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inorganic nitrogen and organic carbon content 
in cropland in the Central Europe: a seven-year 
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Abstract 

Biochar incorporation into soil has shown potential, in enhancing nitrogen fertilizer (N-fertilizer) efficacy and soil 
organic carbon content (SOC). This study addresses a critical gap in the literature by investigating the effects of bio-
char addition over a seven-year period (2014–2020) on inorganic N, SOC, and pH in Haplic Luvisol. The research 
involved a rain-fed field experiment, with a crop rotation comprising spring barley, maize, spring wheat, and pea. Bio-
char, applied at the rates of 0, 10, and 20 t  ha−1 in 2014, was reapplied to specific plots in 2018. Biochar was also com-
bined with N-fertilizer at three level (N0, N1, and N2). Results showed a significant interactive influence of biochar 
and N-fertilizer combination on  NO3

− and  NH4
+ contents. Intriguingly, the addition of 10 t biochar  ha−1 consistently 

decreased soil inorganic N levels across most of the examined months. Increasing biochar application rates led 
to a significant rise in pH, establishing a clear, negative correlation between soil pH and inorganic N content. Biochar 
significantly increased SOC compared to the control, particularly after the reapplication in 2018. However, this effect 
showed a diminishing trend over time. The study suggests that incorporating biochar treatments may enhance 
N-fertilizer effectiveness. However, the long-term implications of biochar application with N-fertilizer on N mineraliza-
tion are specific to individual soil and biochar combinations. Except the application of 20 t  ha−1 biochar at N2 in 2019, 
biochar did not affect the crop yields. Studied soil properties, including those influenced by biochar had nuanced 
impact on different aspects of crop yield.

Article Highlights 

• Biochar obtained from mixed paper fiber sludge and the grain husks resulted in a significant increase of SOC 
over 7 years.

• Biochar aging resulted in a decrease in pH one year after its application in 2015 and 2019.
• The combination of N-fertilizer with biochar caused an improvement in soil inorganic N content in 2014 and reap-

plication in 2018.
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Graphical Abstract

1 Introduction
The means and intensity of human pressure on land have 
led to increased  CO2 emissions and have let to a decline 
in carbon (C) content of soils in recent years (McMillan 
et  al. 2016; Pawlak and Kołodziejczak 2020). The litera-
ture review indicated that the application of organic mat-
ter would cause an increase in C sequestration (Roß et al. 
2022). Moreover, as C fixation increases, there is a cor-
responding increase in the capture of nitrogen (N) flux 
in organic matter. This enhanced capture of N in organic 
matter leads to its turnover, ultimately contributing to 
plant-available N and promoting greater plant produc-
tivity. Therefore, soil organic carbon (SOC) and N are 
key components of soil fertility, managing their reserves 
increases soil capability to support plants and ensure 
food security (Sutton et al. 2022).

Organic and inorganic fertilization is a soil manage-
ment practice that improves soil and crop productiv-
ity (Mahmood et  al. 2017). Usually, the application of 
individual inorganic fertilizer leads to an increase in the 
soil organic matter in long term , but in some studies no 
effect was observed (Shen et al. 2004; Dong et al. 2012). 
However, in some specific cases, an individual N-ferti-
lizer application can cause a decrease of the SOC content 
which then results in low fertilizer use efficiency contrib-
uting to the decline of soil fertility. For instance, Su et al. 
(2006) observed a significant decrease in SOC content 
by 18% after inorganic fertilizer application. Biochar is a 
carbon-rich material obtained by the pyrolysis of differ-
ent biomass in the partial or complete absence of oxygen 
(Elnour et  al. 2019). The advantages of biochar incor-
poration have been studied for soil chemical properties 

such as electrical conductivity (EC), soil pH and cation 
exchange capacity (CEC) (Yu et  al. 2017; Hossain et  al. 
2020; Sun et  al. 2022). Biochar incorporation has been 
found to further improve N-fertilizer efficacy and SOC 
content (Neff et  al. 2002; Liu et  al. 2017; Rehman et  al. 
2018; Arif et al. 2018; Sial et al. 2019; Dong et al. 2022). 
The application of biochar together with mineral N ferti-
lizers, has the potential to enhance nitrogen use efficiency 
(NUE) by decreasing  N2O emissions and  NO3

– leach-
ing. This combined approach also improves N uptake by 
plants (Marcińczyk and Oleszczuk 2022), leading to an 
increased crop yield compared to the application of syn-
thetic fertilizer alone (Bai et al. 2022; Melo et al. 2022).

