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A novel biochar-based 3D composite 
for ultrafast and selective Cr(VI) removal 
in electroplating wastewater
Zongzheng Yang1,2†, Jinjin Wang1†, Nan Zhao3, Runyi Pang1, Chuanfang Zhao6, Ying Deng1, Di Yang1, 
Haochen Jiang2, Zhiguo Wu1,2* and Rongliang Qiu4,5* 

Abstract 

In this study, a newly developed composite of biochar-poly(m-phenylenediamine) (BC-PmPD) exhibiting a distinct 
skeletal structure was synthesized for the purpose of extracting Cr(VI) from aqueous solutions. BC was employed 
as a supportive carrier onto which PmPD nanoparticles were uniformly affixed through in-situ polymerization and oxi-
dation synthesis, both within and outside the layered configuration of BC. The structural stability and morphologies 
of BC-PmPD were assessed utilizing Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy, 
thermogravimetric analysis, analysis of specific surface area and pore size, X-ray photoelectron spectroscopy (XPS), 
and X-ray diffraction. In comparison to other modified BCs reported, BC-PmPD exhibited the highest Cr(VI) removal 
rate. Specifically, at 303 K, BC-PmPD achieved a maximum Cr(VI) removal capacity of 775 mg  g−1, surpassing the capa-
bilities of unmodified BC and PmPD by 10.4 and 2.13 times, respectively. Analyses involving XPS, FTIR, and density 
functional theory calculation confirmed that proton transfer happened between protonated amine (−NH2) functional 
group within the structure of BC-PmPD and  HCrO4

− before the formation of hydrogen bond. Subsequently, envi-
ronmentally persistent free radicals facilitated the reduction of the adsorbed Cr(VI). Quantification of the functional 
groups indicated that the amino group was responsible for 93.0% of the Cr(VI) adsorption in BC-PmPD. BC-PmPD dis-
played potent adsorption and reduction capabilities, alongside notable stability, repeatability, and promising potential 
for application in the remediation for high concentrations of Cr(VI) in electroplating wastewater scenarios.

Highlights 

• Novel 3D material was prepared and the removal rate of Cr(VI) on BC-PmPD was the highest as compared 
to reported BCs.

• The maximum adsorption amount of Cr(VI) on BC-PmPD was high up to 1034 mg  g−1 at 323 K and −NH2 
adsorbed 93.0%  HCrO4

–.
• DFT calculation confirmed proton transfer happened between protonated −NH2 and  HCrO4

− before the forma-
tion of H bond.
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1 Introduction
Heavy metals are categorized by the World Health 
Organization as substances that are carcinogenic and 
toxic. Contamination from heavy metals such as As, Pb, 
Cr, Cd, and Hg, has resulted in serious health problems 
(Binish et  al. 2022). Cr exists in two oxidation states: 
Cr(III) and Cr(VI). Among these, Cr(VI) is particularly 
hazardous to public health due to its mutagenic and car-
cinogenic properties (Hu et  al. 2011). In China, waste-
water containing Cr predominantly comes from various 
industries, including chemical production, electroplat-
ing, leather manufacturing, metallurgy, and pigment fab-
rication. Methods to remove Cr(VI) from water include 
precipitation, reduction, coagulation, flotation, and 
adsorption. Of these methods, adsorption is particularly 
promising due to its simplicity, high efficiency, and cost-
effectiveness (Yang et al. 2018).

Biochar (BC) is identified as a carbon-rich biosorbent 
with a low production cost. It is manufactured through 
the pyrolysis of biomass at temperatures ranging from 
300–700 °C under anoxic conditions (Zhao et al. 2022b). 
The material has garnered significant interest due to its 
inherent properties, including high cation exchange 
capacity, specific surface area, unique pore structure, 
and oxygen-rich functional groups (Sinha et  al. 2022; 
Zou et  al. 2021). It has the potential to reduce carbon 

emissions, which aligns with the pursuit of carbon neu-
trality (Zhu et  al. 2022), and is conducive to advanc-
ing multiple United Nations Sustainable Development 
Goals (UN SDGs) and Environmental, Social, and Gov-
ernance (ESG) objectives (Yuan et  al. 2023). However, 
the adsorption capacity of unmodified BC for Cr(VI) in 
water remains limited (Asuquo et al. 2017). For instance, 
the maximum adsorption capacities of unmodified BC 
prepared from beet tailings and Artemisia argyi stems for 
Cr(VI) were 123 and 162 mg  g−1, respectively (Dong et al. 
2011; Song et  al. 2019). The negative charge associated 
with unmodified BC (Zhao et al. 2022a) could impede the 
adsorption of  CrO4

2− in aqueous solutions. Meanwhile, 
reduction happened during the decontamination of 
Cr(VI) (Xu et al. 2023, 2022). Thus, numerous research-
ers have focused on enhancing the adsorption and reduc-
tion performances of Cr(VI) by modifying BC through 
various methods. These methods include physical acti-
vation (Peng et  al. 2018), acid treatment (Zhao et  al. 
2018), organic grafting (Song et al. 2021), metal impreg-
nation (Shaheen et  al. 2022), metal oxide loading (Zou 
et al. 2021), and magnetization modification (Sinha et al. 
2022). The maximum adsorption capacity of polyethyl-
enimine-alkali-modified BC for Cr(VI) reached approxi-
mately 436 mg  g−1. This value is approximately 18.9 times 
higher than the adsorption capacity of unmodified BC, 
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which is 23.1 mg  g−1 (Ma et al. 2014). However, it should 
be noted that polyethylenimine is highly toxic and is not 
rapidly removed in the blood (Guo et al. 2023).

