Skip to main content
Log in

Water-soluble photoluminescent carbon dots prepared from phloroglucinol by catalyst- and solvent-free reaction

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) were synthesized from phloroglucinol (PG) by simple heat treatment at 220–230 °C in the atmosphere without catalysts and solvents. PG-CDs heated at 220–230 °C could be completely dissolved in environmentally friendly water and exhibited a photoluminescence (PL) peak at 485 nm with 85 nm of the full width at half maximum (FWHM). The water-soluble polymer-dot-like PG-CDs were estimated to be 1.6–3.2 nm in size, and exhibited a wide range of PL wavelength at 370–630 nm. Since the PG-CDs are water-soluble materials, PG-CDs could be homogeneously mixed with a polymer such as polyvinylpyrrolidone (PVP) in water as a solvent, and PG-CDs/PVP films were prepared. The films exhibited PL characteristics that convert ultraviolet light at 350 nm to visible light above 400 nm. Thus, using PG as the raw material which has widely been produced industrially, the water-soluble fluorescent PG-CDs/PVP films could be prepared at a low cost by environmentally friendly methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939. https://doi.org/10.1039/C4TC00988F

    Article  CAS  Google Scholar 

  2. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381. https://doi.org/10.1039/C4CS00269E

    Article  CAS  Google Scholar 

  3. Ghaffarkhah A, Hosseini E, Kamkar M, Sehat AA, Dordanihaghighi S, Allahbakhsh A, Kuur C, Arjmand M (2022) Synthesis, applications, and prospects of graphene quantum dots: a comprehensive review. Small 18:2102683. https://doi.org/10.1002/smll.202102683

    Article  CAS  Google Scholar 

  4. Tan TL, Zulkifli NA, Zaman ASK, Jusoh M, Yaapar MN, Rashid SA (2021) Impact of photoluminescent carbon quantum dots on photosynthesis efficiency of rice and corn crops. Plant Physiol Biochem 162:737–751. https://doi.org/10.1016/j.plaphy.2021.03.031

    Article  CAS  Google Scholar 

  5. Zhao B, Tan Z (2021) Fluorescent carbon dots: Fantastic electroluminescent materials for light-emitting diodes. Adv Sci 8:2001977. https://doi.org/10.1002/advs.202001977

    Article  CAS  Google Scholar 

  6. Li X, Rui M, Song J, Shen Z, Zeng H (2015) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25:4929–4947. https://doi.org/10.1002/adfm.201501250

    Article  CAS  Google Scholar 

  7. Yu H, Shi R, Zhao Y, Waterhouse GIN, Wu LZ, Tang CH, Zhang T (2016) Smart utilization of carbon dots in semiconductor photocatalysis. Adv Mater 28:9454–9477. https://doi.org/10.1002/adma.201602581

    Article  CAS  Google Scholar 

  8. Han M, Zhu S, Lu S, Song Y, Feng T, Tao S, Liu J, Yang B (2018) Recent progress on the photocatalysis of carbon dots: classification, mechanism and applications. Nano Today 19:201–218. https://doi.org/10.1016/j.nantod.2018.02.008

    Article  CAS  Google Scholar 

  9. Liu ML, Chen BB, Li CM, Huang CZ (2019) Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21:449–471. https://doi.org/10.1039/C8GC02736F

    Article  CAS  Google Scholar 

  10. Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5:8904–8924. https://doi.org/10.1039/C7TB02484C

    Article  CAS  Google Scholar 

  11. Zhang J, Yu SH (2016) Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater Today 19:382–393. https://doi.org/10.1016/j.mattod.2015.11.008

    Article  CAS  Google Scholar 

  12. Li Y, Xu X, Wu Y, Zhuang J, Zhang X, Zhang H, Lei B, Hu C, Liu Y (2020) A review on the effects of carbon dots in plant systems. Mater Chem Front 4:437–448. https://doi.org/10.1039/C9QM00614A

    Article  CAS  Google Scholar 

  13. Lu W, Gong X, Yang Z, Zhang Y, Hu Q, Shuang S, Dong C, Choi MMF (2015) High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging. RSC Adv 5:16972–16979. https://doi.org/10.1039/C4RA16233A

    Article  CAS  Google Scholar 

  14. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  15. Hardman R (2006) A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172. https://doi.org/10.1289/ehp.8284

    Article  Google Scholar 

  16. Valizadeh A, Mikaeili H, Samiei M, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 7:480. https://doi.org/10.1186/1556-276X-7-480

    Article  CAS  Google Scholar 

  17. Rogach AL, Eychmüller A, Hickey SG, Kershaw SV (2007) Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 3:536–537. https://doi.org/10.1002/smll.200600625

    Article  CAS  Google Scholar 

  18. Iravani S, Varma RS (2020) Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review Environ Chem Lett 18:703–727. https://doi.org/10.1007/s10311-020-00984-0

    Article  CAS  Google Scholar 

  19. Pillar-Little TJ, Wanninayake N, Nease L, Heidary DK, Glazer EC, Kim DY (2018) Superior photodynamic effect of carbon quantum dots through both type I and type II pathways: detailed comparison study of top-down-synthesized and bottom-up-synthesized carbon quantum dots. Carbon 140:616–623. https://doi.org/10.1016/j.carbon.2018.09.004

    Article  CAS  Google Scholar 

  20. Murugan N, Syndramoorthy AK (2018) Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe3+ ions. New J Chem 42:13297–13307. https://doi.org/10.1039/C8NJ01894D

