Skip to main content
Log in

Oxidation behaviour and residual mechanical properties of carbon/carbon composites

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Carbon/carbon composites are widely used in re-entry engineering applications thanks to their excellent mechanical properties at high temperatures, but they are easily oxidized in the oxygenated atmosphere. It is important to research their residual mechanical properties influenced by oxidation behaviour, in order to ensure the in-service safety. A microscale degradation model is proposed to predict the oxidation behavior based on the mass conservation and diffusion equations, the derived equivalent steady recession rate of composite is employed to evaluate the residual mechanical properties of the oxidized composite theoretically. A numerical strategy is proposed to investigate the oxidation mechanism of this composite. The differences in the degradation rate between the fiber and the matrix resulted in the steady state and an unchanged shape of the front. Residual mechanical properties of composite with three different domains of oxidation were simulated with a multiscale coupled model. The numerical results demonstrated that the mechanical properties of this composite decreased by 24–32% after oxidation for 30 min at 850 °C. Oxidation also caused the stress redistribution inside components, with the stress concentration diminishing their load-bearing capacity. The local areas of increased stress in the pyrocarbon matrix provided new ways for diffusion of oxygen into the pyrocarbon matrix and fibers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and analyzed during this study are available from the corresponding author on reasonable request.

Abbreviations

C/C:

Carbon/carbon

CNT:

Carbon nanotube

DSC:

Differential scanning caborimetry

RVE:

Representative volume element

SEM:

Scanning electron microscopy

TGA:

Thermo-gravimetric analysis

\(A\) :

Dimensionless number

\(C\) :

Partial pressure

\(c_{{\text{f}}}^{{\text{t}}}\) :

Residual volume fraction of fiber

\(c_{m}^{t}\) :

Residual volume fraction of matrix

\(D\) :

Bulk diffusion coefficient

\({\text{Da}}_{{\text{m}}}\) :

Damkohler number

\(E_{11}^{t}\) :

Longitudinal elastic modulus of composite

\(E_{11}^{f}\) :

Longitudinal elastic modulus of fiber

\(E_{22}^{f}\) :

Transverse elastic modulus of fiber

\(E_{{\text{m}}}\) :

Elastic modulus of pyrocarbon matrix

\(f,m,b\) :

Indices for fiber, matrix and bundle

\(h_{{\text{f}}}\) :

Height of fiber

\(h_{{\text{m}}}\) :

Height of matrix

\(J_{{\text{e}}}\) :

Molar rate of ablation

\(J_{{\text{f}}}\) :

Oxidation molar rate of fiber

\(k_{{\text{e}}}\) :

Reactivity of oxidation

\(k_{{\text{f}}}\) :

Gasification rate of fiber

\(k_{{\text{m}}}\) :

Gasification rate of matrix

\(l_{0}^{{\text{f}}}\) :

Initial length of fiber

\(l_{0}^{{\text{m}}}\) :

Initial length of matrix

\(M\) :

Total mass of composite

\(n_{{\text{f}}} ,n_{{\text{m}}}\) :

Oxidation ratios of fiber and matrix

\(r_{{\text{f}}}\) :

Radius of fiber

\(R_{0}^{{\text{f}}}\) :

Initial radius of fiber

\(R_{10}^{{\text{m}}}\) :

Initial external radius of matrix

\(R_{20}^{{\text{m}}}\) :

Initial inside radius of matrix

\(R_{{1{\text{t}}}}^{{\text{m}}}\) :

Residual external radius of matrix

\(R_{2t}^{m}\) :

Residual inside radius of matrix

\(S_{f}\) :

Exposed surface of fiber

\(S_{m}\) :

Exposed surface of matrix

\(t\) :

Oxidation time

\(t_{{\text{s}}}^{{\text{f}}}\) :

Minimum oxidation period for fiber

\(v_{{\text{a}}}\) :

Ablation velocity

\(v_{0}^{{\text{f}}} ,\;v_{0}^{{\text{m}}}\) :

Initial volume fractions of fiber and matrix

\(v_{{\text{t}}}^{{\text{f}}} ,\;v_{{\text{t}}}^{{\text{m}}}\) :

Residual volume fractions of fiber and matrix

\(x,y,z\) :

Coordinates

\(\alpha_{1}^{{\text{f}}}\) :

