Skip to main content
Log in

Effect of nitric acid treatment on the pitch properties and preparation of activated carbon

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The pore structure of pitch-based activated carbon prepared by physical activation was improved by nitric acid treatment of pitch. The nitric acid treatment introduced oxygen and nitrogen functional groups on pitch, and increased pitch molecular weight by cross-linking. The introduced oxygen and nitrogen functional groups on pitch were removed during the carbonization process, so they did not directly affect the physical activation process. The increased pitch molecular weight induced an increase of the pitch softening point. The increased softening point prevented rearrangement between the pitch molecules during the carbonization process, thereby inhibiting the orientation improvement of pitch molecules. The crystal degree of the carbonized pitch was reduced due to the inhibition of the orientation improvement. The reduced crystal degree increased reactivity between carbonized pitch and activation agent (CO2) and formed micropores, so that activated carbon with a high specific surface area could be prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fu Y, Ding X, Zhao J, Zheng Z (2020) Study on the effect of oxidation-ultrasound treatment on the electrochemical properties of activated carbon materials. Ultrason Sonochem 69:104921. https://doi.org/10.1016/j.ultsonch.2019.104921

    Article  CAS  Google Scholar 

  2. Kim JH, Choi YJ, Im JS, Jo A, Lee KB, Bai BC (2020) Study of activation mechanism for dual model pore structured carbon based on effects of molecular weight of petroleum pitch. J Ind Eng Chem 88:251–259. https://doi.org/10.1016/j.jiec.2020.04.022

    Article  CAS  Google Scholar 

  3. Wang Y, Pan J, Li Y, Zhang P, Li M, Zheng H, Zhang X, Li H, Du Q (2020) Methylene blue adsorption by activated carbon, nickel alginate/activated carbon aerogel, and nickel alginate/graphene oxide aerogel: a comparison study. J Mater Res Technol 9(6):12443–12460. https://doi.org/10.1016/j.jmrt.2020.08.084

    Article  CAS  Google Scholar 

  4. Zhang H, Niu J, Guo Y, Cheng F (2021) Indispensable role of inherent calcite in coal on activated carbon (AC)’s preparation and applications. Fuel 287:119481. https://doi.org/10.1016/j.fuel.2020.119481

    Article  CAS  Google Scholar 

  5. Kossovich EL, Borodich FM, Epshtein SA, Galanov BA (2020) Indentation of bituminous coals: fracture, crushing and dust formation. Mech Mater 150:103570. https://doi.org/10.1016/j.mechmat.2020.103570

    Article  Google Scholar 

  6. Kim MI, Im JS, Seo SW, Cho JH, Lee YS, Kim S (2020) Preparation of pitch-based activated carbon with surface-treated fly ash for SO2 gas removal. Carbon Lett 30:381–387. https://doi.org/10.1007/s42823-019-00107-y

    Article  CAS  Google Scholar 

  7. Lin H, Liu Y, Chang Z, Yan S, Liu S, Han S (2020) A new method of synthesizing hemicellulose-derived porous activated carbon for high-performance supercapacitors. Microporous Mesoporous Mater 292:109707. https://doi.org/10.1016/j.micromeso.2019.109707

    Article  CAS  Google Scholar 

  8. Nassar H, Zyoud A, El-Hamouz A, Tanbour R, Halayqa N, Hilal HS (2020) Aqueous nitrate ion adsorption/desorption by olive solid waste-based carbon activated using ZnCl2. Sustain Chem Pharm 18:100335. https://doi.org/10.1016/j.scp.2020.100335

    Article  Google Scholar 

  9. Lin X, Sheng Z, He J, He X, Wang C, Gu X, Wang Y (2021) Preparation of isotropic spinnable pitch with high-spinnability by co-carbonization of coal tar pitch and bio-asphalt. Fuel 295:120627. https://doi.org/10.1016/j.fuel.2021.120627

