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Abstract
Ice management is critical for safe and efficient operations in ice-covered waters; thus, it is important to understand
the impact of the operator’s experience in effective ice management performance. This study evaluated the confi-
dence intervals of the mean and probability distributions of two different sample groups, novice cadets and expe-
rienced seafarers, to evaluate if there was a difference in effective ice management depending on the operator’s level
of experience. The ice management effectiveness, in this study, is represented by the “clearing-to-distance ratio” that
is the ratio between the area of cleared ice (km2) and the distance travelled by an ice management vessel (km) to
maintain that cleared area. The data analysed in this study was obtained from a recent study conducted by Memorial
University’s “Safety at Sea” research group. With the distribution fitting analysis providing inconclusive results
regarding the normality of the data, the confidence intervals of the dataset means were obtained using both para-
metric approaches, such as t-test, Cox’s method, and Johnson t-approach, and non-parametric methods, namely
Jackknife and Bootstrap methods, to examine if the assumption of normality was valid. The comparison of the
obtained confidence interval results demonstrates that the mean efficiency of the cadets is more consistent, while it is
more varied among seafarers. The noticeable difference in ice management performance between the cadet and
seafarer sample groups is revealed, thus, proving that crew experience positively influences ice management
effectiveness.
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Introduction

An ice management system helps forecast and mitigate ice
within an operational region to keep personnel safe and reduce
operational downtime (Hotzel and Miller 1985). There are
many components within an ice management system, such
as ice detection, tracking, forecasting, and physical ice man-
agement (ISO 2010).

Ice management operations have been going on since the
mid-1970s, but there is very little data available to help model
the complex system that is ice management, which is required
to conduct comprehensive risk assessments (Haimelin et al.
2017). One of the hardest factors to collect data on is the
‘human element,’ with their varying backgrounds, experi-
ences, educations and training (Haimelin et al. 2017). The
analysis conducted in this paper helps quantify some of these
hard to define variables, using the data obtained from a marine
simulator (Veitch et al. 2018).

This analysis studied the effect of vessel operator experi-
ence within the physical ice management component of the
complex ice management system. Physical ice management
has two main types of operations: towing or changing the
course of icebergs and clearing or breaking up of ice
(Haimelin et al. 2017). In this study, the data analysed was
collected during the clearing of pack ice in an ice manage-
ment simulation. One of the main reasons for the removal of
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pack ice is to keep the evacuation zone ready for an emer-
gency, allowing space for the lifeboats to be launched (ISO
2010). Clearing of pack ice is also conducted to reduce the
global and local loads, and to help with station-keeping most
often with floating production storage and offloading plat-
forms (FPSOs) (ISO 2010).

The ice management data used in this analysis was
collected during a recent study conducted by Memorial
University’s “Safety at Sea” research group. Their study
investigated the effect of crew experience on ice man-
agement operations with the use of a marine ice man-
agement simulator (Veitch et al. 2018). The study ex-
amined two groups, novice cadets and experienced sea-
farers, to see if there was a difference in the effective-
ness of the ice management operation. After analysing
the data from the experiments, 18 usable sample points
were collected for the cadets, and 15 sample points
were usable for the seafarers (Veitch 2018).

With such small sample-sets, it can be challenging to prop-
erly capture the population that the sample-sets are trying to
represent. In this investigation, both distributional fitting
methods and confidence intervals (CIs) were used to assess
if there is a difference in the ice management performance
between the novice cadets and experienced seafarers, as well
as to examine if the assumption of normality used in the orig-
inal study was creditable.

When analysing the effect of crew experience on ice man-
agement performance, Veitch et al. (2018) assumed that the
collected experimental data was normal by only interpreting a
normal probability plot. However, this assumption may
be inaccurate due to the small sample sizes, since normality
tests for small datasets have little power to reject the null
hypothesis (Ghasemi and Zahediasl 2012). In most cases,
small sample sizes pass normality tests, thereby hinder the
detection of non-normality (Helsel and Hirsch 2002). Thus,
this study investigated if the assumption of normality is accu-
rate for the ice management performance of the cadets and
seafarers.

With small sample-sets, the t-test is typically used to find
the CIs of the parameters (Johnson 1978), but this approach
requires an assumption of normality. When the data seems
skewed parametric methods like Cox’s (Land 1972; Zhou
and Goa 1997) and modified t-approaches (Johnson 1978;
Banik and Kibria 2010) can be used to find CIs as they take
into account some degree of skewness. For many applications
and comparisons, the various bootstrap methods seem to be
favoured when distributional assumptions do not want to be
made regarding a sample-set (Zhou and Goa 1997; Henderson
2005; Perera 2008; Banik and Kibria 2010; Lee et al. 2010;
Mamun et al. 2017).

