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Abstract

The coatings based on carbon nanotubes (CNTs) are increasingly developed for their applications, among others, in medicine,
in particular for implants in implantology, cardiology, and neurology. The present review paper aims at a detailed demonstra-
tion of different preparation methods for such coatings, their performance, and relationships between deposition parameters
and microstructure and material, mechanical, physical, chemical, and biological properties. The thermal and electrostatic
spraying, electrophoretic and electrocathodic deposition, and laser methods are presented. Characterization of microstructure
of coatings, topography, morphology, adhesion of CNTs to a substrate, mechanical behavior, corrosion resistance, wettabil-
ity, cytotoxicity, bioactivity, and antibacterial protection are reviewed for different deposition methods and parameters. The
state-of-the-art in the field of carbon nanotubes shows a considerable number of research performed on CNTs coatings. The
different forms of CNTs, deposition methods, parameters, and substrates were applied as process variables. The microstruc-
tures and surface homogeneity, chemical and phase compositions, mechanical properties at the micro- and nanoscale such
as coating Young's modulus and hardness, interface adhesion strength and delaminating force, open corrosion potential and
corrosion current density, contact angle in wettability assessment, and bioactivity, cytotoxicity, and antibacterial efficiency
among biological properties were determined. The summary of so far achievements, strengths and weaknesses, and important
future research necessary for clarification of some weak points, development of non-toxic, mechanically and chemically
resistant, bioactive, and antibacterial multicomponent coatings based on functionalized CNTs are proposed.
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MWCNTs Multi-wall carbon nanotubes

nanoAg Nanosilver

nanoCu Nanocopper

nanoHAp Nanohydroxyapatite

NEMS Nanoelectromechanical system

PBF Powder bed fusion

PCL Polycaprolactone

PECVD Plasma enhanced chemical vapor
deposition

PEG Poly(ethylene glycol)

PEO Plasma electrolytic oxidation

PLA Poly(lactic acid)

PLGA Poly(lactide-co-glycolide)

PLLA Poly(L-lactide)

PM Partially melted

PMMA Poly(methyl methacrylate)

PS Plasma spraying

PU Polyurethane

PVA Polyvinyl alcohol

rGO Reduced graphene oxide

ROS Reactive oxygen species

SBF Simulated body fluid

SHVOF Suspension high-velocity oxy-fuel

SWCNTs Single-wall carbon nanotubes

YSZ Yttria-stabilized zirconia

1 Introduction

Recent medical implantology has utilized or investigated a
huge number of materials in the form of solid implants or
scaffolds, and also meshes, sponges, hydrogels, and coat-
ings to modify the surfaces of metallic implants. Among
them, the most recently, have appeared different forms of
elementary carbon, principally single-wall or multi-wall car-
bon nanotubes (SWCNTs or MWCNTs of different chirality)
but also carbon fibers (CFs), graphene, mainly as graphene
oxide (GO) or reduced graphene oxide (rGO), fullerenes
(especially C60) [1, 2]. The carbon nanotubes were discov-
ered by lijima [3]. Various types of synthesis techniques
for CNTs include the arc-discharge method, laser ablation
method, chemical vapor deposition (CVD), vapor-phase
growth, flame synthesis method, and plasma-assisted growth
[2].

All nanocarbon forms, particularly carbon nanotubes
(CNTs), demonstrate extraordinary mechanical, thermal,
magnetic, optical, electrical, surface, and chemical proper-
ties. Their electronic properties, high electric and thermal
conductivity, and stiffness and strength are over those shown
by any other material [4]. Thanks to these features, the CNTs
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have been frequently applied or recommended for use in
different fields of the economy: medicine, biomechanics,
energy storage, molecular electronics, fabrics and fibers, air
and water filtration, and others [5].

As an additive to construction materials, they are presum-
ably mostly applied as a component of epoxy resins. They
have been used to improve the electrical and mechanical
construction of epoxy-based composites [6—8]. They were
given as fillers to strengthen several construction polymers
[2, 9, 10] and also as functionally graded CNTs reinforced
composites [11]. They can be considered components of
bifunctional electrocatalysts [12].

As a component of coatings, they have been proposed to
enhance heat transfer of heat sinks [13], improve corrosion
performance [14-17], reinforce the coatings [18], increase
the friction behavior [19, 20], make coatings superhydropho-
bic and usable for different applications [15, 21-23], such
as the abrasion-resistant, photothermal, and anti-icing [24],
and self-adapting ultra-high-temperature ceramic coatings
[25]. The CNTs were used in coatings for electromagnetic
interference shielding [26] and as a flame-retardant coating
or composite material [27-29]. They were applied against
decontamination of organic chemical pollutants in water [30,
31] and also involved in building space stealth and cosmic
radiation shielding [32].

They are widely used in electronics and energy systems.
Their electrical and electronic properties are suitable for
building artificial muscles, electrochemical, thermal actua-
tors, solvent and vapor actuators, fiber-shaped batteries and
supercapacitors, color-changed electroluminescent and elec-
trochromic fibers, mechanical and electrochemical sensors
[33], thermal management systems [33, 34], solar cells [35],
high-performance metal-ion batteries [36—38], energy stor-
age and conversion devices [39], nanogenerators for harvest-
ing energy [40], NEMS and hydrogen storage modules [2].

They are also increasingly developed for medical appli-
cations. They can be applied in bone regeneration, artificial
neural conduits, and in drug and gene delivery in cancer
therapy, brain therapy [41, 42], vaccine delivery [42], tis-
sue engineering, and regenerative medicine, in particular
for bone and muscle, and nervous system regeneration by
neuronal differentiation and neuronal stimulation [42—45],
for culturing the human embryonic stem cells and preserv-
ing their viability [46], and dosage forms and biomedical
substrates in the pharmaceutical industry [47], They can be
utilized in diagnosis for biomedical imaging, biosensors, for
biomolecular detection and nanotweezers [42, 48]. They are
introduced as sensors, in drug targeting, cancer diagnosis,
and treatment, as antibacterial and antifungal species [49].
The CNTs helped to create the coatings releasing the active
ingredients [50] such as biphosphonates, nucleic acids,
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proteins, and statins [51]. The integration of CNTs with
polymeric scaffolds is promising for cardiac regeneration
[52, 53]. The carbon nanotubes reinforced with chitosan,
poly(lactic acid) (PLA), poly(lactide-co-glycolide) (PLGA),
poly(ethylene glycol) (PEG), polyvinyl alcohol (PVA), and
polycaprolactone (PCL) can mimic the extracellular matrices
of bone [54]. These unique properties make CNTs promising
candidates for cancer treatment and regenerative medicine,
for bone, and nerve restoration [43, 55]. The incorporation
of CNTs into polymer scaffolds results, among others, in
increased scaffold strength and flexibility, improved bio-
compatibility, retardation of cancer cells™ division, and
enhancement of angiogenesis [1]. They are microbial and
anti-adhesive [56-58]. They are used in various biosensors
for biomolecular detection [59].

Besides the advantages, CNTs have two serious draw-
backs. The first disadvantage important for medical applica-
tions is their anticipated toxicity which is a permanent fea-
ture of each nanoparticle; their small size and high surface
area to volume ratio are associated with significant chemical
reactivity, change in permeability and conductivity mem-
branes of cells, lung penetration, and lung cancer risk [60].
The bioactivity and cytotoxicity of CNTs are affected by
their diameter, length, and functionalization in vitro and
in vivo, as well as by the fabrication method with nickel
catalyst [61] and may make CNTs toxic for living organ-
isms or the environment [60, 62]. The toxicity can manifest
itself as membrane damage, DNA damage, an appearance of
oxidative stress, and changes in mitochondrial activity and
intracellular metabolic routes as a consequence of the highly
hydrophobic surface and the non-biodegradable nature of
the CNTs [1]. However, the CNTs are considered to have
carcinogenicity mainly to enhance lung tumors, and the

Fig.1 CNTs types based on

a number of walls, where A
SWCNTs, B DWCNTSs, and C
MWCNTs. Figures A and C
were reproduced with permis-
sion [74] Copyright 2011,
InTech

carcinogenicity may attenuate with decreasing tube length
[63]. The MWCNTs are likely to be a more neural-friendly
interface than SWCNTs since they allow for a wider external
surface and effective functionalization [64].