Poly(m-phenylenediamine) (PmPD), a diamine deriva-
tive of polyaniline, has attracted increasing attention for 
its superior environmental stability, reduced prepara-
tion cost, richer functional groups, and greater versatility 
compared to polyaniline. PmPD has found applications in 
various fields, such as electrodes, sensors, actuators, and 
catalysis (Cao et al. 2017; Yang et al. 2018). The polymer 
demonstrates significant potential for removing heavy 
metals from aqueous solutions. Its maximum adsorp-
tion capacities are 243  mg   g−1 for Pb(II) and 1.92  g   g−1 
for Ag(I), respectively (Huang et al. 2007; Li et al. 2004). 
PmPD has also shown considerable adsorption capac-
ity for Cr(VI), with the maximum removal reported as 
526 mg   g−1 at pH 2 and 25  °C (Kera et  al. 2018). Com-
pared to commonly used metal modification methods 
such as nanoscale zero-valent iron (Qian et  al. 2023) 
available in the market, PmPD is less expensive and does 
not introduce other metal impurities into the aqueous 
solution. It also does not pose environmental risks. Addi-
tionally, the rich functional groups present in PmPD can 
adsorb Cr(VI) and reduce it to Cr(III) (Chen et al. 2019). 
However, PmPD tends to form agglomerated spherical 
structures, which limits the exposure of its functional 
groups to contaminants (Hao et  al. 2021). Prior stud-
ies have attempted to improve the adsorption of Cr(VI) 
by combining PmPD with materials like calcium fibers, 
cobalt or zirconium-based metal organic frameworks, 
and reduced graphene oxide. These combinations pro-
mote the efficient removal of Cr(VI) mainly by increas-
ing ionic strength and facilitating mechanisms like 
electrostatic adsorption, redox reactions, and chelation. 
In acidic conditions, aniline groups (-−NH−) in PmPD 
are protonated, thereby attracting Cr(VI) through elec-
trostatic adsorption. They are also oxidized by Cr(VI), 
resulting in the formation of new quinone imines (−N =) 
and Cr(III) (Cao et  al. 2017; Jin et  al. 2018; Wang et  al. 
2020).

Despite these advancements, existing composites have 
not proven to be specifically selective and practical for 
the removal of Cr(VI) in real-world wastewater scenar-
ios. BC, with its three-dimensional (3D) honeycomb net-
work structure, can serve as a carbon carrier for PmPD 
to reduce agglomeration. It is hypothesized that the sub-
stantial specific surface area and porosity provided by BC 
facilitate enhanced loading of PmPD, thereby augmenting 
its capacity for adsorption−reduction of Cr(VI). To date, 
no literature exists on the use of PmPD-loaded BC for the 
improved adsorption and reduction efficiency of Cr(VI) 
in wastewater. The removal mechanism also remains 
undefined. Considering these factors, the objectives of 

this paper are: (1) to prepare a novel 3D composite mate-
rial by combining BC with PmPD particles (BC-PmPD); 
(2) to study the kinetics, isotherm, and thermodynam-
ics of Cr(VI) adsorption by BC-PmPD; (3) to elucidate 
the mechanism of Cr(VI) removal on BC-PmPD through 
Fourier Transform infrared spectroscopy (FTIR), X-ray 
photoelectron spectroscopy (XPS), electron spin reso-
nance (ESR) and density functional theory (DFT) cal-
culation; and (4) to evaluate the recycling performance 
and the efficiency of high-concentration Cr(VI) removal 
in actual electroplating-contaminated wastewater by 
BC-PmPD.

2  Materials and methods
2.1  Synthesis of BC and BC‑PmPD
Corn stover obtained from a farm in Jixian District, Tian-
jin, was thoroughly washed with tap water and dried in 
an electronic air blast drying oven (DGG-101–0, Tian-
jin Tianyu) for 24 h at 105 °C. The dried corn stover was 
crushed in a mill, and then pyrolyzed in a Muffle furnace 
(YB-1700A, Luoyang Navit) at 500 °C for 4 h under oxy-
gen-free conditions. After cooling to room temperature, 
BC was obtained, and it was ground to a particle size 
range of 0.05–1.5 mm for further use.

The synthesis of BC-PmPD composites is depicted 
in Fig. 1 Under ice bath conditions, 3 g of m-phenylen-
ediamine (mPD) monomer was weighed and placed in 
a 250  mL beaker, to which 100  mL of deionized water 
was added and stirred to dissolve. Then, 0.1 g of BC was 
added to the above solution and stirred for 2  h. Subse-
quently, 6.61 g of sodium persulfate was added as an oxi-
dant. At the same time, the prepared 30 mL solution of 
 Na2CO3 with a concentration of 2  mol  L−1 in a 50  mL 
syringe was slowly injected into the beaker at a rate of 
2  mL   min−1. Following this, the solution was mechani-
cally stirred at 400 rpm  min−1 for 5 h. At the end of the 
reaction, the mixture was poured into a sand core fun-
nel for vacuum filtration, and the sample solution was 
sequentially washed to neutrality with deionized water, 
1:1 (v:v) ammonia water, and deionized water to elimi-
nate residual ions and monomers. Finally, the samples 
were cleansed with absolute ethanol to remove the oli-
gomers, and then dried in a vacuum freeze-drying oven 
at −60 °C for 12 h. The effects of preparation conditions 
for BC-PmPD on Cr(VI) removal were investigated to 
obtain the optimal adsorption material and the details 
are shown in supporting information (Additional file  1: 
Fig.S1).

2.2  Removal experiments
The adsorption kinetic experiments were conducted in 
a triangular flask containing 250  mL of Cr(VI) solution 
(300, 500, and 700 mg  L−1) and 0.1 g of BC-PmPD. The 
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flask was placed in a vibrating shaker (150 rpm) at 30 °C. 
After a designated adsorption time (0–24 h), the samples 
were filtered using a 0.45 µm membrane filter. The fitting 
equations for kinetics, isotherms, and thermodynamic 
models are listed in the Supporting Information.

The effects of BC-PmPD on Cr(VI) adsorption under 
different conditions were investigated by altering the 
initial solution pH (2–10), concentration (200–1000  mg 
 L−1), temperature (5–55 °C), and the presence of common 
ions  (Mg2+,  Co2+,  Cd2+,  Cu2+,  Zn2+,  Cl−,  NO3

−,  SO4
2−, 

and  PO4
3−). All of these experiments were repeated three 

times. Solution pH measurements were performed with 
a pH meter (FE20, Mettler Toledo, Shanghai, China). The 
concentration of Cr(VI) was determined using 1,5-diphe-
nylhydrazine spectrophotometry. Inductively coupled 
plasma mass spectrometry (Walsam, UK) was employed 
to ascertain the concentrations of total Cr and other 
coexisting metal ions in the solution.

