al. (2019), evaluat-
ing parameters, which consider the chemical composition, 
growth rate, and disposition, state that soy straw is the most 
suitable residue to be used as raw material for the production 
of cellulosic-based materials, followed by sugarcane leaf, 
corn husk, sugarcane straw, and bagasse, revealing that the 
main crops in the country are the most suitable residually.

Mustafa et al. (2021) highlights that agropolymers from 
agricultural residues such as starch and cellulose derivatives 
can be efficiently regulated by natural or chemical mecha-
nisms for the development of green materials, highlighting 
the use of biofibers in structural performance as a signifi-
cant reinforcement. Currently, natural fiber reinforcement 
composites are used in advancing technologies due to their 
low density, light weight and good mechanical strength, and 
ecological characteristics (Ahmad et al. 2021; Benyus 1997) 
(Fig. 5).

For Ahmad et al. (2021), the advantages of using natural 
fiber in thermoplastic composites are as follows: (i) biodeg-
radability; (ii) lower greenhouse gas emissions; (iii) avail-
ability in variety and format; (iv) job creation in rural areas; 
(v) non-linear economic development; (vi) efficient and (vii) 
economical energy consumption. The growing interest in 
technical lignins, by-products of cellulose, as a polymeric 
material is also due to their large-scale availability and bio-
degradability. These can play different roles in promoting 
and regulating adhesives, fillers, and reinforcing agents in 
engineering, replacing synthetic fixed terms (Lapsa et al. 
2000).

The economic and technological advantages of lig-
nocellulosic fibers can increase the durability and also 

Fig. 5   Economic beneficial 
factors to the conversion of 
agro-industrial waste into textile 
raw material. Source: partially 
adapted from Circular Systems 
(2020), Dungani et al. (2015), 
Gomiero (2018), Laudes 
Foundation (2021), Onu and 
Mbohwa (2021a, b), Sundarraj 
and Ranganathan (2018), Teix-
eira et al. (2015), Wilts et al. 
(2020), and Yusuf et al. (2019) 
and partially authors
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recyclability of incorporated products, leading to sustainable 
development (Mustafa et al. 2021). Fibers based on agricul-
tural residues are promising innovations and can meet dual 
objectives, in the solution to the search for alternatives in 
the fashion industry and, in parallel, a path for millions of 
farmers who burn their agricultural residues and generate 
dangerous levels of emissions (LOUDES FOUNDATION 
2021) (Fig. 5).

Scientific Literature Database Diagram 
on Agro‑industrial Materials’ Researches

The same network database was used to develop a diagram 
focusing on the highest incidence of materials citations by 
classification and types, crops, formats, conversion technol-
ogy, and end-of-use researches (Fig. 6).

Sugarcane is the largest incidence term from studies in 
the analyzed database (Fig. 6). Brazil tightly generates bio-
energy and bioethanol from sugarcane. Studies show the 
growing and improvements in these processes, employing 
bagasse, straw, and fibers from the residual material (Agu-
iar et al. 2021; Alarcon et al. 2021; Barbosa et al. 2020; 
Canilha et al. 2012; Giese et al. 2012; Soares et al. 2020). 
In bagasse format, sugarcane presents a greater diversity of 

technology conversions for applicability for final use of cel-
lulose nanocrystals (Fig. 6) (Bilatto et al. 2020; de Oliveira 
Júnior et al. 2020; Leão et al. 2017, 2020; Oliveira et al. 
2016; Pereira and Arantes 2018, 2020). Figure 6 also high-
lights studies in which the plant works as a matrix for other 
textile fibers such as sisal for new biodegradable composites 
(de Castro et al. 2021; Satyanarayana et al. 2009); fibers are 
commonly used for reinforcement in composites (Cardoso 
et al. 2017; De Lemos et al. 2017; Dos Santos et al. 2018; 
Ferreira et al. 2019; Mulinari et al. 2012); production of 
multifunctional biocatalysts (Bilal et al. 2020; Silveira et al. 
2014a, b); enzymes such as peroxidase (Queiroz et al. 2018), 
amylase (Orlandelli et al. 2017), cellulase (Do Nascimento 
and Coelho 2011), hemicellulase (Camassola & Dillon 
2007), and xylanase (L. A. Oliveira et al. 2006); and dye 
adsorption (Cunha et al. 2018; B. C. S. Ferreira et al. 2015; 
Giusto et al. 2017; Meili et al. 2019; Piffer et al. 2020). In 
addition, Costa et al. (2015) highlight the use of sugarcane 
as a material suitable for textile application and the develop-
ment of bioproducts.