The second disadvantage is the weak adhesion of CNTs
(and all carbon nanoforms) to any material. It is critical to
functionalize CNTs not only to make them more soluble, but
also to allow their integration into many organic, inorganic,
and biological systems and applications, and eliminate or at
least minimize their toxicity. A proper functionalization of
the CNTs is nowadays carried out by a variety of methods
[65-68]. It may follow two strategies: (1) chemical reactions
occurring at the sidewalls and tips of CNTs and (2) oxidation
followed by an appearance of carboxyl-based bonding [41].
Functionalization of carbon nanofibers can be performed by
CVD and plating of some compounds, and by chemical or
biochemical reactions [69].

This review aims to show the newest data on carbon
nanotubes creating coatings or being components of such,
in particular (1) various synthesis methods, in particular the
electrophoretic deposition (EPD) technique as the most pre-
ferred, (2) their properties, such as surface morphology and
topography, mechanical, corrosion, and biological proper-
ties, and the relationships between output and input variables
to optimize the deposition process.

2 Forms of carbon nanotubes

Carbon nanotubes are hollow structures created from rotat-
ing a graphene layer around one axis in a certain direction.
It is an sp* form of hybridization of carbon derive, where
carbon atoms are organized with strong covalent bonds in
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a hexagonal lattice, very similar to graphene, graphite, and
fullerenes. Carbon nanotubes can be divided into SWCNTSs,
double-wall carbon nanotubes (DWCNTs), and MWCNTs
[70], which are demonstrated in Fig. 1. The first reported
were MWCNTs by lijima [3]. MWCNTs are composed of
concentric cylinders with regular periodic interlayer spac-
ing located around the ordinary central hollow. They form
a layer construction with van der Waals bonding between
cylinders [71-73].

Literature shows that the parameters of all types of carbon
nanotubes are within certain limits as illustrated in Tables 1
and 2.

Table 1 The physical properties of three types of CNTs

Besides the division grounding on the number of car-
bon nanotube walls, some SWCNTs forms differ in terms of
wrapping to a cylinder structure, such as armchair (integers
n=m), zigzag (integers m =0), and chiral (other integers)
[72]. Figure 2 illustrates schematic types of wrapping graph-
ite sheet to form different forms of SWCNTs.

There are several methods of synthesis of carbon nano-
tubes such as chemical vapor deposition, arc-discharge
method, laser ablation method, spray pyrolysis, hydrother-
mal methods, and thermal plasma [48, 70, 85-87].

Property MWCNTs

DWCNTs

SWCNTs

Interlayer spacing 0.34+0.39 nm [72]

0.33+0.42 nm [75] -

Inner diameter 4+7 nm [76] 1+3 nm [2] -
Outer diameter 2+30 nm [72] 2+4 nm [2] 0.4+3 nm [72, 77]
15+25 nm [76] Made with CVD 1.3+1.5 nm [78]
Length Up to 50 um [76] 100+475 nm [79] CVD 13 um [78]
100 nm=1 cm [77] 100 nm=1 cm [77] CVD 140 nm=+3200 nm [80]
Ends Closed and capped with half- Capped and open-ended [81] Can come together and form bundles [72]

fullerene molecules [72]

Table 2 The mechanical

. Property
properties of three types of

MWCNTs

DWCNTs SWCNTs

1.7+2.4 TPa [83]
63 GPa [77]

0.33+0.42 TPa [75]
77.51+157.5 GPa® [84]

2.8+3.6 TPa [83]
53 GPa [77]

“Predicted based on finite element method and chirality

CNTs Young’s modulus
Tensile strength
Fig.2 A scheme illustrating A A

forms of wrapping graphite to
achieve different structures of
the SWCNTs and B different
structures of SWCNTs based
on the chiral angle. The figure
is reproduced with permission
[82] Copyright 2016, JACS
Directory©2016
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3 CNTs-containing coating types and their
deposition methods

There are many types of CNT-included coatings, with
ceramics, metals, polymers, or mixed. Examples of such
coatings are shown in Fig. 3. Several deposition methods of
CNTs-containing coatings, like the main groups: thermal
spray, electrochemical deposition, and laser methods, are
schematically shown in Fig. 7. The main advantages and
disadvantages of the types of deposition methods are listed
in Table 3. The examples of CNTs-containing coatings and
their main parameters of synthesis with described impact on
coatings properties are listed in Tables 4 and 5.

3.1 Thermal spraying

A thermal spray is a group of processes in which materials
(metals, alloys, metal oxides, metal/ceramic blends, car-
bides, composite materials) are deposited using spraying.
The processes differ from each other basically by the state of
the material: molten, semi-molten, or solid state. The ther-
mal spraying method is used in many fields in mechanical
engineering, for corrosion protection, surface restoration,
and repair, heat insulation or conduction; energy technology,
and biomedical and industrial areas [88, 89]. Apart from
many advantages, the technique has also some drawbacks.
Covering parts with complex shapes, inner surfaces, and nar-
row parts is limited. Some advances in thermal spray tech-
nology enable covering a such surface, named the internal
diameter thermal spray method [90, 91]. Figure 4 shows
a schematic illustration of literature-based three most used
methods of CNTs deposition techniques.

3.1.1 Plasma spraying

Plasma spraying (PS) is one of the thermal processes used to
coat materials. This method uses a high-energy heat source,
which melts (at a temperature of about 10,000 K) coat-
ing material inserted into a plasma jet and sprayed onto a

Fig.3 Scheme of types of
carbon nanotube coatings

prepared substrate [92—-94]. The arc between two electrodes
cathode (tungsten) and anode (copper) is initiated by high-
frequency discharge in the presence of gases, such as Ar, He,
H, and N, named plasma-forming gases [93, 94]. Figure 4
A shows a schematic illustration of the PS coating method.

3.1.2 Cold spraying

Cold spraying (CS) or cold gas dynamic spray (CGDS) is not
only a thermal spraying process but also a solid-state spray-
ing method. It differs from other thermal spraying methods
by the state of powder feedstock, which is always unmelted.
This method is used to produce metallic and metallic-
ceramic coatings. Based on pressure level, the cold spray-
ing process (Fig. 4C) can be divided into low-pressure cold
spraying (LPCS) and high-pressure cold spraying (HPCS).
This process is based on the acceleration of particles of the
coating material by pressurized gas (air, N,, He, or mix-
ture) in a diverging-converging nozzle, leading to prepara-
tion layer-by-layer [89, 95] coating. The best adhesion of
the cold-sprayed coatings is achieved only above a critical
particle velocity [96].

3.1.3 High-velocity oxy-fuel thermal spraying

High-velocity oxygen fuel (HVOF) is a thermal spray tech-
nique that uses fuel, such as H,, propylene, acetylene, or ker-
osene to achieve a high temperature that ranges from 2500 to
3000 °C and high pressure in the combustion chamber. Most
commonly a powder, but also a suspension (another type of
HVOF, named suspension high-velocity oxy-fuel SHVOF) is
inserted in the nozzle and at the same time heated and accel-
erated (particle velocity of 550-1060 m/s) by a gas stream
causing the formation of a relatively dense coating, with
good adhesion properties. Coatings deposited by the HVOF
method (Fig. 4 B) are widely used to enhance surface perfor-
mance and protect against corrosion and wear, but it also is
a convenient method to deposit nanomaterials [91, 97-100]