Longitudinal oxidation rate of fiber

\(\alpha_{2}^{f}\) :

Radial oxidation rate of fiber

\(\beta_{1}\) :

Longitudinal oxidation rate of matrix

\(\beta_{{{\text{out}}}}\) :

Oxidation rate for outside radius in matrix

\(\beta_{{{\text{in}}}}\) :

Oxidation rate for inside radius in matrix

\(\zeta\) :

Characteristic length of ablation

\(\Omega_{{\text{f}}}\) :

Solid molar volume of fiber

\(\Omega_{{\text{m}}}\) :

Solid molar volume of matrix

\(\rho_{{\text{f}}} ,\rho_{{\text{m}}}\) :

Densities of fiber and matrix

\(\sigma_{{{\text{res}}}}\) :

Residual longitudinal strength of fiber

\(\sigma_{{\text{f}}}\) :

Initial longitudinal strength of fiber

References

  1. Morgan P (2005) Carbon fibers and their composites. Taylor & Francis

  2. Zhang B, Yi MZ, Ning Y, Xie AL, Zhou Z, Feng ZR (2022) A thick SiC-Si coating prepared by one-step pack cementation for long-term protection of carbon/carbon composites against oxidation at 1773 K. Corros Sci 200:110223

    Article  CAS  Google Scholar 

  3. Hou XM, Chou KC (2010) A simple model for the oxidation of carbon-containing composites. Corros Sci 52:1093–1097

    Article  CAS  Google Scholar 

  4. Cairo CAA, Florian M, Graca MLA, Bressiani JC (2003) Kinetic study by TGA of the effect of oxidation inhibitors for carbon-carbon composite. Mater Sci Eng A 358:298–303

    Article  Google Scholar 

  5. Gao PZ, Guo WM, Xiao HN, Guo J (2006) Model-free kinetics applied to the oxidation properties and mechanism of three-dimension carbon/carbon composite. Mater Sci Eng A 432:226–230

    Article  Google Scholar 

  6. Huang JG, Guo LJ, Li KJ, Yan NN, Zhou L, Li YY (2021) Microstructures and oxidation behaviors of Al-modified and Al2O3-modified SiC coatings on carbon/carbon composites via pack cementation. Ceram Int 47:8105–8112

    Article  CAS  Google Scholar 

  7. Blanco C, Casal E, Granda M, Menendez R (2003) Influence of fiber-matrix interface on the fracture behavior of carbon–carbon composites. J Eur Ceram Soc 23:2857–2866

    Article  CAS  Google Scholar 

  8. Zhu XF, Zhang YL, Su YY, Fu YQ, Zhang P (2021) SiC-Si coating with micro-pores to protect carbon/carbon composites against oxidation. J Eur Cera Soc 41:114–120

    Article  CAS  Google Scholar 

  9. Lu XF, Xiao P, Chen J, Long Y (2012) Oxidation behavior of C/C composites with the fiber/matrix interface modified by carbon nanotubes grown in-situ at low temperature. Corros Sci 55:20–25

    Article  CAS  Google Scholar 

  10. Lu XF, Xiao P (2014) Short time oxidation behavior and residual mechanical properties of C/C composites modified by in situ grown carbon nanofibers. Ceram Int 40:10705–10709

    Article  CAS  Google Scholar 

  11. Zhang CJ, Chen M, Paulson SC, Rateick RG Jr, Birss VI (2016) New insights into the early stages of thermal oxidation of carbon/carbon composites using electrochemical methods. Carbon 108:178–189

    Article  CAS  Google Scholar 

  12. Labruquere S, Bourrat X, Pailler R, Naslain R (2001) Structure and oxidation of C/C composites: role of the interface. Carbon 39:971–984

    Article  CAS  Google Scholar 

  13. Ma HC, Miao Q, Liang WP, Li YY, Lin H, Ma HR et al (2021) High temperature oxidation resistance of Y2O3 modified ZrB2-SiC coating for carbon/carbon composites. Ceram Int 47:6728–6735

    Article  CAS  Google Scholar 

  14. Tong K, Zhang MY, Su Z, Wu XW, Zeng C, Xie XM et al (2021) Ablation behavior of (Zr, Ta) B2-SiC coating on carbon/carbon composites at 2300℃. Corros Sci 188:109545