Therefore, both parametric and non-parametric methods
were implemented to investigate the CIs of the means and
the difference between them, to see if the parametric t-test

method that requires an assumption of normally distributed
data produces similar conclusions to the non-parametric re-
sults. For the non-parametric methods, three different types
of Bootstrap, standard normal, percentile and Bootstrap t-
method, were investigated along with Jackknife.

CIs quantify an expected range for a parameter value, such
as a mean or median, to fall within (Liu 2009). CIs are also
very useful when comparing the difference between two pop-
ulations. Traditionally, especially in the medical and psychol-
ogy fields, null hypothesis tests have been used to see if there
is a difference in two populations but cannot be used to tell if
this difference is significant (Corty and Corty 2011).
Therefore, CIs are a suitable approach to compare the two
different experience levels of ice management operators. For
this analysis, a 95% confidence level was set for the CI range.

One of the focuses of this paper is to investigate if there
is a difference between the probability distributions for the
ice management effectiveness of the seafarers and cadets
sample groups. Experience and expertise are valuable to
employers; for example, 81% of U.S. employers pay for
and encourage their employees to learn and enhance their
skill sets (Germain 2011), but how are experts distinguished
from novice employees. Simulators have been used exten-
sively in the medical field for training, as well as for studies
investigating the difference in performance between different
experience levels (Bick et al. 2013; Conway et al. 2014;
Mandava et al. 2015). None of these studies found here have
distinguished any type of distributions for either the novice
or expert sample groups (Ueda et al. 2010; Bick et al. 2013;
Conway et al. 2014; Mandava et al. 2015; Mazomenos et al.
2016; Cahill et al. 2018). One paper that studied expert and
novice performs in a specific task that neither had extensive
experience in, found that there were a few cases where the
students had a higher performance value than the experts,
but overall the experts had a lower variance. This paper also
noted that a lower variance in outcomes is more valuable in
clinical situations where patients are expecting a certain out-
come every time (Ueda et al. 2010). This expectation or
standard of expecting similar outcomes every time could
also be translated to operation in harsh or dangerous envi-
ronments, like in ice management in the offshore field.

There is some criticism of expert vs novice style ex-
periments since the expert, in theory, has a lot more prac-
tice and knows what to expect from the activity
(Giskegjerde 2011), in particular like the medical proce-
dure simulations. In this case, the simulation of ice man-
agement operations can be considered a dynamic environ-
ment, and is considered a better environment to conduct
the novice vs expert type of experiments since the exact
situation is much harder to predict (Giskegjerde 2011).
Dynamic environments change despite the operator’s ac-
tions and allows examiners to analyse experts as they
process and recognize patterns in the emerging
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environment (Cellier et al. 1997). In dynamic environ-
ments researchers have observed that experts observe larg-
er patterns than novices, which allows them to focus on
the more relevant aspects of the operation. With practice,
experts catalogue a large collection of patterns which al-
lows them to narrow down more critical states, and pre-
vent events opposed to correcting missteps (Cellier et al.
1997).

The analysis in this paper can be broken up into four steps.
First, an investigation of the samples’ distributions is conduct-
ed to assess the distributional assumptions required with para-
metric CIs methods. Second, the CIs of the sample means are
developed with both parametric and non-parametric methods;
this is followed by finding the CIs of the difference in the
sample means. Final ly, the resul ts are analysed
by comparing the different methods used to generate the CIs
with interval length, assessing the assumption of a normal
distribution with small sample-sets, and determining if bridge
experience influences ice management effectiveness.

Description of data

The data used in this analysis was collected by Memorial
University’s “Safety at Sea” research group. The study con-
ducted by Veitch et al. (2018), investigated the effect of crew
experience and ice concentration on ice management opera-
tions with the use of a marine ice management simulator. The
study examined two groups, novice cadets and experienced
seafarers, to see if there was a difference in the effectiveness of
the ice management operation. The study was conducted with
the use of a marine simulator (Fig. 1). The simulator has a
simplified bridge, to help reduce the impact of inexperience
with operating an ice management type vessel and also helps
control the number of variables during a scenario.

Various parameters were collected in the initial study to try
and investigate effective ice management, such as average and
peak ice concentration drop, total ice clearing area, clearing-
to-distance ratio, and cumulative ice-free life-boat launch time
(Veitch 2018). For this analysis effective ice management was
quantified with the clearing-to-distance ratio, where the ratio
is between the area cleared (km2) and the distance the vessel
travelled (km) during the operation. Ice management effec-
tiveness was used to help quantify good and efficient ice man-
agement operations. An operator’s work was considered ef-
fective if they managed to clear a larger area with less distance
travelled. Therefore, the larger clearing-to-distance ratios in-
dicate better operator performance (Veitch 2018).