BC-PmPD with adsorbed Cr(VI) was desorbed in 
a 0.1  M sodium hydroxide solution and shaken for 8  h. 
Subsequently, the adsorbent was filtered and collected, 
washed to neutrality, dried to a constant weight, and then 
used for the next Cr(VI) removal cycle. After each equi-
librium adsorption and prior to desorption, the concen-
trations of Cr(VI) and Cr(III) in the filtrate at different 
initial concentrations were determined. This cycle was 
repeated for 5 times.

The electroplating wastewater was obtained from a 
leather factory in Guangzhou, Guangdong Province. 
The organic carbon content was measured using an 
organic matter detector (CT1000B, Zhejiang, China), 

and its content was not high, approximately 2.14  mg 
 L−1. The concentration of Cr was 200  mg  L−1, while 
other metals such as Cd, Rb, Sr, Zr, Ni, and Zn were 
present at concentrations of 2.42, 1.47, 1.60, 2.09, 51.64, 
and 9.09  mg  L−1, respectively. The pH was approxi-
mately 2, indicating strong acidity.

2.3  DFT calculation for the interaction energy
In order to gain insight into the interactions of BC-
PmPD with  HCrO4

−, computational studies were 
carried out. 4a,5,10,10a-tetrahydro-phenazine-2,7-di-
amine was chosen as model compound of N contain-
ing group. The structures of model compound and their 
 HCrO4

− complexes were optimized with B3LYP (Becke 
1993a, b; Lee et al. 1988; Stephens et al. 1994) method 
and 6-31G + (d,p) (Clark et al. 1983) basis set for non-
metal elements, C, H, O, N and LANL2DZ (Hay and 
Wadt 1985) basis set for metal element,  HCrO4

−. To 
get their thermodynamic parameters, frequency analy-
ses were carried out at the same theoretical level on the 
optimized structures. The solvent effect was also con-
sidered by computing single point energy with B3LYP 
method and 6–311 +  + G(d, p) (Feller 1996) basis set 
for nonmetal elements, SDD (Andrae et al. 1991) basis 
set for metal elements and PCM (Miertuš and Tomasi 
1981) solvation model on each optimized structure. 
All the computations were performed with Gaussian 
09 software (El-Barbary and Alkhateeb 2021). Their 3D 
molecule structures were drawn with CYLview (Legault 
2009).

Fig. 1 Schematic diagram of BC-PmPD preparation process
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3  Results and discussion
3.1  Structural characteristics of BC and BC‑PmPD
3.1.1  Scanning electron microscopy‑energy dispersive 

spectroscopy (SEM–EDS) and electron donating 
capacities (EDCs) analysis

The SEM images of BC, PmPD, and BC-PmPD are pre-
sented in Fig.  2a–d, respectively. Figure  2a displays the 
initial carbon structure of BC, showing a typical thin and 
coarse multi-layer honeycomb carbon structure that is 
loosely dispersed, providing a 3D support skeleton for 
the attachment of PmPD nanoparticles. Figure 2b reveals 
the polymer morphology after the oxidation polymeriza-
tion of mPD monomer, exhibiting fine circular nanopar-
ticles in a dense and stacked state. In Fig. 2c, d hundreds 

to thousands of PmPD nanoparticles were observed on 
BC after modification, uniformly attached to the BC sur-
face or embedded within BC interlayer pores. This phe-
nomenon could be attributed to the fact that uneven and 
irregular sites on BC can strongly bind PmPD nanoparti-
cles. Moreover, the −OH groups on BC promote the in-
situ polymerization of BC and mPD, serving as a robust 
scaffold for PmPD nanoparticles and preventing their 
detachment from the BC surface (Yang et al. 2018). The 
apparent elemental changes in Table  1 and Additional 
file  1: Fig. S2a, b indicate the successful integration of 
PmPD into the BC backbone. Additionally, the O/C ratio 
changed little, signifying the polar oxygen-containing 
functional groups were kept after modification (Peng 

Fig. 2 The SEM images of a BC, b PmPD, and c d BC-PmPD. Note: The scale bars of a and b‑d are 5 and 2 µm

Table 1 Chemical composition and EDC values of BC and BC-PmPD

Material Element content (%) O/C EDC value
(mmole−  g−1)

C O N Cl Mg P Na Al Si S K Ca Cu Zn

BC 74.68 10.62 0.00 0.66 0.97 1.02 0.04 0.00 4.10 0.46 5.88 1.56 0.01 0.00 0.14 0.21

BC-PmPD 71.43 9.67 17.04 0.15 0.09 0.33 0.20 0.00 0.05 0.87 0.12 0.03 0.00 0.02 0.13 0.56
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et  al. 2018). The EDC values of BC and BC-PmPD are 
0.21 and 0.56  mmole−  g−1, respectively (Additional file 1: 
Fig. S3). The higher value of BC-PmPD indicated that the 
loading of PmPD also make it present higher reduction 
capacity (Chen et al. 2022; Xu et al. 2019a). 

3.1.2  Brunauer–Emmett–Teller (BET) surface area 
and thermogravimetric (TGA) analysis

Upon loading PmPD nanoparticles, the specific surface 
area of BC decreased from 76.3 to 10.1  m2  g−1, as shown 
in  Table  2, suggesting that the multi-layer honeycomb 
structure of BC facilitated the loading of PmPD nanopar-
ticles (Huang et  al. 2007). The pore sizes and mesopore 
ratio of BC and BC-PmPD were 8.92–10.3 nm and 53.6–
68.7%, respectively, indicating their mesoporous nature. 
The higher mesopore volume with smaller mesopore 
diameter can provide more active sites, rendering them 
suitable for liquid-phase adsorption and facilitating the 
adsorbate diffusion within the adsorbent (Asuquo et  al. 
2017). 

