Skip to main content

Advertisement

Log in

Microstructure and properties of copper matrix composites reinforced with Cu-doped graphene

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

To reduce production cost and inhibit the aggregation of graphene, graphene oxide and copper nitrate solution were used as raw materials in the paper. Cu particles were introduced to the graphene nanosheets by in-situ chemical reduction method in the hydrazine hydrate and sodium hydroxide solution, and the copper matrix composite reinforced with Cu-doped graphene nanosheets were fabricated by powder metallurgy. The synthesized Cu-doped graphene was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The relative density, hardness, electrical conductivity and tensile strength of the copper matrix composite reinforced with Cu-doped graphene were measured as well. The results show that copper ions and graphene oxide can be effectively reduced by hydrazine hydrate simultaneously. Most of oxygen functional groups on the Cu-doped graphene sheets can be removed dramatically, and Cu-doped graphene inhibit the graphene aggregation effectively. Within the experimental range, the copper matrix composites have good comprehensive properties with 0.5 wt% Cu-doped graphene. The tensile strength and hardness are 221 MPa and 81.6 HV, respectively, corresponding to an increase of 23% and 59% compared to that of pure Cu, and the electrical conductivity reaches up to 93.96% IACS. However, excessive addition of Cu-doped graphene is not beneficial for the improvement on the hardness and electrical conductivity of copper matrix composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that generated or analyzed during this investigation are within the paper.

References

  1. Yang T, Chen W, Yan F et al (2020) Effect of reduced graphene oxides decorated by Ag and Ce on mechanical properties and electrical conductivity of copper matrix composites. Vaccum 183:109861. https://doi.org/10.1016/j.vacuum.2020.109861

    Article  CAS  Google Scholar 

  2. Shangina DV, Bochvar NR, Morozova AI, Belyakov AN, Kaibyshev RO, Dobatkin SV (2017) Effect of chromium and zirconium content on structure, strength and electrical conductivity of Cu-Cu-Zr alloys after high pressure torsion. Mater Lett 199:46–49. https://doi.org/10.1016/j.matlet.2017.04.039

    Article  CAS  Google Scholar 

  3. Gorsse S, Ouvrard B, Goune M, Poulon-Quintin A (2015) Mic-rostructural design of new high conductivity-high strength Cu-based alloy. J Alloy Compd 633:42–47. https://doi.org/10.1016/j.jallcom.2015.01.234

    Article  CAS  Google Scholar 

  4. Li YP, Xiao Z, Li Z, Zhou ZY, Yang ZQ, Lei Q (2017) Micro- structure and properties of a novel Cu-Mg-Ca alloy with high strength and high electrical conductivity. J Alloy Compd 723:1162–1170. https://doi.org/10.1016/j.jallcom.2017.06.155

    Article  CAS  Google Scholar 

  5. Zhang HM, Chao MJ, Zhang HS, Tang A, Ren B, He XB (2014) Microstructure and thermal properties of copper matrix composites reinforced by chromium-coated discontinuous graphite fibers. Appl Therm Eng 73:739–744. https://doi.org/10.1016/j.applthermaleng.2014.08.034

    Article  CAS  Google Scholar 

  6. Tao JM, Chen XF, Hong P, Yi JH (2017) Microstructure and electrical conductivity of laminated Cu/CNT/Cu composites prepared by electrodeposition. J Alloy Compd 15:232–239. https://doi.org/10.1016/j.jallcom.2017.05.074

    Article  CAS  Google Scholar 

  7. Arnaud C, Lecouturier F, Mesguich D, Ferreira N, Cheval-lier G, Estournes C, Weibel A, Peigney A, Laurent C (2016) High strength-high conductivity nanostructured copper wires prepared by spark plasma sintering and room temperature severe plastic deformation. Mater Sci Eng 15:209–213. https://doi.org/10.1016/j.msea.2015.09.122