Depending on its feedstock and production conditions, 
biochar usually contains only a certain amount of nutri-
ents. Therefore, for the purposes of instant plant pro-
duction (just after biochar application), several authors 
recommended to combine the biochar amendment with 
application of fertilizer (organic or inorganic). In the long 
time, high porosity of biochar should lead to the improve-
ment of soil nutrient retention and reduction of nutrient 
leaching (Blanco-Canqui 2021). Applying biochar with 
N-fertilizers has been suggested as an effective method 
for increasing N availability and SOC in soils (Ullah et al. 
2020; Peng et al. 2021). The importance of soil pH lies in 
its ability to significantly impact SOC by regulating the 
availability of soil nutrients, the turnover of organic mat-
ter, and a variety of other soil processes (Kemmitt et al. 
2006; Robson et  al. 1989). Zhou et  al. (2019) observed 
the strong negative relationship between soil pH and C 
and N content in the soil. It is essential to understand 
the mechanisms that may cause change in N-fertilizer 
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efficacy after biochar application to the soil. For example, 
inhibited volatilization of  N2O and  NH3

+ by suppress-
ing the enzyme activities of urease, nitrate reductase and 
nitrite reductase and the microbial activity of denitrifying 
bacteria (Borchard et al. 2019) is another mechanism by 
which biochar promotes soil N retention capacity.

So far, several studies showing the changes in the basic 
chemical soil properties following especially the short-
term application of biochar have been published (Toková 
et al. 2020; Matin et al. 2020; Frimpong et al. 2021). Nev-
ertheless, information on the effect of biochar application 
with N-fertilizer on  NO3

− and  NH4
+ content, pH and 

SOC in the field conditions is still limited, particularly 
in the long-term studies of biochar incorporation into 
soils (Hernandez-Soriano et  al. 2016; Hardy et  al. 2019; 
Kalu et al. 2021). Moreover, the aging effect of biochar on 
pH and contents of N and SOC in the soils is much less 
explored in field experiments when compared to short-
term application of biochar (Lee et al. 2022; Liu and Chen 
2022).

In this study, it was hypothesized that the continuous 
interaction of paper fibre sludge and grain husks (1:1 
ratio) biochar and N-fertilizer will improve inorganic 
N and carbon content in the soil leading to a perma-
nent ameliorating effect in the chemical properties and 
soil fertility. This study is a unique investigation about 
changes of inorganic N, SOC, and pH during 7 years in 

the rain-fed field experiment on the agricultural land in 
Central Europe. The novelty of this study is the trend 
observation of the basic chemical soil properties across 
the studied period and the evaluation of the need to reap-
ply biochar in the field study along with the continuous 
N-fertilizer application at rates according to the plant 
demand to support carbon content and N-fertilizer effi-
cacy. Therefore, this study aims to (i) evaluate the effect 
of biochar aging and N-fertilizer application on changes 
in  NO3

− and  NH4
+ contents in the soil for 7 years, (ii) 

determine the changes of soil pH over 7 years with com-
bined application of biochar and N-fertilizer, and (iii) 
evaluate the changes of SOC content after the application 
of biochar and N-fertilizer in the soils over 7 years.

2  Materials and methods 
2.1  Site description
The field study was established at the experimental sta-
tion in the Slovak University of Agriculture located in 
Dolná Malanta, Slovakia (48° 19′ 23.41″ N, 18° 09′ 0.7″ 
E). The detailed location of the studied site is presented 
in Fig. 1 and in previously published literature (Igaz et al. 
2018; Horák et al. 2020). The study area is characterized 
by a warm lowland climate, featuring warm, dry, and long 
summers, as well as short, dry winters with a very brief 
duration of snow cover (14–30 days) (Aydin et al. 2020b). 
The average annual temperature in this area is 9.8 °C and 
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Fig. 1 Location of the study area, experimental design, and an overview of the treatments conducted between 2014 and 2020. Refer to Table 1 
for detailed explanations of the abbreviations of the treatments
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the total rainfall in this area is 539 mm. The studied soil 
was identified as Haplic Luvisol based on the Soil Tax-
onomy (IUSS WRB 2014). The soil texture was a typi-
cal silt loam with 15.2% sand, 59.9% silt, and 24.9% clay 
and it was determined using the pipette method. Before 
starting the field experiment, the initial soil properties 
were analyzed from the disturbed soil samples (in March 
2014). The initial SOC was 0.91% on average. The initial 
pH of soil was 5.6 and the total K and P were 300 and 
75 mg  kg−1, respectively (Horák et al. 2020; Aydin et al. 
2020b).

2.2  Experimental design
The experiment began in 2014. The study site was divided 
into 27 experimental plots, each measuring 6  m × 4  m. 
These plots were separated by 0.5 m and 1.2 m wide pro-
tection rows along the length and width of each plot, 
respectively. The experimental area was subjected to a 
crop rotation schedule, with spring barley (Hordeum vul-
gare L. var. Malz) planted in 2014 and 2018, maize (Zea 
mays L.) planted in 2015 (var. Amanita), 2017 and 2019 
(var. LG 30.315), spring wheat (Triticum aestivum L. var. 
Sensas) planted in 2016, and pea (Pisum sativum L. var. 
Eso) planted in 2020. In this study, 3 different rates of bio-
char (0, 10 and 20 t  ha−1) were incorporated to the topsoil 
in March 2014 as part of the initial biochar application 
event. The respective amounts of biochar were piled on 
the plots and then manually incorporated into the topsoil 
using rakes, reaching a depth of 10 cm. In April 2018, for 
the subsequent biochar reapplication, the plots (6 m × 4 
m) that received biochar in 2014 were divided into 2 sub-
plots (3 m × 2 m) labelled as A and B (Fig. 1). During the 
reapplication event, biochar was applied exclusively to 
subplots B. Biochar treatments were also combined with 
the application of calcium ammonium nitrate (“LAD 27”, 
Duslo Šaľa, Slovakia, containing 27% N) as N-fertilizer 
at 3 application levels (N0, N1, and N2). Treatments at 
N0 level were not fertilized during the whole experiment. 
At N1 fertilization level, the rate of applied fertilizer was 
adjusted to obtain the average yield of the grown crops. 
In the case of N2 fertilization level, a higher dose than 
that in N1 was applied. The exact rate of fertilizer at N1 
and N2 fertilization levels varied according to the type 
of grown crops in different years (Fig.  1, Table  1). The 
treatments were analyzed in 3 replications. The overview 
of the field operations is provided in Additional file  1: 
Table S1.