The mass loss process of BC, PmPD, and BC-PmPD 
was studied by TGA when the temperature was raised 
to 1000 °C in the air atmosphere. As shown in Fig.  3, 
the first mass loss of BC, PmPD, and BC-PmPD about 
1.60%, 8.11%, and 4.34% occurred when the tempera-
ture gradually increased to 110 °C, respectively, due to 

the evaporation of the water adsorbed by the material 
and a small amount of volatile substances (Stoica-Guzun 
et  al. 2016). During the second pyrolyzation stage from 
110 to 300 °C, a significant weight loss of 15.9% in PmPD 
was happened due to the loss of low molecular weight 
oligomers. After 300  °C, the unstable cellulose or some 
volatile thermal compounds in BC would disappear with 
the further increase of temperature (Tripathy et al. 2021). 
The mass loss of BC-PmPD at this stage was higher than 
that of BC, which may derive from the thermal decompo-
sition of polymer due to molecular chain breakage at high 
temperature. When the temperature rose to 1000 °C, the 
final residual amounts of BC, PmPD,   and BC-PmPD 
were 66.6%, 39.2%, and 57.8%, respectively. It can be seen 
that BC-PmPD can maintain a good thermal stability in 
air and has less mass loss.

3.1.3  Fourier transform infrared (FTIR)
Changes in the characteristic functional groups of the 
prepared BC, PmPD, and BC-PmPD were examined 
using FTIR, as shown in Fig. 4a. The distinct spectra illus-
trate alterations in the functional groups on the surface of 
the original BC and the BC loaded with polymer. The ini-
tial carbon structure of BC exhibits multiple functional 
groups, including −CH (2916  cm−1), C = C (1590  cm−1), 
O–H (3428   cm−1), and  CH2 (1385   cm−1) (Zhao et  al. 
2017). For PmPD, various bands of functional groups are 
evident, such as −NH− (3345  cm−1), −NH2 (3216  cm−1), 
C = N (1614   cm−1), C−N (1501   cm−1, 1256   cm−1), and 
C−O (1036   cm−1) (Hao et al. 2021; Yang et al. 2018). A 
similar pattern to PmPD was observed in the BC-PmPD 
sample, with peaks at 1036, 1256, 1614, and 3345   cm−1. 
The prominent enhancement of the characteristic peak at 
1614  cm−1 confirms the successful loading of PmPD onto 
the original carbon structure of BC. Additionally, the rel-
ative increase in vibrational intensity of each character-
istic peak in BC-PmPD indicates that the incorporation 
of BC enhances the content and stability of each polymer 
functional group. Notably, BC-PmPD exhibited a sig-
nificant increase in the intensity of −NH− at 3345  cm−1 
compared to PmPD. The −OH at 3428   cm−1 on BC 
shifted to a lower frequency of 3418   cm−1 upon combi-
nation with PmPD via wet chemical methods, result-
ing in BC-PmPD. These phenomena are possibly due to 
hydrogen bond formation between −NH2 in PmPD and 
−OH in BC, affirming a strong interaction between BC 
and PmPD nanoparticles (Yang et al. 2018). Thus, PmPD 
has been successfully loaded onto BC via wet chemical 
methods.

3.1.4  X‑ray diffraction (XRD)
The material’s crystal structure was characterized using 
XRD. In Fig.  4b, both PmPD and BC-PmPD exhibit a 

Table 2 The BET and pore size of BC and BC-PmPD

Material BET Pore volume Pore size Mesopore ratio
(m2  g−1) (cm3  g−1) (nm)

BC 76.3 0.051 10.3 68.7%

BC-PmPD 10.1 0.026 8.92 53.6%

Fig. 3 The percentage of weight loss as a function of temperature 
for BC, PmPD, and BC-PmPD
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highly similar wide diffraction band, a characteristic fea-
ture of an amorphous structure (Ding et  al. 2018). The 
XRD data of BC displayed diffraction peaks at 28.4°, 
40.6°, and 50.2°, attributed to KCl (PDF#00-033-1161), 
confirming the typical components of bare BC. Notably, 
the BC-PmPD diffraction peak decreased compared to 
PmPD, possibly due to widened interlayer spacing and 
increased amorphous nature resulting from the modi-
fication (Wan et  al. 2018). Furthermore, XRD patterns 
revealed a nearly complete disappearance of the diffrac-
tion peaks following the incorporation of PmPD into BC. 
This phenomenon can be attributed to the influence of 
PmPD nanoparticles on the surface structure and diffrac-
tion peak intensity of BC. And KCl might be dissolved 
during the loading of PmPD or the washing process. 
This indicates that the presence of PmPD nanoparticles 
affected the composition of BC and the intensity of dif-
fraction peaks, corroborating the findings from XPS and 
FTIR.

3.2  Removal performance
3.2.1  Effect of pH on Cr(VI) removal
The speciation of Cr(VI) in aqueous solutions closely 
depends on pH (Kera et al. 2018). pH significantly influ-
ences the surface charge and functional groups of the 
adsorbent (Rafique et  al. 2021). The Zeta potentials of 
BC and BC-PmPD are shown in Additional file  1: Fig. 
S4a and the BC and BC-PmPD surface were positively 
charged at pH = 2.0 (pH < BC  (pHpzc, 4.05) < BC-PmPD 
 (pHpzc, 5.37)). As depicted in Fig. 5a, BC-PmPD exhibited 
the highest Cr(VI) adsorption at pH 2, with an adsorption 
amount of 554 mg   g−1. This behavior may be attributed 
to the acidic nature of the solution at low pH, causing  H+ 
to interact with the lone pair of electrons on the amino 
group, resulting in polymer protonation. BC-PmPD is 

positively charged and electrostatically attracts the nega-
tively charged  HCrO4

– ions (the primary form of Cr(VI) 
in low pH solutions). Simultaneously,  HCrO4

– readily 
accepts electrons for reduction to Cr(III) by BC-PmPD 
under acidic conditions (Dognani et  al. 2019). Subse-
quently, Cr(VI) adsorption capacity declined as pH 
increased, reaching a minimum of 9.02 mg  g−1 at pH ≥ 8. 
With increasing pH, increased concentration of  OH− 
compete for adsorption sites on the BC-PmPD surface. 
Additionally, the protonation of amino groups on the 
BC-PmPD structure diminishes, leading to electrostatic 
repulsion between Cr(VI) and the negatively charged 
BC-PmPD surface, contributing to the reduced Cr(VI) 
removal capacity (Albadarin et al. 2012). The reduction of 
Cr(VI) by BC-PmPD under different pH conditions was 
also observed (Additional file  1: Fig. S4b), and the con-
centration of Cr(VI) gradually decreased while Cr(III) 
increased in the aqueous solution at low pH conditions. 
This indicated that the produced Cr(III) on BC-PmPD 
was gradually released into the solutions. No Cr(III) was 
detected at pH 8 and 10, suggesting that high pH condi-
tions are not conducive to the formation of Cr(III).