The original study tested operators in two different ice
management scenarios, an “emergency” scenario and a “pre-
cautionary” scenario, but talking to the operators once they
completed the “precautionary” ice management scenarios, it
was found that that scenario was not feasible with only one
vessel (Veitch et al. 2018). Therefore, the data used in this
analysis was collected during the “emergency” ice manage-
ment simulation, where the operators were asked to keep a
lifeboat launch area (seen as the box in Fig. 2) cleared of ice
for 30 min, to allow for lifeboat evacuation.

In the original experiment, two factors were investigated:
experience level and ice concentration (Veitch et al. 2018). In
this analysis, only experience level was analysed. Thus, the
data collected for the two different ice concentrations was
mixed for this analysis.

Since the focus of the original experiment was to see if
there was a difference between cadets and seafarers operating
an ice management simulator in two different levels of ice
concentration, the original experiment was set up and con-
ducted as a factorial design of experiments to see if any sig-
nificant effects were detectable. This was also advantageous
due to the limited number of local cadets and seafarers, as well
as the amount of time each session required. The size of both

Fig. 1 Marine simulator
schematic (modified from Veitch
et al. 2018)
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sample groups was based on the minimum required number of
runs that would allow for significant effects of a 2-factor fac-
torial design to be detectable. This indicated that each sample
group should have at least 18 participants (Veitch et al. 2018),
which in statistics is a relatively small sample size. Once that
data was analysed, the clearing-to-distance ratio had 18 usable
sample points for the cadets and 15 usable sample points for
the seafarers (Veitch 2018).

Methods

Determination of probability distribution model

Since these data sets are unique and nothing similar appears
to have been collected and statistically analysed before, there is
no known expected probability distribution. Thus, exploratory
data analysis was completed with probability distribution fitting
methods to see if the assumption of a normal distribution is
acceptable.

Due to the small sample-set sizes, the probability density
plots (Fig. 3) did not help give any general idea of what dis-
tributions may be present. A normal distribution was investi-
gated since that was the assumption of the original analysis
(Veitch et al. 2018) and is now being analysed and compared
in this study. Additionally, it is common to assume normality
with small sample-sets to allow the use of the t-test.
A lognormal distribution was also chosen due to the possible
unevenness of the probability density plots and the common

occurrence of lognormal distribution in nature (Casella and
Berger 2002; Banik and Kibria 2010). Therefore, normal
and lognormal distributions were selected to be investigated.

First, Box-Cox transformations were generated to see if a
sample-set may require a transformation to approach a normal
distribution (Montgomery 2013). In other words, the Box-Cox
transformations were applied to see if the initial assumptions of
either a normal or lognormal distribution were sufficient, or if the
sample-sets required a different transformation that should also
be analysed.

From there, the chosen distributions were examined with vi-
sual (cumulative probability distribution and probability plots)
and formal (Kolmogorov-Smirnov goodness of fit test) methods.

One visual method compares the observed and theoretical
cumulative density function (CDF) of the sample data to see
what theoretical distribution follows the observed CDF plot-
ted data the best (Ang and Tang 2007). Theoretical

Fig. 3 a) Cadet and b) seafarer ice management effectiveness probability
density

Fig. 2 “Emergency” ice management scenario (modified from Veitch
et al. 2018)
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distribution, in this case, is the distribution created using a
cumulative density function and parameters from the sam-
ple-sets, such as the mean and standard deviation. The theo-
retical distribution is compared to the observed cumulative
density where the collected data is plotted.

The other visual method was probability plots, which see if a
set of randomor observed variables follows a specific CDF. First,
the observed CDF is plotted, then the linearized theoretical CDF
of a particular distribution is overlaid. If the observed data points
follow the linear predicted probability function, this suggests that
the sample-set follows the distribution under investigation
(Haldar and Mahadevan 2000). Some generated probability plot
also included CIs to help gauge how close the observed data
follows the linearized probability function.