Soybean, the main cultivated area in Brazil, presents 
husks and straw in its main format (Fig. 6): functioning 
like a chemical adsorbent (de Souza et al. 2021); bioenergy 
(De Pretto et al. 2018); biomaterials (Rosa et al. 2015); and 

Fig. 6   Scientific literature 
database diagram focusing on 
the highest incidence of agro-
industrial materials citations by 
classification and types, crops, 
formats, conversion technol-
ogy, and end-of-use researches. 
Source: partially adapted from 
Onu and Mbohwa (2021b) and 
partially authors
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cellulose (Souza et al. 2020), in particular, nanofibrillated 
cellulose (Debiagi et al. 2020; Flauzino Neto et al. 2013; 
Martelli-Tosi et al. 2016). One of the highlights is its poten-
tial for composites and films (Martelli-Tosi et al. 2017).

Cassava presents its main formats in husks, stems, and 
leaves for the following: the generation of bioenergy (Cruz 
et al. 2021); a substrate for composites (de Lima et al. 2020); 
a generator of cellulose nanocrystals (Czaikoski et al. 2020; 
Travalini et al. 2018); biosorbent (de Oliveira et al. 2019a, 
b); and enzyme production (Oliveira et al. 2006) (Fig. 6).

In the cereals group, corn presents the main format as a 
cob and stem. Its main applications are as follows: adsorp-
tion material (Campos et  al. 2020); to obtain cellulose 
(Araújo et al. 2020; Ditzel et al. 2017; Longaresi et al. 2019; 
Souza and Quadri 2014); biocatalysts (Bilal et al. 2020); 
green composites (Ramos et al. 2019); reinforcement poly-
mers (Coiado et al. 2017; Silvério et al. 2013); and enzyme 
productor (Grigorevski-Lima et al. 2009; Orlandelli et al. 
2017). Rice, on the other hand, is presented in the form of 
husks and husk bran from the cultivation. Its main appli-
cations are the following: to obtain cellulose nanocrystals 
(Hafemann et al. 2020); enzymes (Gautério et al. 2020); 
adsorption of violet dyes in textile industry (Ribeiro et al. 
2017); and biodegradable composites (Pereira et al. 2015). 
Wheat term appears less frequently, but it presents unique 
bran format for applications: in enzyme production (Cama-
ssola and Dillon 2007; Do Nascimento and Coelho 2011; 
Grigorevski-Lima et al. 2009; Orlandelli et al. 2017) and 
composites (Pereira et al. 2015) (Fig. 6).

The fruit group contains also the citrus fruits. The study 
by Alarcon et al. (2021) mentions coconut and banana as 
references to textile fibers and their application to compos-
ites and polymeric films. The fermented banana pseudostem 
and coconut fiber are potential producers of lipase and cel-
lulase (Ferreira da Silva et al. 2019) and nano crystallized 
cellulose (Pereira et al. 2014). Coconut husk fibers, which 
represent a large amount of material mass, present applica-
bility as follows: biosorbent for textile dyes (Carvalho Costa 
et al. 2020; de Oliveira et al. 2018b, a; Merci et al. 2019; 
Lopes et al. 2020), and bioenergy and cellulosic ethanol 
(Gonçalves et al. 2014, 2019). The applicability with this 
fiber involves crafts (Nunes et al. 2020), green composites 
(Lomelí-Ramírez et al. 2018), and copolymers (Rosa et al. 
2009), in particular, for the removal of chromium from tan-
nery effluents (Cunha et al. 2018). Orange term presents 
the greatest intensity of studies with the pomace, for the 
generation of nanofibers (Miranda et al. 2019), nanocellu-
lose (Mariño et al. 2018, 2016), and adsorbent of dyes (Nas-
cimento et al. 2014). The grape appears with its research 
in the stalk, in the development of polymeric composites 
(Borsoi et al. 2020; Taurino et al. 2020), and removal of 
blue and brown textile dyes (Benvenuti et al. 2020; Oliveira 
et al. 2018b, a). Pineapple has great potential for studies in 

the textile sector. Applications such as cellulose fibers and 
nanofibers from their residual crowns have been increasingly 
developed (Pereira et al. 2021; Prado et al. 2020; Prado and 
Spinacé 2019), and the use of fibers from the sheets for rein-
forcement mechanics in polymer composites (de Azêvedo 
et al. 2021; Leão et al. 2015; Sena Neto et al. 2015). Leao 
et al. (2010) highlighted the textile fibers from their sheets 
as the future of industrial applications (Fig. 6).

Sawdust from eucalyptus wood provides a biosorbent 
for removing textile dyes such as methylene blue (Cemin 
et al. 2021), and its pulp, cellulose nanofibrils (Camani et al. 
2020; Demuner et al. 2020; Siqueira et al. 2019) (Fig. 6).