3.2.2  Effect of initial concentration and temperature 
on Cr(VI) removal

The efficiency of Cr(VI) removal decreased with an 
increase in the initial concentration of Cr(VI) from 200 
to 1000 mg  L−1 at the optimum pH of 2, as depicted in 
Fig. 5b. It remained high, up to 90%, for initial concentra-
tions below 800 mg  L−1. For Cr(VI) concentrations of 800 
and 1000  mg  L−1, the removal efficiencies decreased to 
87.8% and 51.6%, respectively. The likelihood of collision 
between Cr(VI) and the adsorbent was greater for low 
concentrations of the Cr(VI) solution because a higher 
driving force was present to overcome the mass transfer 

Fig. 4 a FTIR spectra of BC, PmPD, and BC-PmPD before and after Cr(VI) removal; b XRD spectra of BC, PmPD, and BC-PmPD powders
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resistance of the adsorbent during the adsorption pro-
cess (Cao et al. 2017). The significant decrease in Cr(VI) 
removal efficiency for solution concentrations above 
800  mg  L−1 is due to the occupation and saturation of 
all available active sites for adsorption on the adsorbent 
surface (Liu et  al. 2019). When the experimental tem-
perature increased from 5 to 55 °C (Fig. 5c), the adsorp-
tion amount of Cr(VI) increased from 493 to 774 mg  g−1, 
indicating that the adsorption of Cr(VI) by BC-PmPD in 
an aqueous solution is an endothermic process.

3.2.3  Effect of coexisting ions on Cr(VI) removal
In reality, most wastewater contains a variety of coex-
isting ions, making it important and necessary to study 
the selective adsorption behavior of Cr(VI) on BC-
PmPD under conditions of coexisting ions. Metal cati-
ons  (Mg2+,  Co2+,  Cd2+,  Cu2+, and  Zn2+) and anions  (Cl−, 
 NO3

−,  SO4
2−, and  PO4

3−) at 500  mg  L−1 concentration 
were mixed with the  HCrO4

− solution, respectively. Fig-
ure  5d indicates that the presence of other coexisting 
ions  (Mg2+,  Co2+,  Cd2+,  Cl−,  NO3

−,  SO4
2−, and  PO4

3−) 

in the solution had no significant effect on the removal 
of Cr(VI) by BC-PmPD.  Cu2+ and  Zn2+ caused a slight 
decrease in adsorption capacity, indicating that they 
inhibit Cr(VI) adsorption by competing for adsorption 
sites on BC-PmPD and depleting the surface sites (Wang 
et  al. 2015b). However, the average adsorption amount 
was still maintained at a very high level of 441  mg   g−1, 
possibly because the positive charge on the surface of 
BC-PmPD after amino protonation did not attract and 
adsorb metal cations. Meanwhile, the presence of the 
coexisting  PO4

3− in the solution led to a slight decrease 
in adsorption capacity, probably because the interac-
tion force between  PO4

3− and the adsorption site of BC-
PmPD might be stronger than that between  HCrO4

− in 
the solution (Bhaumik et al. 2012). However,  HCrO4

− had 
a high positive redox potential and was still relatively 
easy to reduce to Cr(III) by BC-PmPD. According to 
Additional file 1: Fig. S5a, the changes in the concentra-
tion of each metal cation in the solution before and after 
the reaction were not significant, and the Cr(III) concen-
trations in the solution were reduced after the addition 

Fig. 5 Effects of different conditions on the performances of Cr(VI) removal by BC-PmPD: a Different initial solution pH (2, 4, 6, 8, and 10), b 
Concentrations (200, 500, 700, 800, and 1000 mg  L−1), c Temperatures (5, 15, 25, 35, 45, and 55 °C), d Coexisting ions  (Co2+,  Mg2+,  Cd2+,  Zn2+,  Cu2+, 
 Cl−,  NO3

−,  SO4
2−, and  PO4

3−) (Conditions: BC-PmPD dosage = 1 g  L−1, pH = 2, T = 30 °C, t = 24 h)



Page 9 of 17Yang et al. Biochar            (2024) 6:46  

of metal cations (Additional file  1: Fig. S5b), suggesting 
that no ion exchange reaction happened. The reduction 
of  HCrO4

− concentration in the solution before and after 
the reaction was very significant and this indicated that 
BC-PmPD can efficiently and selectively remove Cr(VI) 
from wastewater (Cao et al. 2017; Xu et al. 2019b).

3.3  Adsorption kinetics and isotherm
3.3.1  Adsorption kinetics
The Cr(VI) adsorption kinetics experiments were con-
ducted at three different initial concentrations, and 
the removal of Cr(VI) by the adsorbent as a function of 
contact time is shown in Fig. 6a–c. The removal rate of 
Cr(VI) by BC-PmPD was very fast in the first 2  h, and 
the removal efficiency reached 80%. The removal showed 
a slow increasing trend after 2  h and reached adsorp-
tion equilibrium at around 8  h. The pseudo first-order 
kinetic model exhibited lower correlation coefficient 
values, indicating poor linearization (Table  3). The qe 
value obtained by this model significantly differed from 
the experimental value, implying that the reaction could 

not be categorized as a first-order reaction. The correla-
tion coefficients for the pseudo-secondary kinetic model 
were all greater than 0.999, and the calculated qe values 
matched well with the experimental data (Zhang et  al. 
2018). Therefore, the experimental results suggested 
that Cr(VI) removal occurred through a chemical reac-
tion with the functional groups of BC-PmPD, involving 
electron sharing or exchange to achieve adsorption. Vari-
ous studies on the kinetics of Cr(VI) adsorption for dif-
ferent adsorbents have also reported the high relevance 
of the pseudo-secondary kinetic model (Liu et  al. 2023; 
Zhao et  al. 2021b). The  R2 value in the Elovich model 
exceeded 0.939, indicating that the Cr(VI) removal pro-
cess involved diffusion, activation, and adsorption on the 
surface of BC-PmPD. The calculated maximum removal 
rate of 700 mg  L−1 Cr(VI) on BC-PmPD in Table 3 was 
remarkably high at 2002  mg (g min)−1, which was 221 
and 575 times higher than those of mangosteen shells 
and N-rich biochars, respectively (Shan et al. 2020; Zhao 
et  al. 2021b). The results suggested that the adsorption 
rate of Cr(VI) by BC-PmPD was exceedingly fast (refer to 