The final distribution fitting method was the analytical ap-
proach of the goodness of fit tests. The goodness of fit tests are
simple null hypothesis tests and only indicate if a chosen distri-
bution under investigation is not rejected. The Kolmogorov-
Smirnov goodness of fit test (K-S test) was selected over the
Chi-Square test due to the small sample size preferring a CDF
comparison over a probability density function comparison (Ang
and Tang 2007). Since the overall distribution was of more con-
cern, then the tail ends of the distribution, the K-S test was also
chosen over the Anderson-Darling test (A-D test) (Ang and Tang
2007). The K-S test uses the CDF to compare an observed
sample-set to a theoretical distribution using the sample’s param-
eters. The maximum difference between the observed and theo-
retical distribution,Dn, is calculated, then compared to the critical
difference, Dn

α, found for a given significance level, α, and the
number of sample points, n. IfDn ≤Dn

α, then the null hypothesis
is not rejected (Haldar and Mahadevan 2000).

Parametric methods

If the distributional goodness of fit tests do not reject the assump-
tion of normality, the parametric t-distribution test, also known as
the t-test, is implemented to find the CIs for the sample means as
well as the CI for their difference. The t-test is used when the
sample size is small (n < 30), such as this case (Navidi 2006).

In the case where the data appears to have some degree of
skewness, the Johnson t-approach is applied. This approach
still uses the t-distribution, but the t variable is modified using
properties from the sample to make it more robust and remove
bias (Johnson 1978). The Cornish-Fisher expansion is used to
derive the correction factor as it allows the correction of bias
and skewness effects, by correcting the difference between the
mean and median that arrives with asymmetrical distributions
(Johnson 1978); the CI relationship that is derived can be seen
as Eq. 1.

xþ μ̂3

6s2N
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� tα=2;v

sffiffiffiffi
N

p ð1Þ

The Johnson t-approach uses the sample mean x, the third
moment of the population μ̂3, the variance s2, the sample size
N, and the t-value tα/2, v. This approach is for sample sizes as
small as 13, and appropriate for a sample with distributions rang-
ing from a normal t-distribution to samples with asymmetrical
Chi-square distribution degree of skewness (Johnson 1978).

In cases where samples have a higher degree of skewness that
approach a lognormal distribution, Cox’s method can be used
(Land 1972; Zhou and Gao 1997). This method is an effective
approach to approximate the CI of a lognormal mean. The Cox’s
method, even though suggested for larger sample sizes, seems to
reasonably meet the nominal confidence level for small samples
as long as the variance is low (Land 1972). The Cox’s method
finds the CI in its lognormal form using Eq. 2.

θ ¼ Y þ s2

2
� Z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n
þ s4

2 n−1ð Þ

s
ð2Þ

Where Y is the samplemean of the log transformed sample,
in this case, s2 is also the variance of the log transformed
sample, and Z1 −α/2 is the z-value for the chosen confidence
level (Land 1972).

Non-parametric methods

If the sample sizes are too small to make a confident assump-
tion of the data’s distributions, the non-parametric methods are
beneficial for computing the uncertainties of the data means.
Both the Bootstrap and the Jackknife methods are computer-
intensive resampling methods that allow the estimation of the
statistical parameters and their uncertainties when the sample
data is small, without making distributional assumptions
about the data. The main difference of these techniques is
the sampling type, which is conducted with replacement in
the Bootstrap and without replacement in the Jackknife
(Chernick 1999; Henderson 2005).

The Bootstrap procedure starts by creating many samples
artificially from an original dataset by applying multiple
resamplings with replacement. From there, statistical conclu-
sions are drawn from the obtained resampled data.

The general Bootstrap algorithm for computing confidence
interval for the mean is followed. First, m Bootstrap samples
are created of size n with replacement from the original data
sample X1, X2,…, Xn. Next, the estimated parameters for each

Bootstrap sample are computed, such as the means Q
*
1; :::;Q

*
m

or standard errors se*1;…; se*m. The Bootstrap mean Q, the
mean of the means for all Bootstrap samples, is also calculat-
ed. Finally, the CIs of the Bootstrap means are determined
(Efron 1979).

There are various methods for computing CI for the mean.
In this study, three Bootstrap methods, standard normal
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(NORM), percentile (PER) and Bootstrap t-method (STUD),
are analysed with a 95% CI probability (Betta et al. 2006;
Stepien 2016; Liguori et al. 2017).

The NORM method computes a CI for the mean as:

Q� zα=2*SE ð3Þ

where zα/2 is the point where the standard unit normal dis-
tribution is exceeded with an α/2 probability, and SE is the
standard error (Betta et al. 2006).

The PER method uses the percentiles of the Bootstrap

means, so that the lower and upper limits of the CI are Q
*
α=2

and Q
*
1−α=2, the quantiles of the Bootstrap means distribution.

For example, the endpoints of the 95%CI are the 2.5, and 97.5
percentiles of the Bootstrap sample means.