    Article  CAS  Google Scholar 

  21. Murugan N, Prakash M, Jayakumar M, Sundaramurthy A, Syndramoorthy AK (2019) Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+. Appl Surf Sci 476:468–480. https://doi.org/10.1016/j.apsusc.2019.01.090

    Article  CAS  Google Scholar 

  22. Yuan F, Yuan T, Sui L, Wang Z, Xi Z, Li Y, Li X, Fan L et al (2018) Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat Commun 9:2249. https://doi.org/10.1038/s41467-018-04635-5

    Article  CAS  Google Scholar 

  23. Moniruzzaman M, Lakshmi BA, Kim S, Kim J (2020) Preparation of shape-specific (trilateral and quadrilateral) carbon quantum dots towards multiple color emission. Nanoscale 12:11947–11959. https://doi.org/10.1039/D0NR02225J

    Article  CAS  Google Scholar 

  24. Yoshinaga T, Shinoda M, Iso Y, Isobe T, Ogura A, Takao K (2021) Glycothermally synthesized carbon dots with narrow-bandwidth and color-tunable solvatochromic fluorescence for wide-color-gamut displays. ACS Omega 6:1741–1750. https://doi.org/10.1021/acsomega.0c05993

    Article  CAS  Google Scholar 

  25. Khavlyuk PD, Stepanidenko EA, Bondarenko DP, Danilov DV, Koroleva AV, Baranov AV, Maslov VG, Kasak P et al (2021) The influence of thermal treatment conditions (solvothermal versus microwave) and solvent polarity on the morphology and emission of phloroglucinol-based nitrogen-doped carbon dots. Nanoscale 13:3070–3078. https://doi.org/10.1039/D0NR07852B

    Article  CAS  Google Scholar 

  26. Singh MS, Chowdhury S (2012) Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv 2:4547–4592. https://doi.org/10.1039/C2RA01056A

    Article  CAS  Google Scholar 

  27. Varma RS (2001) Solvent-free accelerated organic syntheses using microwaves. Pure Appl Chem 73:193–198. https://doi.org/10.1351/pac200173010193

    Article  CAS  Google Scholar 

  28. Martins MAP, Frizzo CP, Moreira DN, Buriol L, Machado P (2009) Solvent-free heterocyclic synthesis. Chem Rev 109:4140–4182. https://doi.org/10.1021/cr9001098

    Article  CAS  Google Scholar 

  29. Vijesh KR, Thomas T, Vaishakh M, Nampoori VPN, Thomas S (2021) Fluorescence tuning, all-optical switching and OR gate realization of phloroglucinol derived carbon dots. Optik 248:168049. https://doi.org/10.1016/j.ijleo.2021.168049

    Article  CAS  Google Scholar 

  30. Gohda S, Yamada Y, Murata M, Saito M, Kanazawa S, Ono H, Sato S (2020) Bottom-up synthesis of highly soluble carbon materials. J Mater Sci 55:11808–11828. https://doi.org/10.1007/s10853-020-04813-1

    Article  CAS  Google Scholar 

  31. Gohda S, Saito M, Yamada Y, Kanazawa S, Ono H, Sato S (2021) Carbonization of phloroglucinol promoted by heteropoly acids. J Mater Sci 56:2944–2960. https://doi.org/10.1007/s10853-020-05393-w

    Article  CAS  Google Scholar 

  32. Kanazawa S, Yamada Y, Gohda S, Sato S (2021) Bottom-up synthesis of oxygen-containing carbon materials using a Lewis acid catalyst. J Mater Sci 56:15698–15717. https://doi.org/10.1007/s10853-021-06284-4

    Article  CAS  Google Scholar 

  33. Anderson S, Taylor PN, Verschoor GLB (2004) Benzofuran trimers for organic electroluminescence. Chem Eur J 10:518–527. https://doi.org/10.1002/chem.200305284

    Article  CAS  Google Scholar 

  34. Li YY, Ren AM, Feng JK, Yang L, Sun CC (2007) A theoretical investigation on the absorption and emission properties of isomeric benzofuran trimers. Opt Mater 29:1571–1578. https://doi.org/10.1016/j.optmat.2006.05.012

    Article  CAS  Google Scholar 

  35. Cho SM, Youn KM, Yang HI, Lee SH, Naveen KR, Karthik D, Jeong H, Kwon JH (2022) Anthracene-dibenzofuran based electron transport type hosts for long lifetime multiple resonance pure blue OLEDs. Org Electron 105:106501. https://doi.org/10.1016/j.orgel.2022.106501

    Article  CAS  Google Scholar 

  36. Ruiz-Morales Y (2002) HOMO−LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and asphaltenes: A theoretical study. I J Phys Chem A 106:11283–11308. https://doi.org/10.1021/jp021152e

    Article  CAS  Google Scholar 

  37. Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P (2014) Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 2:6954–6969. https://doi.org/10.1039/C4TC01191K

    Article  CAS  Google Scholar 

  38. McCree KJ (1971) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. J Agric Meteorol 9:191–216. https://doi.org/10.1016/0002-1571(71)90022-7

    Article  Google Scholar 

  39. Charlson RJ, Rodhe H (1982) Factors controlling the acidity of natural rainwater. Nature 295:683–685. https://doi.org/10.1038/295683a0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syun Gohda.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 367 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohda, S., Ono, H. & Yamada, Y. Water-soluble photoluminescent carbon dots prepared from phloroglucinol by catalyst- and solvent-free reaction. Carbon Lett. 33, 467–475 (2023). https://doi.org/10.1007/s42823-022-00436-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00436-5

Keywords

Navigation