Fig. 6 The adsorption of Cr(VI) on BC-PmPD: a Pseudo-first-order kinetic model, b Pseudo-second-order kinetic model, c Elovich model 
(Concentrations = 500, 700, and 800 mg  L–1, pH = 2, T = 30 °C, t = 24 h); d Langmuir and Freundlich adsorption isotherms (Concentrations = 200–
800 mg  L–1, pH = 2, T = 20, 30, 40, and 50 °C, t = 24 h)
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Supplementary Movie), making BC-PmPD a promising 
material.

3.3.2  Adsorption isotherm
The study of adsorption isotherms is important for deter-
mining the adsorption effect. According to the experi-
mental data obtained through linear regression analysis, 
the Langmuir model in Fig. 6d shows a higher correlation 
compared to the Freundlich model within the studied 
concentration range. The parameters of the isotherms 
are summarized in Table 4, and the highest values of KL 
and qmax reached 0.128 L  mg−1 and 1034 mg  g−1 at 323 K. 
Both KL and qmax increase with rising temperature, indi-
cating that the binding of heavy metals to the active sites 
of the adsorbent is enhanced at higher temperatures. This 
suggests that the adsorbent is homogeneous in terms of 
binding sites for monolayer adsorption (Al-Ghouti and 
Da’ana 2020). This result is consistent with the adsorp-
tion findings of Cr(VI) by other PmPD and BC materials. 
Additionally, the qmax value of BC-PmPD was signifi-
cantly higher than that reported for magnetic nanopo-
rous carbon poly(m-phenylenediamine) (Gao et al. 2021), 
calotropis gigantea fiber oxidation poly(m-phenylenedi-
amine) (Cao et  al. 2017), and bacterial cellulose/PmPD 
(Yang et  al. 2018) at similar temperatures, as shown in 
Additional file 1: Table S1.

3.4  Thermodynamic studies
Thermodynamic consideration of the adsorption pro-
cess is necessary to conclude whether the process is 

spontaneous. Negative values of Gibbs free energy (ΔG) 
were investigated to confirm the feasibility of the pro-
cess and the spontaneity of adsorption. As the tempera-
ture increased from 293 to 323  K, the negative value 
of ΔG also increased, indicating that higher tempera-
ture favored the heat absorption reaction (Gao et  al. 
2021). The standard enthalpy (ΔH) and entropy (ΔS) of 
adsorption, as fitted by Additional file 1: Fig. S6, are 46.4 
kJ  mol−1 and 168 J  K−1  mol−1, respectively, with a correla-
tion coefficient of 0.97. Values of thermodynamic calcula-
tion parameters are presented in Table 5. A positive ΔH 
value suggests that the adsorption process of Cr(VI) by 
BC-PmPD is an endothermic reaction, and the positive 
ΔS value reflects an increase in disorder at the solid–liq-
uid interface during the adsorption process.

3.5  Removal mechanism of Cr(VI)
The removal mechanism of Cr(VI) on BC-PmPD was 
analyzed using FTIR technique. As shown in Fig. 4a, the 
peaks corresponding to −NH−, −OH, C = N, C−N, and 

Table 3 Adsorption kinetics simulation parameters of Cr(VI) on BC-PmPD

V0 = qe
2K2,  R2 is correlation coefficient

C0
(mg  L−1)

Pseudo first‑order Pseudo‑second‑order Elovich

qe
(mg  g−1)

K1
(min−1)

R2 qe
(mg  g−1)

K2 (g(mg min)−1) V0 (mg (g 
min)−1)

R2 a (mg  g−1 
 min−1)

b
(g  min−1)

R2

500 146 0.248 0.958 495 0.0066 1608 0.999 374 43.3 0.957

700 147 0.137 0.771 625 0.0051 2002 0.999 498 48.6 0.939

800 194 0.165 0.884 714 0.0039 1998 0.999 532 58.9 0.984

Table 4 Adsorption isotherm simulation parameters of Cr(VI) on BC-PmPD

Temperature (K) Langmuir Freundlich

qmax
(mg  g−1)

KL (L  mg−1) R2 n KF (mg (g (L  mg−1)n)−1) R2

293 697 0.056 0.987 3.23 133 0.949

303 775 0.063 0.988 3.01 141 0.988

313 850 0.077 0.984 2.83 156 0.980

323 1034 0.128 0.996 2.33 190 0.956

Table 5 Thermodynamic parameters for Cr(VI) adsorption on 
BC-PmPD

Temperature 
(K)

KC
(mL  g−1)

ΔG
(kJ  mol−1)

ΔH
(kJ  mol–1)

ΔS
(J  K−1  mol−1)

R2

293 3.70 –3.06

303 5.78 –4.42

313 9.44 –5.84

323 24.1 –8.19 46.4 168 0.97
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C-O functional groups significantly decrease, indicat-
ing the involvement of these functional groups in Cr(VI) 
removal.

