Skip to main content

Advertisement

Log in

Facile scalable synthesis of graphene oxide and reduced graphene oxide: comparative investigation of different reduction methods

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

As frontier materials, graphene oxide (GO) and graphene have penetrated almost all research areas and advanced numerous technologies in sensing, electronics, energy storage, catalysis, water treatment, advanced composites, biomedical, and more. However, the affordable large-scale synthesis of high-quality GO and graphene remains a significant challenge that negatively affects its commercialisation. In this article, firstly, a simple, scalable approach was demonstrated to synthesise high-quality, high yield GO by modifying the improved Hummers method. The advantages of the optimised process are reduced oxidation time, straightforward washing steps without using coagulation step, reduction in cost as eliminating the use of phosphoric acid, use of minimum chemical reagents, and increased production of GO per batch (~ 62 g). Subsequently, the produced GO was reduced to reduced graphene oxide (rGO) using three different approaches: green reduction using ascorbic acid, hydrothermal and thermal reduction techniques. The GO and rGO samples were characterised using various microscopy and spectroscopy techniques such as XRD, Raman, SEM, TEM, XPS and TGA. The rGO prepared using different methods were compared thoroughly, and it was noticed that rGO produced by ascorbic acid reduction has high quality and high yield. Furthermore, surface (surface wettability, zeta potential and surface area) and electrical properties of GO and different rGO were evaluated. The presented synthesis processes might be potentially scaled up for large-scale production of GO and rGO.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Brownson DA, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196:4873–4885

    Article  CAS  Google Scholar 

  2. Tiwari SK, Thakur AK, Adhikari AD, Zhu Y, Wang N (2020) Current research of graphene-based nanocomposites and their application for supercapacitors. Nanomaterials 10:2046

    Article  CAS  Google Scholar 

  3. Torrisi F, Hasan T, Wu W, Sun Z, Lombardo A, Kulmala TS, Hsieh G-W, Jung S, Bonaccorso F, Paul PJ, Chu D, Ferrari AC (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006

    Article  CAS  Google Scholar 

  4. Qiu B, Xing M, Zhang J (2018) Recent advances in three-dimensional graphene based materials for catalysis applications. Chem Soc Rev 47:2165–2216

    Article  CAS  Google Scholar 

  5. Zhao S, Zhao Z, Yang Z, Ke L, Kitipornchai S, Yang J (2020) Functionally graded graphene reinforced composite structures: A review. Eng Struct 210:110339

    Article  Google Scholar 

  6. Gusain R, Kumar N, Ray SS (2020) Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 405:213111

    Article  CAS  Google Scholar 

  7. Kumar N, Kumar S, Gusain R, Manyala N, Eslava S, Ray SS (2020) Polypyrrole-promoted rGO–MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products. ACS Appl Energy Mater 3:9897–9909

    Article  CAS  Google Scholar 

  8. Maswanganyi S, Gusain R, Kumar N, Fosso-Kankeu E, Waanders FB, Ray SS (2021) Bismuth molybdate nanoplates supported on reduced graphene oxide: an effective nanocomposite for the removal of naphthalene via adsorption-photodegradation. ACS Omega 6:16783–16794

    Article  CAS  Google Scholar 

  9. Song S, Shen H, Wang Y, Chu X, Xie J, Zhou N, Shen J (2020) Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics. Colloids Surf B Biointerfaces 185:110596

    Article  CAS  Google Scholar 

  10. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1:107–131

    Article  CAS  Google Scholar 

  11. Cai X, Lai L, Shen Z, Lin J (2017) Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J Mater Chem A 5:15423–15446

    Article  CAS  Google Scholar 

  12. Yao G, Yang S, He J, Jiang S, Sun C, Song S (2021) In situ growing graphene on g-C3N4 with barrier-free interface and polarization electric field for strongly boosting solar energy conversion into H2 energy. Appl Catal B Environ 287:119986

    Article  CAS  Google Scholar 

  13. Garcia-Segura S, Brillas E (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C 31:1–35

    Article  CAS  Google Scholar 

  14. Ma T, Fan Q, Li X, Qiu J, Wu T, Sun Z (2019) Graphene-based materials for electrochemical CO2 reduction. J CO2 Util 30:168–182

    Article  CAS  Google Scholar 

  15. Geioushy RA, Khaled MM, Hakeem AS, Alhooshani K, Basheer C (2017) High efficiency graphene/Cu2O electrode for the electrochemical reduction of carbon dioxide to ethanol. J Electroanal Chem 785:138–143

    Article  CAS  Google Scholar 

  16. Choi S, Kim C, Suh JM, Jang HW (2019) Reduced graphene oxide-based materials for electrochemical energy conversion reactions. Carbon Energy 1:85–108