TYPES OF
CARBON NANOTUBES
COATINGS

|

CARBON- CERAMIC
eg. CNTs+TiO,,
8YSZ-Al,05-CNT,
CNT-Ta,0s,

CNT-ALO,,
HAp-MWCNT

CARBON-METAL

CARBON-POLYMERIC COMPLEX

eg. CNT-Al, eg. MWCNT-PU eg. CNT-Si-Cu-Al,
CNT-Cu, Cr-YSZ-CNT,
CNT-Ni WC-Co-MWCNT
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% 3.1.4 Low-velocity oxy-fuel thermal spraying
1 P
E < Er § Low-velocity oxy-fuel (LVOF) thermal spraying is very
- - - , similar to HVOF, except for particle velocities, which are
o = .
g = Iy ”ig i % here lower, with close (2300-2500 °C) or the same flame
= Z . . e
§ =2 59 ‘? g < temperatures. At the same time, particle velocities in LVOF
g g § §§ é ﬁ § are higher than in plasma spraying [91, 101]. Coatings
3 é g g E § - deposited by LVOF are corrosion- and wear-resistant [102].
583 & 5=%
Z e s 2 ° O @ g
o= & == 582 .
EgZ TE ZE% 3.2 Electrochemical methods
° 5 g = g © 7 9=
BTE5E £ B8%EQ _ .
3 = e 25 .= = 5 = The electrochemical methods are among the most simple
= .5 7 = . . . . . .
g as S ‘Eog 5 ‘z K techniques. The deposition material is a suspension with
— N = S 0.2 . . . . .
3 § s gz = = % % Z charged micro- or nanoparticles, which are migrating to
é JE E “§ (; % 2e g the substrate, mainly due to the applied electrical field.
A = = = = S S . . .
e 8 E % = ;‘f QE f:g; ) Figure 5 demonstrates electrochemical methods, which are
g '§ Z é E = 58 é g 5e mostly used to prepare CNTs coatings and CNTs coatings
gl e €53 % 2 2% 2 S with additions.
S|EEELEaZEEDS
gl =28 22 2282
| 8222 <& 52328 3.2.1 Electrostati i
@w|E5%28 EE- E g &E .2.1 Electrostatic spraying
E 2850 B3z 22ZE 9
S| gEZE R85 2885
O & ~ A The electrostatic spraying (electrospray method, ES,
Sé_ & shown in Fig. 5C) is a simple technique used to deposit
& = coatings by dispersing charged material under an applied
3 3 electric field. The deposition system consists of a genera-
g % i‘}; tor and micro-injector, where a charged coating suspension
5 s 5 I is placed. Coatings prepared using this method are charac-
g = £35S E terized by good adhesion to the substrate [103].
£z Eg 1L
e TE g 3.2.2 Electrophoretic deposition
£EE  E2 o
= = ©° . .. . .
2% Q= = Electrophoretic deposition (EPD) is a simple method car-
=1 Q . . .
ﬁ 8 f § f ried out in suspension, where two electrodes, an anode,
§ § f ° 0 and a cathode are placed parallel to each other and con-
= .
2 £ S = 8‘ nected usually to a DC power supply (Fig. 5B). Due to
B ) 5 & o the electric field, the particles suspended in the solution
5 eh S on 7 =y . . :
2 %3 Z %‘ < % migrate to one of the electrodes (depending on particle
g 5 _§ 5 = 5 charge) and coagulate, forming a coating [111, 112, 142,
<
Sl =5 5 B 143, 147].
g 22 L2z 2
E & E
3.2.3 Electrocathodic deposition
8 g2
= = = = . .. . .
5 § é« % §~ Electrocathodic deposition (ECD), which is also known
21 E 5 . . o
Z2|= S S = as electrocathodically-assisted deposition (ECAD), elec-
tro-co-deposition, or electrolytic plating is a method used
in water solutions of inorganic compounds appearing as
§ & 3 cations and anions. Additionally, CNTs (or, e.g., their car-
£ 3 c|5\' boxylated complexes [148]) can be transported by large
= A . . . . . .
8 ; g cationic particles with which they form hydrogen chemical
~ g E . . .
n |2 HL % % bonds. Under an electric field, the cations or cation—CNTs
2 f é- E E complexes move toward the cathode being a covered
clol =z
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Fig.4 Schematic illustration of thermal spraying methods: A plasma spraying, B high-velocity oxy-fuel thermal spraying, and C cold spraying

substrate, and form coatings [149, 150]. A schematic dia-
gram of electrocathodic deposition is shown in Fig. 5A.

3.3 Laser methods

High-speed laser cladding (HSLC) is one of the meth-
ods applied to prepare CNT coatings, as shown in Fig. 7.
Traditional laser cladding (LC) uses laser energy to melt
additional material with the surface layer of the substrate.
The additional material could be in the form of powder,
wire, or strip [104]. LC method allows preparing surfaces
free from porosity and cracks [105], but still too thick to
produce wear and corrosion protective coatings because
the surface preparation rate ranges from 10 to 50 cm?/
min. For ultra-high-speed laser cladding, the rate of clad-
ding is approximately 500 cm?/min, which is more efficient
resulting in coatings of 10-250 um thick [106]. For better
understanding, Fig. 6 schematically demonstrates the idea
of the HSLC technique (Fig. 7).

@ Springer

4 Properties of composite coatings
4.1 Topography and morphology

Surface topography is a qualitative feature of a surface
shape, which is characterized by a quantitative feature,
named surface roughness, expressed by the surface S,
parameter (multiple lines) or line R, parameter. Table 6
shows a short review of the roughness of CNTs coatings.
When discussing topography, it is also essential to point to
surface morphology, which describes the coating chemical
and phase composition, thus Table 4 also provides such
information.

Table 6 shows that the roughness of electrochemically
prepared CNTs-containing coatings is lower compared
to other methods. Also, the plasma electrolytic oxidation
has a lowering effect on the CNT-Al coating image. The
microstructure of each coating depends on the method
of synthesis. Plasma-sprayed coatings generally have
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Fig.6 Schematic illustration of HSLC method of coating synthesis

lamellar microstructure due to layer-by-layer deposition,
where some microcracks, voids, and porosity can be distin-
guished [124, 125, 127, 136]. The porosity of Al-Si—~CNTs
coatings ranges from 10 to 12% and many agglomerates
of size distribution 39+57 um could be observed [123].
For Ta,0s/CNT coatings the porosity ranges at 18+26%
and increases with the higher concentration of CNTs.
Such coatings are intended for biomedical applications
and reach a thickness of 540+ 110 pm [31]. Generally,
the coatings prepared using PS show regions, where the
powder material is unmelted, partially melted or melted
[94, 127]. Another method of CNTs coatings prepara-
tion is HSLC which gives coatings almost as flat as the
substrate, without cracks in the micro-scale. For nickel-
plated CNTs/Fe-based coatings, there could be seen phase
transition from the columnar dendrite, through the crystal
to amorphous resulting from a temperature gradient, and
with the increase of CNTs content, all phases are refined
[119]. CNTs coatings prepared with the CS method have

@ Springer
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Fig.7 A scheme of CNTs methods of synthesis and CNTs coatings deposition methods

flake-like morphology, whereas in cross-sectional images
lamellar structure could be observed. Xie et al. reported
CNT/AISi coatings thickness to be several micrometers
[108]. Moreover, 1wt%-CNT-Al coatings exhibit pores
but their number and size are smaller than for the pure Al
coating deposited on AZ91 Mg alloy [130]. EPD-prepared
coatings have CNTs uniformly distributed. The other com-
ponents such as nanometals and nanoceramics are mostly
agglomerated [111, 142, 143] due to suspension instability
and no possibility to stir during the process. Such coatings

@ Springer

are also laser-modified, followed by scratches, folds, and
bulges observed on their surface. The phases like TiC in
the form of dendrites and spheres could be distinguished.
The thickness of laser-modified MWCNTs coating was
reported to be 7.88 +£0.35 um [112].

In materials science, morphology describes the shape,
texture, and distribution of different elements and phases
at a surface, whereas topography determines the quantita-
tive 3D configuration of different geometrical features on
a surface. The studies of both topography and morphology
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Table 6 The roughness of coatings with CNTs
Coating Substrate Method of synthesis Ra (um) Sa (um) Morphology description References
Cr-CNT* Steel ECD 0.29 A cauliflower-like structure bulged deposit [136]
Cr-YSZ-CNT® 0.22 A YSZ and CNTs are well dispersed in the Cr
matrix, where a two-phase structure might be
observed
Ta,0s/CNT Ti6Al4V PS 9.6+10.5 Characteristic to PS method coatings morphol- [31]
ogy, where layers of Ta,Os/CNT splats can be
distinguished, homogenous CNTs coating, and
uniformly distributed micropores of the distribu-
tion ranging from 1 to 5 um
Cu-5CNT® Cu CS 20.69 The CNTs are not homogenously dispersed. No [132]
cracks observed
(Cu-5CNT)-10AIN¢ 14.37 Both, AIN particles and CNTs are not homog-
(Cu=5CNT)-20AIN® 10.53 enously dispersed. No cracks observed
CNT-Al AZ91 Mg CS+PEO 4.01 The structure of the CNT coating is lamellar, with ~ [107]
microcracks, and Al,O; volcanic-type pores.
There could be distinguished a-Al,O; and
y-Al,O; forms of Al,O; and graphitized carbon.
The thickness of the coating is about 25 um
MWCNT? Til3Nbl13Zr EPD - 0.098 Uniform distribution of CNTs [142]
MWCNT-HAp? - 0.980  Many agglomerates of HAp observed, stuck to the
CNTs
MWCNT-Hap— - 0.618  Many agglomerates of nanometals adsorbed to HAp
nanoAg-nanoCu¢ particles
MWCNTs¢ - 0.34 Uniform distribution of CNTs. The thickness of the [111]
coating is about 0.5 pm
MWCNTs-TiO,¢ - 0.65 Uniform distribution of CNTs, many agglomerates
of TiO, of micron size. The thickness of the coat-
ing is about 2 pm
MWCNTs—Cud - Uniform distribution of CNTs, the Cu nanoparticles
located at the crossover of MWCNTSs caus-
ing cracks. The thickness of the coating is not
uniform; there are places of narrower and thicker
coating
MWCNTs? Ti Grade I EPD - 0.353 Uniform distribution of CNTs [143]
MWCNTs-TiO,¢ - 1.033  Uniform distribution of CNTs, many agglomerates
of TiO, of micron size
MWCNTs—Cu¢ - 0.495  Uniform distribution of CNTs with Cu agglomer-

ates built into

*The roughness of the Cr surface is about 0.90 um
®The roughness for Cr—YSZ is about 0.86 um
“The roughness of the Cu surface is about 17.5 um