Further analysis of BC-PmPD samples before and 
after adsorption using XPS was performed to study the 
removal mechanisms. In Fig.  7a, C 1  s, N 1  s, and O 
1 s peaks are observed at 284 eV, 399 eV, and 531 eV in 
BC-PmPD, respectively. After the adsorption reaction, 
a typical Cr 2p peak at 578 eV appeared, providing fur-
ther evidence for the adsorption of Cr(VI) on the sur-
face of BC-PmPD. High-resolution XPS spectra of Cr 2p 
after the adsorption of Cr(VI) by BC-PmPD are shown 
in Fig.  8b, displaying two asymmetric bands: Cr 2p1/2 
and Cr 2p3/2 and these bands are fitted to form Cr(VI) 
(587.5 eV, 578.8 eV) and Cr(III) (586.7 eV, 577.0 eV). By 
calculating the percentage of Cr(VI) and Cr(III) on BC-
PmPD, it was found that 73.4% of adsorbed Cr(VI) on 
BC-PmPD was reduced to Cr(III). Moreover, Cr(III) 
was detected in varying concentrations of Cr(VI) solu-
tion after reaction (Additional file 1: Fig. S7), suggesting 
simultaneous adsorption and reduction of Cr(VI) (Wang 
et al. 2015a). 

The atomic percentage of N 1  s decreased, indicat-
ing the involvement of N-containing groups in Cr(VI) 
removal. N-containing functional groups can provide or 
share their lone electron pairs with other ions carrying 
empty orbitals (Tian et al. 2015). The N 1 s spectrum of 
BC-PmPD was divided into two peaks: −NH− (399.3 eV) 
and −N = (398.8  eV) (Fig.  7c, d). An additional peak of 
−N = + appeared at 401.2  eV after the reaction of BC-
PmPD with acidic aqueous solution, likely due to the 
protonation reaction. After adsorption, the −NH− and 
−N = peak areas decreased from 64.3% to 52.4%, and 
35.7% to 28.9%, respectively, suggesting that these N-con-
taining groups serve as adsorption sites. Additionally, 
−NH− can also reduce Cr(VI) to Cr(III). The O 1 s spec-
trum of BC-PmPD was divided into three peaks: Metal-O 
(531.2 eV), C = O (532.0 eV), and C–OH (533.1 eV) (Liu 
et  al. 2022). After adsorption, the Metal-O and C–OH 
peak areas decreased from 47.4% to 31.7%, and 21.1% to 
19.1%, respectively, while the C = O peak area increased 
from 31.6% to 49.2%. This indicates the involvement of 
these two groups in Cr(VI) removal, and active phenol 
groups could also contribute to Cr(VI) reduction (Zhao 
et  al. 2021b). These changes for N and O containing 
groups were consistent with the FTIR spectra results.

To further confirm the reduction mechanisms, environ-
mentally persistent free radicals (EPFRs) were monitored 
on the surface of BC-PmPD through ESR measurements 
to compare changes before and after Cr(VI) treatment 
and to investigate the role of EPFRs in Cr(VI) removal. 
As shown in Fig. 7g, the surface ESR signal of BC-PmPD 
significantly reduced after treatment with Cr(VI) (500 mg 

 L−1, 24 h), similar to previous findings (Zhao et al. 2018). 
This confirms the presence of EPFRs on the BC-PmPD 
surface and their depletion upon removal of Cr(VI) 
under acidic conditions. The spectral splitting factor 
(g-value) of BC-PmPD before and after Cr(VI) treatment 
was 2.005 and 2.004, respectively, indicating the presence 
of oxygen-centered radicals, particularly semiquinone 
radicals. Studies have shown that EPFRs can participate 
in the redox transformation of heavy metals and con-
tribute to the reduction of Cr(VI) to Cr(III) (Zhang et al. 
2023; Zhao et al. 2018). Therefore, it can be inferred that 
the EPFRs on BC-PmPD play a role in providing direct 
electrons and contributing to the reduction of Cr(VI) to 
Cr(III).

In order to quantify the contribution of EPFRs in BC-
PmPD to the Cr(VI) reduction reaction,  H2O2 was used 
to inhibit EPFRs (Fang et  al. 2014). As shown in Addi-
tional file  1: Fig. S8, with an increase in  H2O2 concen-
tration, the removal efficiency initially decreased and 
thenincreased, with a maximum inhibition rate of 100%. 
This indicates that the adsorbed Cr(VI) in BC-PmPD 
was reduced by EPFRs. Thus, the reduction of Cr(VI) by 
amino and oxygen-containing functional groups could 
be neglected. Oxalyl chloride  (C2Cl2O2) was used as an 
amino and hydroxyl scavenger to quantify their con-
tributions. The reaction of chloride with amine forms 
an amide, and DFT calculations in the previous litera-
ture confirm that the amide does not react with the Cr 
anion (Zhao et  al. 2021b), enabling quantification of 
the amino group’s contribution to Cr(VI) removal after 
in-situ locking. As shown in Additional file  1: Fig. S9, 
with an increase in the mass ratio of oxalyl chloride, 
the removal efficiency of Cr(VI) significantly decreased, 
ultimately converging to 4.24%. Subsequently, formalde-
hyde (HCHO) solution was used to hinder the reduction 
of Cr(VI) by phenolic hydroxyl (Zhao et  al. 2021b). As 
shown in Additional file 1: Fig. S10, with an appropriate 
increase in the concentration of formaldehyde solution, 
the removal efficiency of Cr(VI) kept almost the same 
and contribution of Cr(VI) by the hydroxyl group of BC-
PmPD was only 2.66%. By calculating the difference, the 
contribution of amino group was about 93.0%. This indi-
cates that the amino group adsorbs most of  HCrO4

− on 
the material’s surface.

By further using the DFT calculation, the interaction 
energies of BC-PmPD and  HCrO4

− in several different 
cases were obtained. As shown in Fig. 8a, b, the interac-
tion energies of two O atoms in  HCrO4

− with three or two 
H atoms in neutral 4a,5,10,10a-tetrahydro-phenazine-
2,7-diamine molecule were −1.75 and −1.88  kcal   mol−1 
by forming three and two H bonds, respectively. Inter-
estingly, when the −NH2 in BC-PmPD was proto-
nated (Fig.  8c), and  its binding ability to the H atom in 
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Fig. 7 a XPS spectra of BC, BC-PmPD before and after Cr(VI) removal, b XPS Cr 2p spectra of BC-PmPD after Cr(VI) removal, c XPS N 1 s spectra 
of BC-PmPD before and d after Cr(VI) removal, e XPS O 1 s spectra of BC-PmPD before and f after Cr(VI) removal, g ESR spectra of BC-PmPD 
before and after the removal of Cr(VI) (Concentrations: 500 mg  L–1, pH = 2, T = 30 °C, t = 24 h)
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 HCrO4
− was greatly improved (−7.55 kcal  mol−1). Proton 

transfer happened in an acidic environment before the 
formation of H bond.