    Article  CAS  Google Scholar 

  15. Zhao ZG, Li KZ, Li W (2021) Ablation behavior of ZrC-SiC-ZrB2 and ZrC-SiC inhibited carbon/carbon composites components under ultrahigh temperature conditions. Corros Sci 189:109598

    Article  CAS  Google Scholar 

  16. Li DS, Luo G, Yao QQ, Jiang N, Jiang L (2015) High temperature compression properties and failure mechanism of 3D needle-punched carbon/carbon composites. Mat Sci Eng A 624:105–110

    Article  Google Scholar 

  17. Han M, Zhou CW, Bi QS (2021) Residual mechanical properties of needle-punched carbon/carbon composites after oxidation. Compos Commun 28:100966

    Article  Google Scholar 

  18. Lachaud J, Aspa Y, Vignoles GL (2008) Analytical modeling of the steady state ablation of a 3D C/C composite. Int J Heat Mass Transf 51:2614–2627

    Article  CAS  Google Scholar 

  19. Katardjiev IV, Carter G, Nobes MJ, Berg S, Blom H-O (1994) Three dimensional simulation of surface evolution during growth and erosion. J Vac Sci Technol A 12(1):61–68

    Article  CAS  Google Scholar 

  20. Lachaud J, Bertrand N, Vignoles GL, Bourget G, Rebillat F, Weisbecker P (2007) A theoretical/experimental approach to the intrinsic oxidation reactivities of C/C composites and of their components. Carbon 45:2768–2776

    Article  CAS  Google Scholar 

  21. Lanchaud J, Aspa Y, Vignoles GL (2017) Analytical modeling of the transient ablation of a 3D C/C composite. Int J Heat Mass Transf 115:1150–1165

    Article  Google Scholar 

  22. Zhou L, Fu QG, Hu D, Zhang JP, Wei YL, Zhu J, Song JY, Tong MD (2021) A dense ZrB2-SiC-Si/SiC-Si coating to protect carbon/carbon composites against oxidation at 1773 K and 1973 K. Corros Sci 183:109331

    Article  CAS  Google Scholar 

  23. Feng GH, Li HJ, Yao XY, Sun J, Jia YJ (2022) An optimized strategy toward multilayer ablation coating for SiC-coated carbon/carbon composites based on experiment and simulation. J Eur Ceram Soc 42:3802–3811

    Article  CAS  Google Scholar 

  24. Wang CC, Li KZ, He QC, Huo CX, Shi XH (2018) Oxidation and ablation resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites. J Alloys Com 741:937–950

    Article  CAS  Google Scholar 

  25. Curtin WA, Zhou SJ (1995) Influence of processing damage on performance of fiber-reinforced composites. J Mech Phys Solids 43:343–363

    Article  CAS  Google Scholar 

  26. Curtin WA (1991) Theory of mechanical properties of ceramic-matrix composites. J Am Ceram Soc 74:2837

    Article  CAS  Google Scholar 

  27. Curtin WA, Ahn BK, Takeda N (1998) Modeling brittle and tough stress-strain behavior in unidirectional ceramic matrix composites. Acta Mater 46(10):3409–3420

    Article  CAS  Google Scholar 

  28. Kodal M, Karakaya N, Wis AA, Ozkoc G (2019) Chapter Eleven-Thermal properties (DSC, TMA, TGA, DTA) of rubber nanocomposites containing carbon nanofillers. Carbon-based nanofillers and their rubber nanocomposites fundamentals and applications, pp 325–366. https://doi.org/10.1016/C2018-0-02522-0

  29. Lachaud J, Vignoles GL (2009) A Brownian motion technique to simulate gasification and its application to C/C composite ablation. Comput Mater Sci 44:1034–1041

    Article  CAS  Google Scholar 

  30. Han M, Zhou CW, Bi QS (2021) Residual mechanical properties of needle-punched carbon/carbon composites after oxidation. Compos Comm 28:10966

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant No.12102152) and the State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics) (Grant No. MCMS-E-0221Y02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Zhou, C., Silberschmidt, V.V. et al. Oxidation behaviour and residual mechanical properties of carbon/carbon composites. Carbon Lett. 33, 1241–1252 (2023). https://doi.org/10.1007/s42823-023-00491-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00491-6

Keywords

Navigation