4The roughness Sa parameter of Til3Nb13Zr surface is about 0.203 um

are always immanent parts of any materials investigations
as their influence on bioactivity, i.e., bone growth rate, and
also on corrosion behavior, is crucial. It might be assumed
that in topography, the deciding is the proper development
of the surface. For titanium, the geometry and dimensions
of oxide nanotubes are important. In particular, the walls of
rough and sharp nanotubes TiO, provide suitable places for
the nucleation of biospecies [151]. The presence of titanium
dioxide in the form of nanopatterns with heights of about
1.5 nm and nanotubes influenced protein adsorption kinetics

and the thickness and morphology of the resulting protein
layer which was attributed mainly to electrostatic interac-
tions [152, 153]. The nanopatterned arrays developed by the
chemical hydrothermal process at high temperatures mimic
the dragonfly wing and are suggested as the origin of their
activity against different bacteria [154]. The shot peening
of titanium causes the substantial appearance of the micro-
and nanoscale oxide layers which strongly affect adhesion,
proliferation, and osteogenic differentiation of human cells,
additionally enhancing wettability [154]. But not only the
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presence of titanium oxide is a necessary condition for posi-
tive effects of topography. Osteoblasts showed a tendency
to accelerate their proliferation on titanium spike structures
[155]. The positive effects of the surface morphology, and
micro and nano roughness, which improved osseointegra-
tion, were observed for hard titanium [155]. The additive
designed manufacturing such as powder bed fusion (PBF)
metal 3D printing makes porous structures of different local
surface topography and pore shape that affects cell prolifera-
tion and differentiation. In particular, titanium with pores
triangular and rectangular pores has higher roughness with
a structure more concave (valley-like) than that with cir-
cular pores and effectively promotes the proliferation and
differentiation of osteoblasts, thus improving osseointegra-
tion strength and implant fixation [156]. Similar phenomena
were observed for porous topography for silicon [157, 158],
hydroxyapatite [159, 160], poly(L-lactide) (PLLA) modified
with femtosecond laser [161], poly(methyl methacrylate)
(PMMA) [162]. For CNTs layers or composite coatings,
there have been no important investigations, but it might be
assumed that the presence of CNTs can enhance biological
processes.

4.2 Adhesion between CNTs and metallic substrate
4.2.1 Adhesion mechanisms

The adhesion strength is mainly determined by mechani-
cal and thermal interaction between particle and substrate
depending on the method of coating synthesis. In the CS
method deposition velocity and, thus, the degree of defor-
mation plays an important role. At the critical velocity, the
material is plastically deformed and a region (called adi-
abatic shear instability) where the temperature could reach
the melting point of the material is formed, leading to vis-
coelastic material flow, formation of a conformal interface,
and metallurgical bonding. Thus, the evaluation of adhesion
strength is dependent on the particle velocity, particle or
substrate temperature, substrate roughness, particle mor-
phology, and mechanical properties of both the particle and
the substrate [95, 163].

The CNTs formulate a mesh structure, with a large sur-
face area, giving space for reaction. Direct reaction of CNTs
with plasma plume in plasma spray method resulted in the
generation of defects which leads to an increase in reac-
tion sites [123]. In this method, there are seen three typical
microstructures: fully melted region, partially melted region,
and pores. In the fully melted region, some reduction pro-
cesses may occur such as in the case of CNT-TiO, coating
for which the carbothermal reduction appears followed by
the formulation of some TiO,_, species. In partially melted
regions, CNTs and the other components stick to each other
and bond with weak van der Waals forces [94].
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Adhesion plays a very important role in implant coat-
ing. If the adhesion is poor, during implantation surgery the
coating can be degraded or even totally removed. Therefore,
even further properties are positive, the adhesion must be
sufficient enough to counteract mechanical stresses dur-
ing the insertion of whatever implant into the bone. Below
different methods are described which are used to assess
the anticipated integrity by measurements of the adhesion
strength of the coating to the bone. Besides, as the coating
is subject during surgery and after different loads, the coat-
ing must be also tough, but not brittle. Therefore, CNTs are
added mainly to improve rigidity, hardness, and toughness.

Despite several described below tests to calculate adhe-
sion strength, widely described in the literature, however, the
best assessment of the coating behavior during implantation
surgery is in vivo experiments on animals. The results of
such successful studies are, however, not frequent. It is noted
that to increase the clinical success rate of metal implants is
to increase their bone-bonding properties, i.e., to develop a
bone bioactive surface leading to reduced risks of interfa-
cial problems. Much research has been devoted to modify-
ing the surface of metals to make them bioactive. Many of
the proposed methods include depositing a coating on the
implant. However, there is a risk of coating failure due to
low substrate adhesion. In [164], a method to obtain bioac-
tivity combined with a high coating adhesion via a gradi-
ent structure of the coating [165]. The review of different
techniques for HAp coatings on Ti6Al4V alloy, mostly still
applied for hip joint implants, showed that three techniques,
namely sputtering, IBAD (ion beam-assisted deposition)
followed by heat treatment, and EPD give reasonably high
adhesion values. To increase the adhesion, the substrate is
usually properly prepared to develop its surface area and cre-
ate micro and nanoforms such as grooves, pillars, columns,
etc., by mechanical grinding, acidic and alkaline etching,
chemical, electrochemical, and micro-arc oxidation, laser
roughening, and patterning. In [166], such laser microma-
chining of titanium and its alloys created micro-grooves
of diameter of about 10 pm, and then coating with argi-
nine—glycine—aspartic acid to enhance cellular spreading
and adhesion was deposited. The laser-grooved and coated
rods had significantly higher pull-out strength than the only
laser-grooved and control rods. This paper in an excellent
way explains the core of this problem. To summarize, the
coating for long-term implants must demonstrate several fea-
tures, such as the bioactivity necessary to form quickly and
strongly the bond between an implant and bone, mechanical
behavior against anticipated stresses sufficient to avoid any
serious damage or degradation, and high adhesion. Truly,
we would like to achieve only bioactivity without cytotoxic-
ity, but weak mechanical strength or weak coating adhesion
might cause the coating to be destroyed and the main aim
for its deposition will vanish.



Carbon Letters (2024) 34:565-601

587

4.2.2 Testing methods and adhesion strength of CNTs

Among different methods used to assess the adhesion of
coatings, the standard ASTM F1044 based on shear testing
of calcium phosphate and metallic coatings is the most often
applied for CNTs composite coatings. It assesses the adhe-
sion of coatings to substrates or the cohesion of a coating
under shear stress to the interface. Commonly flat-coated
specimens are glued to a proper counterpart and loaded
up to the division of both parts. The more recent results of
such investigations are shown in Table 7. The addition of
the CNTs results in a significant increase in the adhesion
strength, but as a rule at its higher contents or if a third
component is present in a coating.

Exceptionally, the standard test method based on meas-
uring adhesion force by tape test, ASTM D 3359-08, was
applied for the chitosan-nanoHAp—CNTs on Ti substrate
[171]. The tape tests displayed high adhesion strength (class
5B).