Combining the results of FTIR, XPS, ESR analyses and 
the observation of Cr(III) concentration in the solution, 
the possible removal mechanisms can be proposed. The 
removal process of Cr(VI) anion on BC-PmPD was com-
plex, involving electrostatic adsorption, proton trans-
fer, H bond interaction, and reduction, and the removal 
mechanisms are described in Fig.  9. In acidic systems, 
 HCrO4

− initially binds to BC-PmPD through electro-
static interaction between the protonated amino group 
on BC-PmPD. Subsequently, proton transfer occurred 
and H bond was formed. At last, all the adsorbed Cr(VI) 
at the beginning of the reaction is rapidly reduced to 
Cr(III) by EPFRs.

3.6  Recycle and desorption
To assess the practical applicability of BC-PmPD, desorp-
tion experiments were conducted using various solutions. 
Noticeable differences were observed in the desorption 
capabilities of four distinct analytical solutions (Addi-
tional file 1: Fig. S11a). The desorption rates followed this 
sequence: deionized water < HCl < ethylenediaminetet-
raacetic acid (EDTA) < NaOH. Notably, the desorption 
rate for NaOH was remarkably high at 93.2%. However, 
it was only 1.38%, 3.01%, and 14.2% for deionized water, 
HCl, and weakly basic EDTA, respectively. The previous 
studies also suggested that NaOH had a better desorp-
tion capacity (Shi et al. 2018; Xiao et al. 2019; Zhang et al. 
2016). These findings demonstrate that BC-PmPD can be 
efficiently regenerated in an alkaline solution, because 
 OH− replaced Cr(VI) through ion exchange. This prop-
erty enables the cyclic utilization of BC-PmPD for Cr(VI) 
adsorption. Conversely, acidic conditions are unfavorable 
for Cr(VI) desorption, as only a small portion of Cr(VI) 
could be dissolved.

Fig. 8 Geometry-optimized structure for the interaction energy 
between BC-PmPD and  HCrO4

– in several different cases. The 
interaction energy between a −NH− and −NH2, b −NH−, c −NH2 
and  HCrO4

– in the case of protonation. The spheres with gray, 
white, blue, red and light bule colors represent C, H, N, O, and Cr, 
respectively. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article)

Fig. 9 The mechanistic schematic diagram of Cr(VI) removal 
by BC-PmPD
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The stability and reusability of BC-PmPD determine its 
potential viability in wastewater treatment. The adsorp-
tion–desorption process was repeated for five cycles, and 
its impact on Cr(VI) removal is presented in Additional 
file  1: Fig. S11b. The initial Cr(VI) adsorption capacity 
was 638 mg  g−1, which decreased by 32.0% after the sec-
ond cycle due to irreversible redox reactions post the ini-
tial adsorption (Hao et al. 2021). The cumulative removal 
amount of Cr(VI) was high up to 1988 mg   g−1 over five 
cycles. These results indicate that BC-PmPD’s adsorp-
tion–desorption capacity for Cr(VI) exceeds that of 
core–shell magnetic  Fe3O4@poly(m phenylenediamine) 
particles, even after five cycles (Wang et al. 2015b). Over-
all, BC-PmPD provides more adsorption sites and effec-
tive recovery of occupied adsorption sites (Dognani et al. 
2019). Nevertheless, after the fifth usage of BC-PmPD, 
the removal amount reduced by 65.8% as compared to 
the first usage. Thus, further exploration of improved 
desorption agents is essential to achieve complete recov-
ery of the reducing species on BC-PmPD in the future 
study.

3.7  Application of BC‑PmPD in electroplating wastewater 
treatment

To expand the application  scope of BC-PmPD, treat-
ment of actual electroplating wastewater containing 
200 mg  L−1 Cr(VI) was conducted. After 5 h of reaction 
with the electroplating wastewater, BC-PmPD removed 
98.5% of Cr(VI), slightly faster and more efficiently than 
the simulated wastewater (Additional file  1: Fig. S12a). 
This enhancement may result from the presence of  Cl− 
and  SO4

2−, which can promote Cr(VI) removal (Yang 
and Jiang 2014; Zhao et al. 2021a). Despite the presence 
of  Cu2+,  Zn2+, and  Cd2+, no competition with  HCrO4

− 
occurred, indicating BC-PmPD’s selectivity for Cr(VI) 
removal in practical scenarios. At the same time, Cr(III) 
was produced in electroplating wastewater, demonstrat-
ing that reduction also occurred  to decrease the toxic-
ity of Cr(VI) (Additional file 1: Fig. S12b). Based on the 
above analysis, BC-PmPD exhibited promising potential 
for treating highly concentrated Cr(VI) polluted electro-
plating wastewater.

4  Conclusions
In this study, a novel 3D composite, BC-PmPD, was 
developed for Cr(VI) removal. The removal perfor-
mance of BC-PmPD in solution correlated closely 
with initial temperature, concentration, and pH. Its 
maximum equilibrium adsorption capacity for Cr(VI) 
reached 775 mg  g−1 at 303 K, significantly higher than 
that of bare BC and PmPD. This substantial improve-
ment in Cr(VI) removal efficiency was due to the adsor-
bent’s spontaneous and heat-absorbing adsorption 

process. XPS, FTIR, and ESR spectroscopy revealed 
that the removal process involved chemical electro-
static adsorption and reduction reactions between 
Cr(VI) and protonated amino groups. DFT calcula-
tion confirmed proton transfer occurred between 
protonated −NH2 and  HCrO4

− before formation of 
H bond. The role of EPFRs in BC-PmPD’s ability to 
reduce Cr(VI) was also highlighted. The contributions 
of amino and hydroxyl groups were demonstrated. The 
aforementioned experimental results underscore BC-
PmPD’s merits, including high removal capacity, stabil-
ity, and reusability. This composite presented a simple 
and efficient strategy for removing Cr(VI) from electro-
plating wastewater by combining PmPD’s high Cr(VI) 
adsorption capacity with the accessibility and afford-
ability of BC.
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