    Article  CAS  Google Scholar 

  10. Liu H, Song H, Hou W, Chang Y, Zhang Y, Li Y, Zhao Y, Han G (2021) Coal tar pitch-based hierarchical porous carbons prepared in molten salt for supercapacitors. Mater Chem Phys 265:124491. https://doi.org/10.1016/j.matchemphys.2021.124491

    Article  CAS  Google Scholar 

  11. Xing B, Zeng H, Huang G, Jia J, Yuan R, Zhang C, Sun Q, Cao Y, Chen Z, Liu B (2021) Magnesium citrate induced growth of noodle-like porous graphitic carbons from coal tar pitch for high-performance lithium-ion batteries. Electrochim Acta 376:138043. https://doi.org/10.1016/j.electacta.2021.138043

    Article  CAS  Google Scholar 

  12. Seo SW, Choi YJ, Kim JH, Cho JH, Lee YS, Im JS (2019) Micropore-structured activated carbon prepared by waste PET/petroleum-based pitch. Carbon Lett 29:385–392. https://doi.org/10.1007/s42823-019-00028-w

    Article  Google Scholar 

  13. Lu Z, Maroto-Valer MM, Schobert HH (2008) Role of active sites in the steam activation of high unburned carbon fly ashes. Fuel 87:2598–2605. https://doi.org/10.1016/j.fuel.2008.01.016

    Article  CAS  Google Scholar 

  14. Li J, Li Z, Yang Y, Duan Y, Xu J, Gao R (2019) Examination of CO, CO2 and active sites formation during isothermal pyrolysis of coal at low temperatures. Energy 185:28–38. https://doi.org/10.1016/j.energy.2019.07.041

    Article  CAS  Google Scholar 

  15. Li J, Li Z, Yang Y, Zhang X (2019) Study on the generation of active sites during low-temperature pyrolysis of coal and its influence on coal spontaneous combustion. Fuel 241:283–296. https://doi.org/10.1016/j.fuel.2018.12.034

    Article  CAS  Google Scholar 

  16. Rubio B, Izquierdo MT (2010) Coal fly ash based carbons for SO2 removal from flue gases. Waste Manag 30:1341–1347. https://doi.org/10.1016/j.wasman.2010.01.035

    Article  CAS  Google Scholar 

  17. Li J, Li Z, Yang Y, Niu J, Meng Q (2019) Room temperature oxidation of active sites in coal under multi-factor conditions and corresponding reaction mechanism. Fuel 256:115901. https://doi.org/10.1016/j.fuel.2019.115901

    Article  CAS  Google Scholar 

  18. Wang CY, Inagaki M (1999) Oxidation resistance of pitch-based carbon fibers during heat-treatment in carbon dioxide. Carbon 37:158–161. https://doi.org/10.1016/S0008-6223(98)90105-1

    Article  CAS  Google Scholar 

  19. Yoo MJ, Ko HJ, Lim YS, Kim MS (2014) Modification of isotropic coal-tar pitch by acid treatments for carbon fiber melt-spinning. Carbon Lett 15(4):247–254. https://doi.org/10.5714/CL.2014.15.4.247

    Article  Google Scholar 

  20. Petrova B, Budinova T, Petrov N, Yardim MF, Ekinci E, Razvigorova M (2005) Effect of different oxidation treatments on the chemical structure and properties of commercial coal tar pitch. Carbon 43:261–267. https://doi.org/10.1016/j.carbon.2004.09.006

    Article  CAS  Google Scholar 

  21. Kim SJ, Bai BC, Kim MI, Lee YS (2020) Improved specific capacitance of pitch-based activated carbon by KOH/KMnO4 agent for supercapacitors. Carbon Lett 30:585–591. https://doi.org/10.1007/s42823-020-00158-6