The STUD method constructs the CI using a Student’s t-
statistic. First, the t-statistic t1

*,…, tm
* are calculated for each

Bootstrap sample as:

t˙
*
1 ¼ Q

*
i −Q

� �
=se*i ð4Þ

where Q
*
i and se*i are the mean and standard error of ith

Bootstrap sample. Then, the CI is defined by:

Q� t˙
*
α=2*SE ð5Þ

The Bootstrap method is also used to compute the CI of the
difference between two sample means, to define how much
the means of two data samples differ. The bootstrap algorithm
for computing the CI of two means is similar to that described
above. First, m bootstrap samples of size n were created for
both data samples. Then, m bootstrap samples of their differ-
ence are computed, and the means for each of them are ob-
tained. Finally, the CIs are extracted using the percentile
method.

Similar to the Bootstrap method, the Jackknife approach is
applied to estimate the statistical parameters of the random
variables. The technique is mainly conducted to estimate the
uncertainties associated with the statistical parameter of inter-
est. The Jackknife method may be perceived as less effective
than the Bootstrap method (Efron and Gong 1983); however,
both Jackknife and Bootstrap are known to perform adequate-
ly when the distribution is undecided or when the normality
assumption is invalid. Jackknife is considered a special case of
the Bootstrap method but has the advantage of requiring fewer
calculations (Efron and Gong 1983).

The Jackknife technique starts by resampling without re-
placement, that is, by leaving out a fixed number of observa-
tions from the original sample each time to obtain a new sam-
ple-set. In this case, one different data point is removed every
time to obtain a new sample. Thus, 18 and 15 new samples
with an n-1 sample size were obtained for the cadet and

seafarer groups, respectively, where n is the original sample
size. Next, the means of the new Jackknife samples x̅(j) are
calculated, followed by calculating the overall mean of these
samples’ means, x̅(∗), Eq. 6.

x *ð Þ ¼
∑ x jð Þ
	 

n

ð6Þ

Next, the pseudo-values, which are defined as the differ-
ences between the original sample mean and the new sample
means, are calculated using the Eq. 7.

x*jð Þ ¼ nx− n−1ð Þx jð Þ ð7Þ

The pseudo mean x̅∗ is then obtained for the datasets; this
value is called the Jackknife estimate, Eq. 8.

x* ¼ ∑

 
x*jð Þ

!

n
ð8Þ

This calculation is then followed by Eq. 9, the Jackknife
variance, V-jack, which is the variance of the mean.

V jack ¼ 1

n n−1ð Þ ∑ x*jð Þ−x
*

� �2
ð9Þ

Finally, a 95% CI for the sample-set mean is calculated
with Eq. 10.

x* � tα
2 ;n−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V jack

n

r
ð10Þ

Results

Probability distribution model

First, Box-Cox transformations were created to check the orig-
inal assumption of the sample-sets likely having either a nor-
mal or lognormal distribution. From the Box-Cox transforma-
tion, the best-rounded lambdas were found to be 0.5 and 0.0
for the cadets and seafarers, respectively. These lambda values
suggested that a square root and log transformation were the
most appropriate transformation for these sample-sets. The
results of the Box-Cox transformation were similar to the ini-
tial assumptions of the sample-sets having either a normal or
lognormal distribution. Therefore, the normal and lognormal
distributions were investigated along with a chi-square
distribution.
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Next, the CDF plots were examined, looking for similari-
ties in the observed and theoretical curves of the distribution
functions. Analysing Fig. 4, it can be observed that both the
cadet and seafarer sample-sets do not favour either the normal,
lognormal, or chi-squared distributions.

Then, the normal probability plots for both the original, log
and square root transformed data were created (Fig. 5). It may
be observed in most cases both original and transformed data
follow the straight line reasonably well, only having a few
outliers at the tail ends of the plots. These outliers were
checked with a Grubb’s test, but can also be observed on the
probability plots as the data points outside of the 95%CIs, that
are shown as (the curved red lines). Examining the normal
probability plots (Fig. 5a), only one obvious outlier was found
on the seafarer plot. The probability plots of log-transformed
data (Fig. 5b) only have one outlier as well, but, in this case,
with the cadet sample-set. Finally, the square root transformed
data probability plots (Fig. 5c) have no outliers. A single

outlier is not enough to reject a distribution, but in cases like
these where all the distributions under investigation are pro-
ducing similar results it is a means to distinguish the better
distribution; in this case the Chi-Squared distribution stands
out.