    Article  CAS  Google Scholar 

  8. Gao X, Yue H et al (2016) Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technol 301:601–607. https://doi.org/10.1016/j.powtec.2016.06.045

    Article  CAS  Google Scholar 

  9. Avcu E, Gao H, Zhang X et al (2022) The effect of reduced graphene oxide content on the microstructural and mechanical properties of copper metal matrix composites. Mater Sci Eng. https://doi.org/10.1016/j.msea.2022.143921

    Article  Google Scholar 

  10. Zhang X, Yang W, Zhang J et al (2019) Multiscale graphene/carbon fiber reinforced copper matrix hybrid composites: microstructure and properties—ScienceDirect. Mater Sci Eng 743:512–519. https://doi.org/10.1016/j.msea.2018.11.117

    Article  CAS  Google Scholar 

  11. Abdolhosseinzadeh S, Asgharzadeh H, Kim HS (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5:10160. https://doi.org/10.1038/srep10160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asgharzadeh H, Eslami S (2019) Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical proper- ties of copper matrix composite. J Alloy Compd 806:553–565. https://doi.org/10.1016/j.jallcom.2019.07.183

    Article  CAS  Google Scholar 

  13. Khobragade N, Sikdar K, Kumar B et al (2018) Mechanical and electrical properties of copper-graphene nanocomposite fabricated by High Pressure Torsion. J Alloy Compd 776:123–132. https://doi.org/10.1016/j.jallcom.2018.10.139

    Article  CAS  Google Scholar 

  14. Zhao X, Tang J, Yu F et al (2018) Preparation of graphene nano-platelets reinforcing copper matrix composites by electrochemical deposition. J Alloy Compd 766:266–273. https://doi.org/10.1016/j.jallcom.2018.06.309

    Article  CAS  Google Scholar 

  15. Kim Y, Lee J (2013) Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat Commun 3114:1–7. https://doi.org/10.1038/ncomms3114

    Article  CAS  Google Scholar 

  16. Zhang XJ, Song F, Wei ZP, Yang WC, Dai ZK (2017) Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction. Mater Sci Eng 705:153–159. https://doi.org/10.1016/j.msea.2017.08.079

    Article  CAS  Google Scholar 

  17. Hu Z, Tong G, Lin D, Nian Q, Shao JY, Hu YW, Saei M, Jin SY, Cheng GJ (2016) Laser sintered graphene nickel nanocomposites. J Mater Process Technol 231:143–150. https://doi.org/10.1016/j.jmatprotec.2015.12.022

    Article  CAS  Google Scholar 

  18. Kuang D, Xu L, Liu L, Hu WB, Wu YT (2013) Graphene-nickel composites. Appl Surf Sci 273:484–490. https://doi.org/10.1016/j.apsusc.2013.02.066

    Article  CAS  Google Scholar 

  19. Rashad M, Pan FS, Tang AT (2014) Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J Alloy Compd 603:111–118. https://doi.org/10.1016/j.jallcom.2014.03.038

    Article  CAS  Google Scholar 

  20. Chen LY, Konishi H, Fehrenbacher A, Chao M, Xu JQ, Hongseok C, Xu HF, Frank E, Li XC (2012) Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr Mater 67:29–32. https://doi.org/10.1016/j.scriptamat.2012.03.013

    Article  CAS  Google Scholar 

  21. Yan SJ, Dai SL, Zhang XY, Yang C, Hong QH, Chen JZ, Lin ZM (2014) Investigating aluminum alloy reinforced by graphene nanoflakes. Mater Sci Eng 612:440–444. https://doi.org/10.1016/j.msea.2014.06.077

    Article  CAS  Google Scholar 

  22. Zhang HP, Xu C, Xiao WL, Ameyama K, Ma CL (2016) Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion. Mater Sci Eng 658:8–15. https://doi.org/10.1016/j.msea.2016.01.076