Nanoscratch testing is increasingly applied [141, 142]
despite that mechanical force and not stress is measured

Table 7 The shear strength of CNTs-containing coatings, determined
by ASTM F1044 standard

Coating composition Substrate  Shear References
strength
(MPa)

HAp-20 wt% MWCNTs Ti 34.94 [167]
HAp-30 wt% MWCNTs Ti 35.44 [167]
HAp Ti 20.62 [167]
HAp-0.IMWCNTs Ti 19.0 [168]
HAp-1IMWCNTSs Ti 24.2 [168]
HAp-2MWCNTSs Ti 22.4 [168]
HAp Ti 18.1 [168]
HAp-0.1SWCNTs Ti 17 [169]
HAp-0.3SWCNTs Ti ~21 [169]
HAp-0.5SWCNTs Ti 25.7 [169]
HAp-1.0SWCNTs Ti ~25 [169]
HAp Ti 153 [169]
HAp-20Si-IMWCNTs NiTi 27.5 [113]
HAp-1IMWCNTSs NiTi 19.3 [113]
HAp-20Si NiTi 23.2 [113]
HAp NiTi 18.0 [113]
HAp-20Ti-IMWCNTs NiTi 32.1 [170]
HAp-20Ti NiTi ~27 [170]
HAp NiTi 17.2 [170]
HAp-Ta,05—0.5MWCNTs NiTi 30.2 [57]
HAp-Ta,05-1IMWCNTs NiTi 324 [57]
HAp-2Ta,05~1.5SMWCNTs  NiTi 327 [57]
HAp-Ta,05—2MWCNTs NiTi 34.6 [57]
HAp-Ta,O5 NiTi 23.7 [57]
HAp NiTi 18.9 [57]

which makes the results not comparable to those based
on the shear technique. For the nanoHAp—CNTs coatings
deposited on Ti and its alloys, [141], a critical load of 350
mN was noticed for the HAp—5% CNTs coating. In the other
research [142] the values of critical force resulting in the
delamination of coatings deposited on Til13Nb13Zr alloy
were 116.5 mN, 90.2 mN, and 60.4 mN under shear stress
for CNTs, CNTs—HAp, and CNTs—nanometal coatings,
respectively, at 0.27 wt% of CNTs only.

Finally, it is to emphasize a novel technique, called a
nanomechanical pull-out method [172] that has used an
atomic force microscopy cantilever acting as a force sensor
and mounted vertically to a 3D piezo nanomanipulator. The
interfacial shear strength and the maximum load-bearing
capacity of the CNTs coatings on Al Ti and Zn substrates
were 217 and 245 nN, and after quantitative analysis of the
results, the shear stresses at the interfaces were calculated as
31+40.01 MPa, depending on heat treatment, and 37.8 MPa,
respectively [172, 173]. Based on the ASTM C-633 standard
(European EN 582) and using the tensile tester for pull-out
samples, the adhesion between cold-sprayed CNTs to Al
matrix was assessed at 15—-18 MPa [95].

Systematic research on the effects of some features and
amounts of CNTs composites is rare. One of the reasons for
increasing the adhesion strength with increasing the CNTs
content in HAp coating is bridging formed by CNTs between
coating and substrate [174, 175]. It is noted that an addi-
tion of CNTs has also been proposed for protective coatings
based on epoxy resins [16].

4.3 Mechanical behavior

The mechanical behavior of a material is one of the most
important features discussed when the material is considered
for use in biomedical applications. Microhardness, nano-
hardness, elastic (Young's) modulus, and yield strength less
often, are the mechanical properties checked to describe the
material and attribute it to an application. The difference
between micro- and nanohardness is the area of the test.
Microhardness gives information about the average hard-
ness of a large area, while nanohardness is more specific
and describes the little area using smaller loads. Young’s
modulus is used to assess material stiffness and is a very
important factor in terms of biomedicine because the mis-
match of implant and bone in Young’s modulus could lead
to complications for the patient and even the necessity to
repeat the surgery. Usually, scientists are looking for mate-
rials, with lower values of elastic modulus than the natural
bone elastic modulus, which is for cancellous bone about
3.78 GPa and cortical bone about 14.64 GPa [176]. Table 8
shows the mechanical properties of coatings composed of
CNTs.
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Table 8 Research of CNT-composite coatings deposited on a metallic substrate

Coating CNTs wt% Substrate Microhardness Nanohardness Elastic modulus Yield strength References
(GPa) (GPa) (GPa) (GPa)

Al-5CNT 6.2 Mild steel 1.350£0.05 2.33+0.27 1076 383+1.9 [123]
Al-10CNT 12.4 Mild steel 2.100+£0.04 2.89+0.27 125+7 41518
Al-Si-5CNT 5.0 Mild steel - - 107+6 83+19 [124]
Al-Si-10CNT  10.0 Mild steel - - 125+7 41518
CNT-Al 1.0 AZ91 Mg alloy - 1.66+0.2 77.6+3.3 - [130]
CNT-AI* 1.0 AZ91 Mg alloy 13.9 - 185.4 - [107]
Cr-CNT 2 Steel® 15012 19.0+3.0 196.0+8.2 - [137]
Cr-YSZ-CNT 2 Steel® 25.0+0.28 32.0+3.4 20611 -
Cr-CNT 2 Steel® 14.0+1.7 - 19222 - [136]
Cr-YSZ-CNT 2 Steel® 24.0+1.5 - 210+20 -
CNTs 0.5 Ti¢ 1.664+0.107 - 10115 - [140]
MWCNT 0.27 Til3Nb13Zr¢ 0.101+0.049 14.17+4.32 - [142]
MWCNT-HAp 0.27 - 0.022+0.015 5.63+£2.76 -
MWCNT-HAp- 0.4 - 0.035+0.019 8.88+3.26 -

nanoAg—

nanoCu
MWCNT 0.25 - 0.101£0.049 14.17+£4.32 - [111]
MWCNT-TiO, - 0.137+£0.048 7.69+1.75 -
MWCNT-Cu - 0.213+£0.061 10.83£2.12 -
MWCNT 0.25 Ti Grade 1 - 0.032+£0.0003 3.14+0.03 - [143]
MWCNT-TiO, - 0.183+£0.0572 10.11£2.42 -
MWCNT-Cu - 0.079+£0.0354 3.51+1.84 -

#The coating was first prepared by CS and second by PEO

The elastic modulus for stainless steel is about 51.07 GPa [176]
“The elastic modulus for Ti is about 50.20 GPa [176]

4The elastic modulus for Til3Nb13Zr is of 83.32+11.63 GPa

CNT-based coatings are deposited on different substrates
with variable CNTs and other additions™ contents. Consider-
ing the value of Young’s modulus of CNT-containing coat-
ings for application in biomedicine we can observe that the
coatings with 0.25 and 0.27 wt% addition of CNTs revealed
elastic modulus values similar to cortical bone. The addi-
tion of nanometals and nanoceramics causes a decrease in
Young’s modulus. The CNTs applied in the YSZ and Al-
based coatings improve mechanical properties [125, 130].
For Al-based coatings, the CNTs enhance coatings prop-
erties through thermal expansion mismatch, and Orowan
looping as CNTs are generating high dislocation density and
limit dislocation migration. Also, CNTs play a reinforcing
role, dependent on content and distribution [130].

4.4 Corrosion resistance
The corrosion resistance testing focuses on the electrochemi-
cal behavior of the deposit by, almost exclusively, the elec-

trochemical potentiodynamic polarization test. The increase
in current density means the corrosion resistance decreases.
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The conditions of the test can be changed, such as tempera-
ture, electrolyte composition, scanning rate, and potential
range. For biomedical applications mostly the temperature of
the body is imitated and SBF solution is used as an electro-
lyte. Before the main test, the open circuit potential (OCP)
value is checked, which is the potential at zero current value
and gives information about the thermodynamic stability of
the examined material. Mostly OCP value is negative, but
sometimes it could be positive, which means a passivation
phenomenon of the coating can occur [136]. The OCP value
also gives a clue about the potential range that should be
used during the electrochemical polarization test. Table 9
shows a brief conclusion about the corrosion behavior of
CNTs-based coatings.