Thus, considering only the probability plots, the normal,
lognormal, and chi-squared distributions are probable for both
sample-sets. The p values found with the probability
plots from the Anderson-Darling (AD) values in Table 1, for
the normal and lognormal distributions are observed to have
similar significances. However, for the chi-squared distribu-
tion, much larger p values are evident for both sample-sets,
which agrees with the probability plots containing no outliers.

Finally, the K-S test compared the maximum difference of the
three distributions, against the critical values, Table 2. For all
cases, Dn ≤ Dn

α , indicating that none of the null
hypotheses were rejected for critical values (α) ranging from
0.01 to 0.20. Thus, all three distributions are possible for the
two sample-sets.

Even though the normal distribution was not rejected, neither
were the lognormal or chi-squared distributions. Therefore, the
assumption of normality may not be appropriate due to the effect
of the small sample sizes. Additionally, the Box-Cox transforma-
tion suggested that a transformation is required for both sample-
sets. Thus, from the exploratory data analysis, the most appropri-
ate distributions for the two sample-sets only has a slight prefer-
ence towards a chi-squared distribution. Hence, one should be
careful with parametric tests when used for computation of CIs,
as the results of the analysis depend on the chosen distributions.
Therefore, using non-parametric methods such as Bootstrap and
Jackknife is advantageous in cases like these, where the popula-
tion distribution is unknown, and the samples are too small to
distinguish an obvious distribution from distribution fitting
analyses.

Parametric and non-parametric confidence interval
estimation of the means

The assumption of normality was not rejected with the distribu-
tion fitting methods, but nor were the lognormal and the chi-
squared distribution; thus, a confident assumption of normality
cannot be granted. Nonetheless, the t-test was still conducted to
allow for a comparison to the other parametric methods along
with the Bootstrap and Jackknife resampling methods. The t-test
was also still evaluated to allow for an assessment of the results
when a small sample-set may falsely indicate normality of the
data, against methods were distribution assumptions are not re-
quired. The CIs calculated with the t-test are shown in Tables 3,
4, and 5, and discussed in the following sections.

Similarly, since the Chi-Square and lognormal distributions
were also not rejected, the CIs using the Cox’s method and
Johnson t-approach were determined and are presented in
Tables 3 and 4, as well.

Fig. 4 a) Cadet and b) seafarer ice management effectiveness, observed
and theoretical CDF
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Before computing the CIs using the Bootstrap methods, the
minimum number of Bootstrap replications, m, was defined,
typically the required number of samples range from 1000 to

2000 samples (Banik and Kibria 2010). The specific number
of Bootstrap samples depends on the characteristics of the
data, such as the original sample size, variance, estimated

Fig. 5 Probability plots of a)
original, b) log-transformed and
c) square-root-transformed data of
cadet and seafarer ice manage-
ment effectiveness
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parameters, etc. Therefore, to find the optimal m, the line
graph of the Bootstrap samples was inspected. As shown in
Fig. 6, the variation of the Bootstrap means appears fairly
regular, starting from approximately 150 samples. However,
the CI values converge after roughly 1000 sample replica-
tions. Therefore, 1000 sample replications were used in this
analysis. It can further be observed that the Bootstrap t-meth-
od required the highest number of replications, thus governed
the minimum number of sample replications required.

All the obtained results of the CIs for the cadet and seafarer
dataset means are shown in Table 3, while the CI widths are
displayed in Table 4.

The CIs obtained using the different parametric, and non-
parametric methods are plotted in Fig. 7. Examining the cadet
CIs, the Cox’s method produced the widest interval, while the
NORM Bootstrap technique obtained the narrowest CI. Then,
when analysing the seafarer CIs the NORMBootstrap method
was observed to have the widest interval, while the rest of the
CIs are relatively similar, with the PER Bootstrap method
producing the narrowest interval. With that being said, all
seven methods implemented to calculate the CIs demonstrate
that the seafarer sample-set has wider CIs than the cadet sam-
ple-set.

The widest cadet dataset CI for the mean has a width of
0.252 km2/km, and the narrowest seafarer dataset CI for the
mean has a width of 0.342 km2/km. As well, the CIs of the
means for the seafarer sample-sets can be observed to be
shifted towards higher ratios than the cadets. Both the differ-
ence in the CIs widths and the noticeable difference in the
values of the CIs of the mean indicate the apparent difference
between the ice management performance of the two sample
groups.

A CI for the difference in the sample set means was calcu-
lated to define howmuch they differ. The CI for the difference

in means extends from 0.150 to 0.539 km2/km and from 0.124
to 0.551 km2/km based on the results obtained from the PER
Bootstrap and t-test methods, respectively (Table 5). Put an-
other way, the difference in the means of the effectiveness
between seafarer and cadet sample-sets using the boostrap
method is 0.344 km2/km and estimated within the accuracy
of ±0.195 km2/km. It should be noted though, that for a proper
analysis for the CI of two sample means, both sample-sets
should be the same size, which is not the case with these
sample-sets. Therefore, the results in Table 5 can only be taken
as an estimation of the CI of the difference in the sample
means.