    Article  CAS  Google Scholar 

  23. Bastwros M, Kim GY, Zhu C, Zhang K, Wang SR, Tang XD, Wang XW (2014) Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos Part B Eng 60:111–118. https://doi.org/10.1016/j.compositesb.2013.12.043

    Article  CAS  Google Scholar 

  24. Kim WJ, Lee TJ, Han SH (2014) Multi-layer graphene/copper composites: preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon 69:55–65. https://doi.org/10.1016/j.carbon.2013.11.058

    Article  CAS  Google Scholar 

  25. Jiang R, Zhou X, Fang Q, Liu Z (2016) Copper-graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties. Mater Sci Eng 654:124–130. https://doi.org/10.1016/j.msea.2015.12.039

    Article  CAS  Google Scholar 

  26. Hwang J, Yoon T, Jin SH, Lee J, Kim TS, Hong SH, Jeon S (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25(46):6724–6729. https://doi.org/10.1002/adma.201302495

    Article  CAS  PubMed  Google Scholar 

  27. Tang Y, Yang X (2014) Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Mater Sci Eng 599:247–254. https://doi.org/10.1016/j.msea.2014.01.061

    Article  CAS  Google Scholar 

  28. Wang L, Cui Y, Li B, Yang S, Li R, Liu Z, Vajtai R, Fei W (2015) High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing. Rsc Adv 5:51193–51200. https://doi.org/10.1039/c5ra04782j

    Article  CAS  Google Scholar 

  29. Zhang DD, Zhan ZJ (2016) Strengthening effect of graphene derivatives in copper matrix composites. J Alloy Compd 654:226–233. https://doi.org/10.1016/j.jallcom.2015.09.013

    Article  CAS  Google Scholar 

  30. Mallakpour S, Abdolmaleki A, Karshenas A (2017) Graphene oxide supported copper coordinated amino acids as novel heterogeneous catalysts for epoxidation of norbornene. Catal Commun 92:109–113. https://doi.org/10.1016/j.catcom.2017.01.017

    Article  CAS  Google Scholar 

  31. Zhang Y, Sullivan J, Bose A (2020) Rheological and microstructural characterization of aqueous suspensions of carbon black and reduced graphene oxide. Colloids Surf A 592:1–5. https://doi.org/10.1016/j.colsurfa.2020.124591

    Article  CAS  Google Scholar 

  32. Zhang DD, Zhan ZJ (2016) Experimental investigation of interfaces in graphene materials/copper composites from a new perspective. Rsc Adv 6(57):52219–52226. https://doi.org/10.1039/c6ra07606h

    Article  CAS  Google Scholar 

  33. Tang Y, Yang X, Wang R, Li M (2014) Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Mater Sci Eng A 599:247–254. https://doi.org/10.1016/j.msea.2014.01.061

    Article  CAS  Google Scholar 

  34. Hao X, Wang X, Zhou S, Zhang H, Liu M (2018) Microstructure and properties of silver matrix composites reinforced with Ag-doped graphene. Mater Chem Phys 215:327–331. https://doi.org/10.1016/j.matchemphys.2018.05.036

    Article  CAS  Google Scholar 

  35. Gong L, Yang R, Liu R, Zou Y, Liu Y, Chen L, Yan Y, Xu Y (2021) Chemical synthesis of dendritic interlaced network graphene quantum dots/sulfur composite for lithium-sulfur batteries. J Alloy Compd 855:157278. https://doi.org/10.1016/j.jallcom.2020.157278

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52274366 and No. U21A2051), the Science and Technique Innovation Program of Shaanxi Province for Key Laboratory (No. 2014SZS08-K02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Cheng, X., Chen, Y. et al. Microstructure and properties of copper matrix composites reinforced with Cu-doped graphene. Carbon Lett. 34, 1317–1327 (2024). https://doi.org/10.1007/s42823-024-00689-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-024-00689-2

Keywords

Navigation