For the coatings with YSZ, Cr, and Al prepared using
PS the addition of CNTs enhanced the corrosion resistance
[125, 127, 130, 136]. Tripathi et al. [136] reported better
corrosion resistance for the Cr—-CNT and Cr-YSZ-CNT
compared to the bare Cr material, with the highest poten-
tial achieved for the Cr—YSZ—-CNT coating. For the Cr sub-
strate the corrosion current density and corrosion potential
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Table 9 A state-of-the-art corrosion behavior of CNT-containing coatings

Coating Substrate Crucial parameters of coating preparation E,. (V) I, (nA/cm?) References
CNTs-TiO, Til3Nb13Zr EPD (0.25% CNTs, TiO, 0.15 g, 50 V, 4 min) -0.169 14 [177]

EPD (0.25% CNTs, TiO, 0.15 g, 60 V, 4 min) -0.282  206.4

EPD (0.25% CNTs, TiO, 0.30 g, 50 V, 4 min) -0217 175

EPD (0.25% CNTs, TiO, 0.30 g, 60 V, 4 min) -0.439 985
CNTs EPD (0.25% CNTs, 20V, 30 s) -0233 176.2
NiTi+HAp-Ti-CNT NiTi EPD (1% CNTs, 60 V, 2 min) —0.0391 0091 [145]
Cr—CNT Cr ECD (20 g/L of CNTs) -0.509 6900 [136]
Cr—YSZ-CNT Cr ECD (25 g/L of 3 mol% Y,03, 20 g/L of CNTs) —0.470 7200
CNT-Al AZ91 Mg alloy  CS (1 wt% CNTs) -0.941 2030 [130]
CNT-Al AZ91 Mg alloy CS+PEO (1 wt% CNTs) —-1.126 3734 [107]
CNT Ti EPD (28V, 30 s) 0270 112 [140]
Nickel-plated CNTs/FeCoNbBSi 45 steel HSLC (0.25 wt% CNTs) -0.592 547 [119]
Nickel-plated CNTs/FeCoNbBSi 45 steel HSLC (0.5 wt% CNTs) -0.502 454
Nickel-plated CNTs/FeCoNbBSi 45 steel HSLC (1 wt% CNTs) —-0.518 436

were 15.9+3.7 uA/ecm? and — 534 + 19 mV, respectively,
and for Cr—CNT 6.9+1.3 pA/cm2 and —509+23 mV, and
Cr—YSZ-CNT 7.2+0.9 uA/cm? and — 470 + 13 mV, what
gives information that two-phase boundaries inhibit the
cracks and limits corrosion [136]. On the other hand, the
increase of MWCNTs content in MWCNTSs/PU coatings
increases the corrosion current density, thus weakening the
corrosion resistance. This phenomenon could be explained
by the formulation of micro-defects in the PU matrix, which
facilitate the substrate metal corrosion. The maximum cor-
rosion rate for MWCNTSs/PU coating deposited on Q235
steel is at 8 wt% of MWNCTs and the maximum corrosion
resistance appears for 2 wt% of MWCNTSs [110]. The same
effect was seen for 1 wt%-CNT-Al coating deposited on
AZ91 Mg alloy, achieved using the CS method according
to the substrate and pure Al coating. The phenomenon was
explained by thermal mismatch between the Al matrix and
CNTs, which can strengthen the matrix, limit dislocation
looping, and suppress crack propagation [107, 130]. Maleki-
Ghaleh et al. [145] prepared HAp-Ti—1wt%-MWCNTs coat-
ing using the EPD process on NiTi substrate, which pos-
sessed the best corrosion resistance in comparison to the
substrate and coatings without MWCNTs addition. Never-
theless, there are the same reports about CNT coating EPD-
deposited on Ti, which decreases corrosion resistance, due to
the porous fibrous structure of the coating and the presence
of TiO, [140]. Thus, the results are ambiguous indicating the
complex roles of components and microstructure, roughness,
and uniformity of the surface.

Another method to check corrosion resistance on a
micro-scale is the scanning Kelvin probe. The test allows
for achieving information about electron work. The higher
the escape electron work is, the higher the corrosion resist-
ance. The test indicated the best corrosion resistance for the

CNTs/Fe-based coating with 1 wt% of CNTs prepared by
HSLC, confirmed by the electrochemical corrosion test. The
increase in CNT content caused the decrease in corrosion
current density, and the CNTs presence allowed to join the
cracks improving corrosion resistance [119].

4.5 Wettability

The contact angle is used to describe the wettability of
CNTs coatings. The higher the contact angle is the higher
the wettability of a surface, and thus such a surface is named
hydrophilic. In the literature, the contact angle between 40
and 60° is the best in terms of promoting cells adhesion
and improving the bioactivity of the coating [178]. Lin et al.
reported on the decrease in contact angle of the Ta,O5/CNT
coating deposited on Ti6Al4V to 1+3° [31]. The wettability
of Cu—CNT-TiO, coating is also hydrophilic (the contact
angle value is 12.85°), due to the presence of TiO, parti-
cles [135]. The pure CNT coatings prepared using the EPD
technique deposited on Til3Nb13Zr are also hydrophilic and
their contact angle is about 56°, while the contact angle of
CNTs coatings with HAp and nanometal additions highly
increases to hydrophobic values, which is unwelcome in bio-
medical applications [142]. The impact of laser modification
on the wettability of CNTs coatings was also checked and
revealed the increasing contact angle to the value of about
80° [112]. The wettability of CNTs coatings is then strongly
dependent on the bonding effect and the method of syn-
thesis. Most MWCNTSs used to prepare coatings employing
electrochemical methods are functionalized to give a nega-
tive charge and enable the deposition. Such a modification
and changes in the pH of the solution during the process
may impact the linking of CNTs to other components of the
suspension, thus changing the contact angle of the coating
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[142]. On the other hand, the wettability of CNTs coatings
is dependent on the roughness.

4.6 Bioactivity and cytotoxicity

Most commonly the MWCNTSs' bioactivity and cytotoxicity,
namely positive and negative effects on adhesion, viability,
proliferation, and mortality of cells were tested in human
umbilical vein endothelial cells (HUVECS). Zhao et al. [52]
examined three types of MWCNTs with different diameters,
named XFM4 (diameter: 10-20 nm), XFM22 (length: 0.5-2
um; diameter: 20-30 nm), and XFM34 (length: 0.5-2 um;
diameter: > 50 nm) and concluded that the smallest diameter,
the higher level of cytotoxicity, the HUVECs are the most
internalized, the level of cytokine released is the highest.
They also observed the highest level of ER stress biomark-
ers, due to the highest specific surface area of the MWCNTs,
causing autophagy of HUVECsS, thus eliminating MWCNTs
with such dimensions to be applied in biomedicine, espe-
cially in blood vessels. Also, the dose-dependence impact
on cytotoxicity was seen. The MWCNTs with the smallest
diameter exposed cytotoxicity at concentrations higher than
16 pg/mL. On the other hand, for higher MWCNTs diam-
eters, a greater content of MWCNTs caused higher cytotox-
icity to HUVECs, while its addition didn’t indicate obvious
changes in the ultrastructure of HUVEC:s cells.

The MWCNTs diameter cytotoxicity impact on the other
cells was also checked for NR8383 cells (normal rat alve-
olar macrophage cells) [179] and human mesothelial cell
lines (MeT5A, E6/E7, and hTERT-immortalized human
peritoneal mesothelial cells) [180] and the length impact
of MWCNTSs on cytotoxicity to HUVECs was investigated.
Long et al. [181] examined two types of MWCNTs (XFM19
of length 10-30 pm and XFM?22 of length 0.5-2 pm, both
outer diameter of 20-30 nm and inner diameter of 5-10
nm) with different concentrations from 2 to 32 pg/mL. The
longer the MWCNTSs were, the higher level of cytotoxicity
to HUVEC:s, the higher oxidative stress, the higher level of
THP-1 monocyte adhesion to MWCNTSs, the higher level of
ER stress biomarkers were observed, which gives informa-
tion about the inflammation-inducing effect of longer MWC-
NTs species. Another parameter discussed in the literature
is a surface modification of MWCNTs, which could affect
interaction with proteins and cells [182]. According to Sun
et al. [183], pristine MWCNTs (XFM19, diameter: 28.97
nm, average length: 1181.14 nm), hydroxylated MWCNTSs
(XFM20, diameter: 30.46 nm, average length: 1323.94 nm),
and carboxylated MWNCTs (XFM21, diameter: 31.03 nm,
average length: 1256.59 nm) are cytotoxic to HUVECs
and induce oxidative stress to a similar extent while used
with MWCNTs concentration of 32 pg/mL or 64 pg/mL.
Dinc et al. reported the functionalized (oxidized) MWC-
NTs were less toxic to HUVECs and MDA-MB-231 cells
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(breast cancer cells) than pristine MWCNTSs [182]. Thus,
MWCNTs with a longer length and smaller diameters could
induce cytotoxicity to HUVECsS, regardless of the type of
used functionalization of MWCNTs. However, Dlugon et al.
[140] checked the biological activity of CNTs coatings EPD
deposited on Ti using the human osteoblast NHOst cell line
and after 7 days observed higher cell viability for CNTs
modified Ti than for pure substrate. Also, the SWCNTSs were
investigated in terms of cytotoxicity and showed that the
oxidized SWCNTs caused malformed placentas in female
mince already after administration of 100 ng/ml of oxidized
SWCNTs [184, 185].