    Article  CAS  Google Scholar 

  17. Bøggild P (2018) The war on fake graphene. Nature 562:502–503

    Article  CAS  Google Scholar 

  18. Kauling AP, Seefeldt AT, Pisoni DP, Pradeep RC, Bentini R, Oliveira RVB, Novoselov KS, Castro Neto AH (2018) The worldwide graphene flake production. Adv Mater 30:1803784

    Article  CAS  Google Scholar 

  19. Kovtun A, Treossi E, Mirotta N, Scidà A, Liscio A, Christian M, Valorosi F, Boschi A, Young RJ, Galiotis C (2019) Benchmarking of graphene-based materials: real commercial products versus ideal graphene. 2D Mater 6:025006

    Article  CAS  Google Scholar 

  20. Kumar N, Salehiyan R, Chauke V, Joseph Botlhoko O, Setshedi K, Scriba M, Masukume M, Sinha Ray S (2021) Top–down synthesis of graphene: a comprehensive review. FlatChem 27:100224

    Article  CAS  Google Scholar 

  21. Muñoz R, Gómez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Depos 19:297–322

    Article  CAS  Google Scholar 

  22. Polsen ES, McNerny DQ, Viswanath B, Pattinson SW, John Hart A (2015) High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci Rep 5:10257

    Article  Google Scholar 

  23. Ye R, Tour JM (2019) Graphene at fifteen. ACS Nano 13:10872–10878

    Article  CAS  Google Scholar 

  24. Tiwari SK, Sahoo S, Wang N, Huczko A (2020) Graphene research and their outputs: status and prospect. J Sci Adv Mater Devices 5:10–29

    Article  Google Scholar 

  25. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  26. McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  27. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  28. Brisebois PP, Siaj M (2020) Harvesting graphene oxide—years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J Mater Chem C 8:1517–1547

    Article  CAS  Google Scholar 

  29. Brodie BC (1859) On the Atomic Weight of Graphite. Phil Trans R Soc Lond 149:249–259

  30. Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31:1481–1487

    Article  CAS  Google Scholar 

  31. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  32. Peng L, Xu Z, Liu Z, Wei Y, Sun H, Li Z, Zhao X, Gao C (2015) An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun 6:5716

    Article  CAS  Google Scholar 

  33. Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  CAS  Google Scholar 

  34. Abdolhosseinzadeh S, Asgharzadeh H, Seop Kim H (2015) Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 5:10160

    Article  CAS  Google Scholar 

  35. Lavin-Lopez MDP, Romero A, Garrido J, Sanchez-Silva L, Valverde JL (2016) Influence of different improved hummers method modifications on the characteristics of graphite oxide in order to make a more easily scalable method. Ind Eng Chem Res 55:12836–12847

    Article  CAS  Google Scholar 

  36. Lakhe P, Kulhanek DL, Zhao X, Papadaki MI, Majumder M, Green MJ (2020) Graphene oxide synthesis: reaction calorimetry and safety. Ind Eng Chem Res 59:9004–9014

    Article  CAS  Google Scholar 

  37. Verma S, Mungse HP, Kumar N, Choudhary S, Jain SL, Sain B, Khatri OP (2011) Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem Commun 47:12673–12675

    Article  CAS  Google Scholar 

  38. Shalaby A, Nihtianova D, Markov P, Staneva A, Iordanova R, Dimitriev Y (2015) Structural analysis of reduced graphene oxide by transmission electron microscopy. Bul Chem Commun 47:291–295

    Google Scholar 

  39. Sharma R, Chadha N, Saini P (2017) Determination of defect density, crystallite size and number of graphene layers in graphene analogues using X-ray diffraction and Raman spectroscopy. Indian J Pure Appl Phys 55:625–629

    Google Scholar 

  40. Lesiak B, Trykowski G, Tóth J, Biniak S, Kövér L, Rangam N, Stobinski L, Malolepszy A (2021) Chemical and structural properties of reduced graphene oxide—dependence on the reducing agent. J Mater Sci 56:3738–3754

    Article  CAS  Google Scholar 

  41. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  CAS  Google Scholar 

  42. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  43. Kumar N, Fosso-Kankeu E, Ray SS (2019) Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems. ACS Appl Mater Interfaces 11:19141–19155

    Article  CAS  Google Scholar 

  44. Joshi N, da Silva LF, Jadhav HS, Shimizu FM, Suman PH, M’Peko J-C, Orlandi MO, Seo JG, Mastelaro VR, Oliveira ON (2018) Yolk-shelled ZnCo2O4 microspheres: surface properties and gas sensing application. Sens Actuators B Chem 257:906–915