Discussion

With only 18 sample points for the cadet group and 15 sample
points for the seafarer group, it is difficult to notice any distinct
distribution. Even though the normal distribution was not
rejected for the two sample-sets, but neither were the lognor-
mal distribution or the chi-squared distribution. Therefore,
stating that normal distribution is incorrect is not necessarily
true. This statement, which is likely made from the other dis-
tributions also not being rejected, might be wrong due to sam-
ple sizes causing the difficulties in rejecting the null hypothe-
ses. Thus, the data may be normal or may not be, but one
cannot be sure that it is normal based only on a single normal
probability plot test. That is why one must be careful when
assuming the normality of small datasets such as this case.
Thus, due to the indecision of the probability distribution
fitting methods, this restricts the practicality of parametric
methods. Further experiments need to be conducted to decide
on one distribution, or to confirm if the sample-sets are a
combination of several distributions, to allow for proper use
of parametric methods.

With the use of the Box-Cox transformation, it was found
that the ice management effectiveness of seafarers may be
described by a lognormal distribution, while the cadets were
better represented by a chi-squared distribution. Therefore, a
chi-squared distribution was added to the list of distributions
being analysed. The analysis found that chi-squared distribu-
tion is favoured for both sample-sets when comparing the
probability plots AD’s p-values, but when comparing K-S test
values the lognormal values are slightly lower for both groups,
suggesting a preference towards the lognormal distribution.
Therefore, the Box-Cox transformation recommendations of
a lognormal distribution and chi-squared distribution were
reasonably close to what was found preferred in the explor-
atory data analysis.

Since the parametric approaches require an idea of an ex-
pected distribution or an assumption; therefore, non-
parametric methods appear to be more appropriate in this case.
However, since the distributional assessments failed to reject

Table 2 Kolmogorov-Smirnov goodness of fit test results

Cadet Seafarer
n = 18 n = 15

Dn
α Critical Value (for 0.01 ≤α ≤0.2) 0.373 to 0.245 0.404 to 0.266

Dn Normal Distribution 0.1715 0.1357

Dn Lognormal Distribution 0.1137 0.1206

Dn Chi-Squared Distribution 0.1144 0.1207

Table 1 Probability plot distributions AD‘s P-values

Distribution P-Value AD Value

Cadet Seafarer Cadet Seafarer

Normal 0.274 0.360 0.431 0.379

Lognormal 0.301 0.316 0.601 0.401

Chi-Squared 0.689 0.587 0.254 0.282
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the null hypotheses, all three of the parametric methods used
to find the CIs were compared to the results obtained from the
Bootstrap and Jackknife methods.

Therefore, with the absence of an explicit distribution assump-
tion, Bootstrap and Jackknife were used to evaluate the uncer-
tainties of the means of the data associated with the ice manage-
ment effectiveness. Bootstrap and Jackknife analysis show that
the CI width (Table 4) of the cadet sample-set is less than the
seafarer sample-set. Thus, it may be concluded that the mean
efficiency of the cadets is more consistent, while it is more varied
among seafarers. This counters one article where it saw the ex-
perienced personal tended to have smaller CI widths since there
was less variance in their performances (Ueda et al. 2010). This
wider CI width for the seafarers’ ice management effectiveness
could be explained by the cadets all having minimal exposure to
ice management, while the seafarers had various levels of expe-
rience in sea ice, fluctuating from less than three seasons to more
than ten seasons (Veitch 2018).

When just the CI widths are compared, it was found that with
both sample-sets the PER Bootstrap method produced narrower
intervals, compared to the other extreme where the STUD
Bootstrap method tended to produce wider intervals. This could
be interpreted that the STUD Bootstrap method is more conser-
vative than the PERBootstrapmethod. The t-test and the Johnson
t-approach also have relatively consistent interval
widths compared to each other, falling in themiddle of the interval
widths both times.

All the methods applied agree that CIs of the seafarer sample-
set are broader than those of the cadet sample-set (Table 4). The
CI for the cadet dataset mean can vary from 0.200 to 0.458 km2/
km depending on the method used, while the seafarer dataset CI

of the mean can vary anywheres between 0.464 and 0.969 km2/
km. It shows the significant difference between the ice manage-
ment performance of these two groups. The CI for the difference
between two means results confirms this fact as well (Table 5);
therefore, proving the statement that crew experience influences
ice management effectiveness.