The toxicity of MWCNTSs is then dependent on their
dimensions, such as the diameter, length, and also physico-
chemical properties, like surface chemistry, and dose. So far
studies show that the examined parameters in terms of cyto-
toxicity are: (1) the internalization of MWCNTs to human
cells, (2) the release of inflammatory cytokines (THP-1
monocyte), (3) the mechanism of cytotoxicity activation-
reactive oxygen species (ROS) or activation of endoplas-
mic reticulum (ER) stress biomarkers, such as ddit3 (DNA
damage-inducible transcript 3) or other named chop (C/EBP
homologous protein); xbp-1s (spliced X-box binding protein
1), and the protein level of BiP (binding immunoglobulin
protein; GRP78, 78 kDa glucose-regulated protein) [52, 181,
183].

The cytotoxicity is a serious problem that has been
attempted to limit by several solutions. In [186] the toxicity
of CNTs was shown to be mainly related to their dimensions:
toxicity decreases with increasing length of the nanotubes.
The toxicity was also reduced for CNTs of small diameter
[187], thus the use of smooth CNTs is favorable. Besides
this passive way, the functionalization of CNTs is likely the
single approach to decrease cytotoxicity, with effectiveness
dependent on chemical structure. The carboxylic SWCNTs
and MWCNTs, with cytotoxicity investigated by adsorption
of human serum albumin [188], of bovine serum albumin
[189, 190], and by MTT assay [191] were the least toxic as
compared to hydroxylated SWCNTs and amined SWCNTs.
The natural bio-resin shellac applied for the functionaliza-
tion of CNTs also reduces cytotoxicity [192].

The bioactivity of CNTs has been seldom investigated
as elementary carbon is an inert body. The high surface
properties, including the creation of chemical covalent or
van der Waals bonds, are achieved due to nanosized tubes.
However, it is now well known that to make CNTs bioactive,
chemical functionalization is necessary. There are several
indirect evidence for an enhancement or improvement of
bioactivity by CNTs in multicomponent coatings. In [193]
the multivalent polyanion-dispersed CNTs were used after
their functionalization with polyglycerol sulfate and depos-
ited on PCL. That results in higher neural differentiation
efficiency creating then highly bioactive nanostructured
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fibrous scaffolds. In [194] low-dimensional nanomaterials
such as CNTs or graphene exhibited noticed in vitro bioac-
tivity and osteoinductivity. In [195] polymer—bioglass—CNTs
composite material was investigated. The results showed
that the presence of MWCNTs in low quantities enhanced
osteoblast-like cell attachment and proliferation compared to
composites with high concentrations of MWCNTSs, and the
mechanism of CNTs-enhanced bioactivity is unclear. Con-
sidering the test results for [196] the coatings composed of
functionalized multi-walled carbon nanotubes (f-MWCNTs)
and hydroxyapatite on 316L steel, it was concluded that the
addition of f-MWCNTs in the HAp increases the number
of active sites responsible for the formation of carbon-
ated apatite layer. In [197], the use of functionalized car-
bon nanotubes in the hybrid composition of chitosan/silica
showed favorable tissue responses of the CNT-incorporated
membrane.

The bioactivity is most often checked using in vitro tests,
mostly in SBF solution. Lin et al. [31] reported a com-
plete coverage by hemispherical-shaped particle samples
of Ti6Al4V coated with Ta,O5 and Ta,05/CNTs. Never-
theless, there could be an observed relationship between
the increasing content of CNTs in the coating and with
decreasing size of adhered apatite particles. The same team
checked the adhesion of osteoblast-like cells, such as osteo-
sarcoma MG-63 cells, which showed satisfactory adhesion
and spreading behavior after 7 days of culture, but without
an impact of CNTs presence. It means that CNT-decorated
coatings could promote cell proliferation and differentiation,
and thus they are candidates for use in biomaterials [183].

4.7 Antibacterial efficiency

CNTs have been reported to exhibit killing properties over a
wide range of bacteria including human pathogens such as
Escherichia coli (E. coli), Salmonella typhimurium, Bacil-
lus subtilis (B. subtilis), Staphylococcus aureus (S. aureus),
Micrococcus lysodeikticus and Streptococcus mutans. Sev-
eral studies have disclosed that pristine CNTs exhibit anti-
bacterial activity by physical contact and collisions leading
to puncturing of the bacterial cell membrane and its damage
[198, 199]. It was reported in [198] that the force of 100
nN is enough to make AFM-detectable holes in bacteria
cells, even though the checked force is unrealistic to appear
between bacteria and CNTs in normal conditions, thus this
mechanism is unlike. The second mechanism assumed the
CNTs are connecting to the bacteria cell membrane in the
form of CNT dense network, thus changing cell membrane
architecture, and its mechanical properties [198-200]. Liu
et al. reported the SWCNTSs after 10 min of exposure to
E.coli and B. subtilis increasing cell wall roughness, causing
increased cytoplasm leakage and bacteria cell death after
120 min [198], while Schifrano et al. reported a significant

reduction of cell number after 24 h incubation in contact
with CNTs [200]. Further investigation leads to the assertion
that the antibacterial activity of CNTs is light-dependent
[201, 202]. Rajavel et al. reported that the SWCNTs and
MWCNTs are ROS generators (producing singlet oxygen
10,, superoxide anions O*~ and hydroxyl radicals OH) in
sunlight with a light intensity of 903 Im/m?* and ambient light
of 180 Im/m? [201]. Such ROS production increases oxida-
tive stress, makes bacteria cell membrane disruption (due
to lipid peroxidation) and causes bacteria death [200-202].
Nevertheless, the antibacterial effectiveness of CNTs also
depends on bacteria peptidoglycan cell wall thickness and
strain resistance, showing the CNTs antibacterial properties
are more significant for Gram-negative bacteria (e.g., E.coli,
P. aeruginosa) than Gram-positive ones (e.g., S. aureus, B.
subtilis) [198, 200]. The above mechanisms of antibacterial
activity of CNTs are well established in [200], where both
the mechanical injury and ROS production play important
roles in the bactericidal effect of CNTs. Figure 8A shows
a diagram, summarizing the antibacterial mechanisms of
CNTs.

There are many reports about the antibacterial efficiency
of CNTs with additions, where the main mechanism of
antibacterial efficiency is again the generation of ROS. The
cellulose acetate (CA)-CNT-Ag [203] was shown as effec-
tive against E. coli and S. aureus, with the CA matrix cre-
ating protection against the harmful effects of silver (i.e.,
argyria and argyrosis) [203]. Also, CNTs—Ag composites
exhibit antibacterial properties against E.coli [204]. The
addition of CNTs to Ag colloid lowers the minimal inhibi-
tory concentration value of Ag particles in suspension,
both against Gram-negative and Gram-positive bacteria.
Here, a good dispersion of the Ag nanoparticles on the
CNTs is the reason for the high antibacterial activity of
CNT-Ag composites [204]. There is evidence about the
antibacterial activity of MWCNTs—Ag composites against
E. coli [205-207], S. aureus [203, 208-211], Staphylococ-
cus haemolyticus [212], and also against B. subtilis and
Pseudomonas aeruginosa [213]. The other CNTs-contain-
ing coating components were reported to have antibacterial
properties [212], in particular for composite coatings such
as the CNTs-ZnO [214, 215], hydroxyapatite/ZnO/CNT
[216], Co doped-ZnO/MWCNTs [214] and MWCNTs-Ag/
TiO, [217] against E. coli and S. aureus. Also, the MWC-
NTs-TiO, [218] and Ag-TiO,—~MWCNT [219] were lethal
to E. coli, and CNTs/TiO,/polyurethane films to S. aureus
[220]. Also, SWCNTs composites with Ag nanoparticles
inhibited the growth and multiplication of bacteria, such
as S. aureus, B. cereus, E. coli, and P. aeruginosa [221].
Zhu et al. reported very strong antibacterial performance
of SWCNTs in combination with silica and Ag against E.
coli and S. aureus [222]. The same antibacterial activity
showed SWCNTs—Ag/TiO, hybrids [217]. Although CNT

@ Springer



592

Carbon Letters (2024) 34:565-601

A

Irradiation conditions

or

Dark conditions

Increased bacteria cell
roughness

Irradiation conditions

and

Cytoplasm leakage

{

Bacteria cell death

or

Dark conditions

Ag NPs
bacteria l CNTs

Irradiation conditions / Enhanced ROS

and

Adhesion
of Ag NPs

and

Dark conditions Mechanical injury

Irradiation conditions Absorption

of Ag+
and

Cytoplasm leakage

\

Bacteria cell death

or

Dark conditions

Fig.8 A schematic illustration of antibacterial mechanisms for A CNTs and B CNTs with Ag NPs addition

coating improves cell adhesion, and antibacterial proper-
ties and promotes osteoblast differentiation of Ti species
[202, 223], pristine CNTs are reported to increase oxida-
tive stress and cause cell death [202].