Other fruits, not shown in the diagram, stand out, such as 
apple, khaki, avocado, and pomegranate for the removal of 
dyes (Bazzo et al. 2016; Bonetto et al. 2021; Silveira et al. 
2014a, b); the seeds of açai in the adsorption and obtain-
ing of fibers and application in composites (de Oliveira 
et al. 2019a, b; Wataya et al. 2016, 2015; Zavarize 2021); 
cashew and acerola for bionanocomposites (Duarte et al. 
2015; Vieira Amorim et al. 2021); cocoa husks for cellulose 
nanofiber (Souza et al. 2019); and papaya and mango for the 
generation of enzymes for the textile industry (Okino-Del-
gado et al. 2018). The cereal group also presents incidence 
of moreover materials, such as oat husks for the generation 
of nanofibrillated cellulose (Debiagi et al. 2021). Tubers 
such as sweet potato also demonstrate to have composite 
potential (Pereira et al. 2017). The group of nuts, which are 
not identified in the diagram, contains pecan nutshells for 
biosorption of cationic dyes (Georgin et al. 2018; Pang et al. 
2019). Peanut husks stand out from the oleaginous grain in 
dye adsorption research (Nascimento et al. 2014; Villar da 
Gama et al. 2018). Coffee beans, which are not very evident, 
act as reinforcing recycled polymers (Coiado et al. 2017).

According to all analyzed studies, the technology conver-
sions are diverse: preliminary analysis of the chemical, phys-
ical, and morphological structure is the most used in mate-
rials, added to thermal, rheological, and mechanical ones; 
alkaline treatment in synergy with spectroscopy, ultrasound, 
bleaching, hydrothermal, and chemical/acid treatment; 
extraction and characterization, on the other hand, appear as 
chemical sequential and moderate; kinetic analysis in exam-
ples with pseudo-first and second-order models, pyrolysis, 
and combustion; solid-state fermentation was mentioned the 
most, but the data includes submerged fermentation with 
hydrolysis; the biorefinery includes a set of general analyses 
that are not in-depth in the present study (Fig. 6).

Conclusion

Efficient management, based on sustainable criteria, of agro-
industry wastes, requires urgent programs to evaluate meth-
ods and new possibilities in the short and long term. The 
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development of appropriate technologies for these processes 
reduces the sector’s negative impacts and increases its eco-
efficiency, generating ecological benefits on several fronts, 
from land use and waste, as well as greater management of 
the extraction of non-renewable resources.

All reported results contributed to a preliminary under-
standing of the potential use of agro-industrial waste in the 
generation of industrial textile products in agreement with 
other industries. The employment of fibers from residual 
agricultural biomass is a cheap, accessible, and widely avail-
able alternative, constituting a model for adding economic 
value to the agro-industrial chains of the Brazilian main 
crops.

The analysis of the scientific literature database reveals 
that research on the recovery and relocation of agro-indus-
trial materials in the textile industry still shows incipient 
advances in Brazil. The main areas identified address mate-
rials such as dye biosorbents from industrial effluents and 
reinforcement material in composites. In general, researches 
on natural fibers represent further advances in sugarcane, 
coconut, banana, and pineapple, which are already employed 
as fibers in these studies. Materials such as açai, rice, wheat, 
and corn are highlighted for obtaining the raw fiber of the 
material, especially for reinforcing composites. Furthermore, 
all other agro-industrial materials are investigated to obtain 
cellulose nanofibers.

Sugarcane has a higher incidence in the analyzed studies, 
presenting a greater diversity of formats and implemented 
technologies compared to other materials. Despite the larg-
est area of productive land being devoted to soy in Brazil, 
the waste is devoted only to absorbents, biomaterials, and 
cellulose nanofibers. Fibers are commonly used as reinforce-
ment in composites, biodegradable composites, and film 
production. Due to preliminary studies and material knowl-
edge, there is little scalability of materials for the market 
and industry at the moment, but great potential for product 
development due to analyzed properties. The studies that 
highlight the transfer of technology to the Brazilian textile 
industry involve materials such as sugar cane, corn, rice, 
coconut, banana, pineapple, and acai seeds in the production 
of fibers and application in green composites. Those fibers 
stand out due to their intense abundance of residues, and 
their physicochemical properties of high quality, low cost, 
and biodegradability The industrial applicability of fibers 
in Brazil is small, almost null in the textile sector, while 
availability is growing.

The researches directed to the textile industry present a 
larger incidence focused on treating effluents than applied 
to new materials, constituting scientific opportunities. Thus, 
scientific investment in researches on materials and technol-
ogy development are necessary to provide applications that 
could meet current and future demands and expand the scope 
of new materials for sustainability.
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