    Article  Google Scholar 

  22. Jin Z, Zuo X, Long X, Cui Z, Yuan G, Dong Z, Zhang J, Cong Y, Li X (2021) Accelerating the oxidative stabilization of pitch fibers and improving the physical performance of carbon fibers by modifying naphthalene-based mesophase pitch with C9 resin. J Anal Appl Pyrolysis 154:105009. https://doi.org/10.1016/j.jaap.2020.105009

    Article  CAS  Google Scholar 

  23. Liu X, Liang X, Liu C, Zhan L, Qiao W, Ling L (2010) Pitch spheres stabilized by HNO3 oxidation and their carbonization behavior. New Carbon Mater 25(1):29–34. https://doi.org/10.1016/S1872-5805(09)60013-5

    Article  CAS  Google Scholar 

  24. Zhang D, He C, Wang Y, Zhao J, Wang J, Li K (2019) Oxygen-rich hierarchically porous carbons derived from pitch-based oxidized spheres for boosting the supercapacitive performance. J Colloid Interface Sci 540:439–447. https://doi.org/10.1016/j.jcis.2019.01.038

    Article  CAS  Google Scholar 

  25. Fan C, Dong Y, Liu Y, Zhang L, Wang D, Lin X, Lv Y, Zhang S, Song H, Jia D (2020) Mesopore-dominated hollow carbon nanoparticles prepared by simple air oxidation of carbon black for high mass loading supercapacitors. Carbon 160:328–334. https://doi.org/10.1016/j.carbon.2020.01.034

    Article  CAS  Google Scholar 

  26. Liu YC, Hung YH, Sutarsis HCC, Ni CS, Liu TY, Chang JK, Chen HY (2021) Effects of surface functional groups of coal-tar-pitch-derived nanoporous carbon anodes on microbial fuel cell performance. Renew Energy 171:87–94. https://doi.org/10.1016/j.renene.2021.01.149

    Article  CAS  Google Scholar 

  27. Karthikeyan S, Viswanathan K, Boopathy R, Maharaja P, Sekaran G (2015) Three dimensional electro catalytic oxidation of aniline by boron doped mesoporous activated carbon. J Ind Eng Chem 21:942–950. https://doi.org/10.1016/j.jiec.2014.04.036

    Article  CAS  Google Scholar 

  28. Artyushkova K, Levendosky S, Atanassov P, Fulghum J (2007) XPS structural studies of nano-composite non-platinum electrocatalysts for polymer electrolyte fuel cells. Top Catal 46:263–275. https://doi.org/10.1007/s11244-007-9002-y

    Article  CAS  Google Scholar 

  29. Fanjul F, Granda M, Santamaría R, Menéndez R (2002) On the chemistry of the oxidative stabilization and carbonization of carbonaceous mesophase. Fuel 81:2061–2070. https://doi.org/10.1016/S0016-2361(02)00189-8

    Article  CAS  Google Scholar 

  30. Ha HS, Lee TS, Lee SG, Kim DC, Joo HJ (2000) Oxidative stabilization mechanism of poly(vinyl chloride) pitch. Polym Degrad Stab 68:247–252. https://doi.org/10.1016/S0141-3910(00)00007-0

    Article  CAS  Google Scholar 

  31. Kim JG, Kim JH, Song BJ, Lee CW, Im JS (2016) Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO). J Ind Eng Chem 36:293–297. https://doi.org/10.1016/j.jiec.2016.02.014

    Article  CAS  Google Scholar 

  32. Kim JH, Choi YJ, Lee SE, Im JS, Lee KB, Bai BC (2021) Acceleration of petroleum based mesophase pitch formation by PET (polyethylene terephthalate) additive. J Ind Eng Chem 93:476–481. https://doi.org/10.1016/j.jiec.2020.10.027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byong Chol Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.I., Bai, B.C. Effect of nitric acid treatment on the pitch properties and preparation of activated carbon. Carbon Lett. 32, 99–107 (2022). https://doi.org/10.1007/s42823-021-00256-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00256-z

Keywords

Navigation