In the example of Ag-MWCNTs coating, the mecha-
nisms of antibacterial activity slightly differ depending on
the form of silver, either ionic Ag™ cations or NPs [153,
224, 225]. Both silver forms specifically interact with bac-
teria. For Ag NPs, the contact mechanism is typical which
occurs through the touch of bacteria to silver particulates
and ROS appearance, which leads to damage to the cell
membrane and vacuolization of cytoplasm [226-230].
According to [231], all contacted Ag NPs influence the
permeability and flow through the outer membrane, but
only smaller Ag NPs can pass through the cell membrane,
then interact with DNA, and affect the respiratory system.
Whereas, the antibacterial mechanism for Ag™ starts with
their adhesion to the bacteria cell, its adsorption inside the
bacteria cell, and the production of ROS [226, 228, 229,
232]. As Zhao et al. propose [230], the silver ions on the
cell membrane inhibit the expression of outer membrane
proteins, i.e., retard the reproduction of bacteria cells
by inducing the release of nucleic acids, what is accord-
ing to Du et al. [232] typical of large agglomerates of
Ag NPs. The synergy of the combination of CNTs with
Ag enhances the bactericidal efficiency of the CNTs, thus
the Ag NPs are characterized by a high surface-to-volume
ratio and MWCNTs high aspect ratio, this way produce a
higher contact area [199]. Figure 8 schematically illus-
trates the differences in antibacterial mechanisms of CNTs
and CNTs with Ag addition.

@ Springer

4.8 Perspectives and challanges

The CNTs gain more and more attention in biomedical,
energy and thermal applications due to its excellent prop-
erties, such as crack bridging, increase in elastic modulus,
improvement of thermal conductivity and heat transfer, and
lubricating effect, which lowers the friction coefficient and
improves wear resistance of coatings composed of CNTs.
What is more, the CNTs addition generally improves the
corrosion resistance of coatings by sealing pores, increases
coating adhesion strength, due to the formation of a network
in the coating and has antibacterial properties, especially
against gram-negative bacteria. In endoprosthesis applica-
tions, Young’s modulus near the cortical bone (of 15-30
GPa [233]), reported in [142] causes the MWCNTSs coat-
ings to be a suitable candidate for biomedical applications.
Besides medical applications, the most promising perspec-
tives for nanocarbon can be considered for the production of
advanced, highly anticorrosive and self-repairing coatings
[16], for green energy applications [234], for electronic and
photonics [235].

Although there are many reports analyzing the properties
of various CNTSs coatings and composites, there are still sev-
eral challenges and further questions to answer. The first one
is the cytotoxicity issue of CNTs. Even if the studies demon-
strate a general role of increasing the cytotoxicity of CNTs a
high dose of CNTs in the coating, the smallest diameter, and
the longer length of CNTs, the impact of functionalization
on cytotoxic activity is still not enough known. The func-
tionalization of CNTs enables its solubility, its deposition
via electrochemical methods, thus the charged particles are
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required in this group of methods to prepare the coating,
but there are also reports about its impact on decreasing the
CNTs cytotoxicity [188—192], which still should be an open
question to scientists.

Also, the adhesion mechanism of the CNTs coatings is
a challenge to discuss. Up to now the adhesion of CNTs to
some substrate occurs probably due to physical contact or
weak van der Waals interaction, when describing coatings
deposited electrochemically or by thermal sprayed methods.
Nevertheless, the knowledge of CNTs adhesion mechanisms
might be valuable when creating the solution for the problem
with improvement of the adhesion strength of CNTs, which
is also still challenging.

The same question might be posed on the subject of the
bioactivity mechanism of CNTs, which is connected with the
functionalization and adhesion strength of the CNTs-con-
taining coating. The CNTs functionalization has an impact
on coating surface architecture and thus cell adhesion, while
the poor adhesion strength might be the reason for the exces-
sive release of toxic substances in the human body.

The least but not last challenge for CNTs coatings is an
improvement of its antibacterial properties against gram-
positive bacteria. The gram-negative bacteria are protected
by a narrow membrane, thus it is easier to break it and cause
bacteria cell leakage, while gram-positive bacteria have up
to 10 times thicker peptidoglycan walls and for, e.g., B. sub-
tilis has peritrichous flagella structures which have smooth
structure, so are unfavorable substrate for CNTs adhesion
[198].

This review is a summary of coating properties com-
posed of CNTs and different metals, ceramics and polymers,
deposited on different substrates. The development of CNTs
coatings still needs more research.

5 Conclusions

The state-of-the-art in the carbon nanotubes field shows a
huge amount of research performed on CNTs coatings. The
different forms of CNTs, deposition methods, and param-
eters, and substrates were applied as process variables. The
microstructures, chemical and phase compositions, mechani-
cal properties at the micro and nanoscale such as coating
Young's modulus and hardness, interface adhesion strength
and delaminating force, open corrosion potential and corro-
sion current density, contact angle in wettability assessment,
and bioactivity, cytotoxicity, and antibacterial efficiency
among biological properties were determined. The follow-
ing conclusions demonstrating valuable results and their
implications, and still observed inefficiencies, can be drawn:

1. The MWCNTs are the most frequently and promising
carbon nanoforms presumably because of the highest

strength and the lowest Young's modulus which is
important for the mechanical behavior of coatings on
artificial implants.

There is a diversity of deposition techniques applied for
CNTs-containing coatings, all relatively similarly used,
a choice of which depends on the expected properties
and destination of the coated substrate.
Electrophoretic deposition is widely used for titanium
and its alloys at the most preferred voltage of 5-30 V,
time 0.5-5 min.

The roughness is the most plausible for biological
application by coatings obtained by EPD, 0.2—1.0 um,
and the roughness of coatings prepared by thermal
spray and plasma electrochemical oxidation seems
excessive, 4-20 um.

The shear strength test seems the most used technique
to assess the adhesion which ranges between 15 and 35
MPa. The nanoindentation scratch technique seems the
most precise for a great number of softer coatings, but
it urgently needs to be quantified and standardized.
Hardness and Young's modulus are measured by
microhardness and nanoindentation tests and their
values vary in wide limits depending on the substrate
and phase and microstructure of a coating. The best
hardness values reach 19 and 32 MPa for pure CNTs
and CNTs strengthened with YSZ on steel substrate,
relatively, and the lowest Young's modulus is observed
for the softer coatings on titanium and its alloys, 3—15
GPa. The use of either micro or nanohardness testing
depends on the presumed toughness of a coating, and
in such coatings is not highly accurate as evidenced
by high values of standard deviations as compared to
means.

Corrosion current density is only determined by poten-
tiodynamic technique, and the obtained values range
between some or tens of pA/cm?. The corrosion resist-
ance can presumably increase with a fraction of CNTs
due to increasing inhomogeneity of coatings, still,
however, remaining in a low corrosion rate area. The
highest corrosion resistivity was observed for coatings
with 1 wt% of CNTs.

The coatings CNTs-containing are hydrophilic, but
their increasing content seems to lead toward higher
contact angles. Such an effect might be expected for
carbon nanoforms and likely can disappear after proper
CNTs" functionalization.

The CNTs promote bioactivity assessed by the deposi-
tion of bone-like phosphates. However, the cytotoxicity
of coatings implemented with long and narrow carbon
nanotubes can be toxic, and this problem needs further
thorough studies.
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10. The coatings based on the CNTs show significant kill-
ing properties against the number of various bacteria,
including the most dangerous encountered in hospitals.

11. Further research on the design and deposition of CNTs-
including coatings is desired, in particular, to improve
the adhesion of CNTs and the other components or a
substrate, optimization of hardness and elasticity of
coatings, and an assessment of relationships between
cytotoxicity, functionalization, and content of CNTs in
the coating.
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