    Article  CAS  Google Scholar 

  45. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  46. Islam A, Mukherjee B, Pandey KK, Keshri AK (2021) Ultra-fast, chemical-free, mass production of high quality exfoliated graphene. ACS Nano 15:1775–1784

    Article  CAS  Google Scholar 

  47. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2:581–587

    Article  CAS  Google Scholar 

  48. Khan M, Al-Marri AH, Khan M, Mohri N, Adil SF, Al-Warthan A, Siddiqui MRH, Alkhathlan HZ, Berger R, Tremel W, Tahir MN (2014) Pulicaria glutinosa plant extract: a green and eco-friendly reducing agent for the preparation of highly reduced graphene oxide. RSC Adv 4:24119–24125

    Article  CAS  Google Scholar 

  49. Farivar F, Yap PL, Hassan K, Tung TT, Tran DNH, Pollard AJ, Losic D (2021) Unlocking thermogravimetric analysis (TGA) in the fight against “Fake graphene” materials. Carbon 179:505–513

    Article  CAS  Google Scholar 

  50. Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R (2010) Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48:630–635

    Article  CAS  Google Scholar 

  51. Li H, Zou L, Pan L, Sun Z (2010) Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Sep Purif Technol 75:8–14

    Article  CAS  Google Scholar 

  52. Deng F, Pei X, Luo Y, Luo X, Dionysiou DD, Wu S, Luo S (2016) Fabrication of hierarchically porous reduced graphene oxide/SnIn4S8 composites by a low-temperature co-precipitation strategy and their excellent visible-light photocatalytic mineralization performance. Catalysts 6:113

    Article  CAS  Google Scholar 

  53. Kim S, Zhou S, Hu Y, Acik M, Chabal YJ, Berger C, de Heer W, Bongiorno A, Riedo E (2012) Room-temperature metastability of multilayer graphene oxide films. Nat Mater 11:544–549

    Article  CAS  Google Scholar 

  54. Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358

    Article  CAS  Google Scholar 

  55. Xu C, Shi X, Ji A, Shi L, Zhou C, Cui Y (2015) Fabrication and characteristics of reduced graphene oxide produced with different green reductants. PLoS ONE 10:e0144842

    Article  CAS  Google Scholar 

  56. Ghosh TK, Sadhukhan S, Rana D, Bhattacharyya A, Chattopadhyay D, Chakraborty M (2019) Green approaches to synthesize reduced graphene oxide and assessment of its electrical properties. Nano-Struct Nano-Objects 19:100362

    Article  CAS  Google Scholar 

  57. Konkena B, Vasudevan S (2012) Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J Phys Chem Lett 3:867–872

    Article  CAS  Google Scholar 

  58. Dreyer DR, Murali S, Zhu Y, Ruoff RS, Bielawski CW (2011) Reduction of graphite oxide using alcohols. J Mater Chem 21:3443–3447

    Article  CAS  Google Scholar 

  59. Lei Z, Lu L, Zhao X (2012) The electrocapacitive properties of graphene oxide reduced by urea. Energy Environ Sci 5:6391–6399

    Article  CAS  Google Scholar 

  60. Wan W, Zhao Z, Hu H, Gogotsi Y, Qiu J (2013) Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength. Mater Res Bull 48:4797–4803

    Article  CAS  Google Scholar 

  61. Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218

    Article  CAS  Google Scholar 

  62. Wang Y, Shi Z, Yin J (2011) Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3:1127–1133

    Article  CAS  Google Scholar 

  63. Chen D, Li L, Guo L (2011) An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid. Nanotechnology 22:325601

    Article  CAS  Google Scholar 

  64. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    Article  CAS  Google Scholar 

  65. Tiwari SK, Huczko A, Oraon R, De Adhikari A, Nayak GC (2016) A time efficient reduction strategy for bulk production of reduced graphene oxide using selenium powder as a reducing agent. J Mater Sci 51:6156–6165

    Article  CAS  Google Scholar 

  66. Shang YU, Zhang D, Liu Y, Guo C (2015) Preliminary comparison of different reduction methods of graphene oxide. Bull Mater Sci 38:7–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Council for Scientific and Industrial Research, South Africa (2D PG Grant no. C1BCH57) and the University of Johannesburg, South Africa, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Neeraj Kumar or Suprakas Sinha Ray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 286 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Setshedi, K., Masukume, M. et al. Facile scalable synthesis of graphene oxide and reduced graphene oxide: comparative investigation of different reduction methods. Carbon Lett. 32, 1031–1046 (2022). https://doi.org/10.1007/s42823-022-00335-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00335-9

Keywords

Navigation