When the assumed normal distribution parametric t-test
results are compared to those of the skewed parametric
methods and the non-parametric resampling methods, similar
values can be observed. An interesting observation between
the t-test and the Johnson t-approach can be made. Both
methods produced very similar CIs for both sample sets. As
mentioned previously, the Johnson t-approach approaches a t
distribution as the sample approaches a symmetrical distribu-
tion; these similarities in both the t-test and the Johnson t-
approach could also suggest that the samples are
indeed normally distributed. This similarity of the results from
the different tests is not unexpected since the normal distribu-
tion was not rejected in the exploratory data analysis, but from
the results of the distribution fitting methods, a confident as-
sumption of a normal distribution could not be made. Thus,
for the investigation of small sample-sets with unknown dis-
tributions, the uncertainty of deciding on distribution for para-
metric analysis should be replaced with non-parametric anal-
ysis methods such as Bootstrap and Jackknife.

Future work may include:

– The collection of more data would help decide on the
most appropriate distribution.

– The ice concentration factor may be considered by split-
ting the results into four categories to be further compared

Table 3 CIs of the mean
Method Cadets Dataset (km2/km) Seafarers Dataset (km2/km)

Bootstrap PER 0.2414–0.4300 0.5163–0.8580

NORM 0.2806–0.4150 0.4838–0.9688

STUD 0.2296–0.4405 0.4891–0.8880

Jackknife 0.2293–0.4582 0.4706–0.8614

Student’s t-Distribution 0.2294–0.4284 0.4706–0.8614

Cox’s Method 0.1997–0.4516 0.4639–0.8326

Johnson t-approach 0.2302–0.4292 0.4741–0.8649

Table 4 Width of CIs of the mean
Method Cadets Dataset (km2/km) Seafarers Dataset (km2/km)

Bootstrap PER 0.1886 0.3417

NORM 0.1344 0.4850

STUD 0.2109 0.3989

Jackknife 0.2289 0.3908

Student’s t-Distribution 0.1990 0.3908

Cox’s Method 0.2519 0.3687

Johnson t-approach 0.1990 0.3908
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and examined for normality or appropriate distributions,
but this may be more difficult to investigate due to the
smaller sample sizes.

– It is observed that both data sets distributions are skewed
to some degree and influenced by a few outliers in the
sample-sets. Since the sample means are affected by data
skewness and highly sensitive to outliers, an analysis of
the CIs of the medians, as a more resilient measure of

location (Helsel and Hirsch 2002), may be more appro-
priate for these datasets.

Conclusion

In this study, the ice management effectiveness data obtained
from a marine simulator experiment was evaluated. The as-
sumption of normality used by Veitch et al. (2018) was inves-
tigated by conducting exploratory data analysis, along with a
comparative statistical analysis of the ice management effec-
tiveness data. The statistical analysis was performed through
an assessment of the CIs of the means, with the average
length, obtained from the t-test, Cox’s method, Johnson t-ap-
proach, Bootstrap methods and Jackknife analyses.

There is not much data available on the CIs of novice and
experienced personnel in dynamic environments, which
makes it impossible to compare the results to other relevant
studies. Nonetheless, based on the study’s results, the follow-
ing conclusions were made. First, since the null hypotheses,
for all three distribution fitting methods, for the distributions
under investigation were not rejected, the assumption of a
normal distribution of the datasets is inconclusive.
Nevertheless, both parametric and non-parametric tests were
applied to find CIs of the sample means. Both parametric and

Fig. 6 The a) cadet and b) seafarers datasets Bootstrap meansQ and their
CIs, obtained by PER, NORM and STUD methods, depending on the
number of Bootstrap replications

Fig. 7 CIs for the a) cadets and b) seafarers means obtained by Bootstrap
(PER, NORM, STUD), t-test, Jackknife, Cox’s method and Johnson t-
approach

Table 5 CI of the difference in the means

Method Difference in the Data
Set Means (km2/km)

Bootstrap Percentile Method 0.1496–0.5389

Student’s t-Distribution 0.1237–0.5505
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non-parametric tests produced similar results suggesting that
the initial assumption of normality may be valid. Moreover,
the CIs indicate that there is less variation of cadet efficiency
in comparison with the seafarer group. This reduction in dis-
parity may be explained by the limited exposure of cadets’ to
ice management, while the seafarers’ experience in sea ice
varied significantly.

Finally, based on the analysis of the CI of the difference
between the two sample-set means, the conclusion of crew
experience positively influencing the ice management perfor-
mance is confirmed.
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