2.3  Biochar properties
Biochar used in this study was commercially purchased 
from Sonnenerde company, Riedlingsdorf, Austria. It was 
produced by the pyrolysis of mixed paper fibre sludge 
and grain husks (in a ratio of 1:1 by mass) at 550 °C for 30 

min in a Pyreg reactor (Pyreg GmbH, Dörth, Germany). 
The seller also provided information on the biochar 
properties such as specific surface area that was meas-
ured according to DIN 66132/ISO 9277 and the contents 
of cations (Ca, Mg, K, and Na) which were determined 
according to DIN EN ISO 11885. The biochar con-
tained 53.1% C, 1.4% N (DIN 51732), 38.3% ash (DIN 
51719). The C: N ratio of biochar was 37.9 and biochar 
pH was 8.8. Biochar contained particles with size rang-
ing between 1–5 mm. The specific surface area of biochar 
particles was 21.7  m2   g−1. Further, biochar contained 57 
g Ca  kg−1, 3.9 g Mg  kg−1, 15 g K  kg−1 and 0.77 g Na  kg−1 
(Horák et al. 2020; Aydin et al. 2020b).

2.4  Soil sampling and analysis
The mixed disturbed soil samples were collected monthly 
from the top 10 cm surface layer at each plot between 
April and October from 2014 to 2020. Overall, 243 soil 
samples were taken from 9 treatments (from 2014 to 
2017) and then 15 treatments (from 2018 to 2020). The 
pH was measured using a pH meter (HI 2211, HANNA 
Instruments) in a 1:2.5 ratio of soil: KCl. Inorganic N 
 (NO3

− and  NH4
+) was determined using Yuen and Pol-

lard (1954) method in a  K2SO4 (1%) solution. Calori-
metric procedure was used to determine N contents 
 (NO3

− and  NH4
+) in isolates by a spectrometer (WTW 

SPECTROFLEX 6100, Weilheim, Germany). The SOC 
content was measured twice a year (spring and fall meas-
urement) using Tiurin wet oxidation method (Dziad-
owiec and Gonet 1999).

2.5  Statistical analyses
The study was conducted from 2014 to 2020 and con-
sisted of 3 rates of biochar application (0, 10, and 20 t 
 ha−1). Initially, the experiment was laid out as a rand-
omized complete block design in a factorial arrangement 
until 2018 and then, after reapplication of biochar, split 
plot design was considered in a factorial arrangement 
with 3 replications. The description of the treatments is 
shown in Table 1 and Fig. 1. Statistical analysis and data 
normalization were performed using SAS software ver-
sion 9.4. The normality of the residuals was tested by Kol-
mogorov–Smirnov test and the homogeneity of variance 
was tested by Levene test at 5% significance level. A two-
way ANOVA was performed to test the effects of biochar 
and N addition on inorganic N content and SOC and sig-
nificant differences were observed at a p < 0.05. Binned 
scatter plots were employed to illustrate the impact of 
pH on inorganic N content using IBM SPSS. Regression 
analysis was used to show the relationship between inor-
ganic N content and soil pH over the studied period 2014 
to 2020.
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3  Results 
3.1  Changes in soil inorganic N
Results on inorganic N are reported in different subsec-
tions according to the same crop-specific N-fertilizer 
rates in the specific years. Figure  2 shows the observed 
values of  NO3

− and  NH4
+ contents in 2015, 2017 and 

2019 when the fertilizer application rates at N1 and N2 
were based on the maize crop. The accumulation of inor-
ganic N during the studied 7 months of maize vegetation 
period in N2 treatment was higher when compared to 
other treatments in three studied years and the maxi-
mum amount was observed in 2019 (761.1 mg  kg−1). For 
the same application of N-fertilizer, the concentration of 
 NO3

− and  NH4
+ decreased when 10 t biochar  ha−1 was 

applied in most treatments, while it increased when 20 

t biochar  ha−1 was added compared to the control treat-
ment. These increases in  NO3

− and  NH4
+ levels were sig-

nificantly different in most B20-treated soils (soil treated 
with 20 t biochar  ha−1) compared to B10-treated soils 
(soils treated with 10 t biochar  ha−1) and control treat-
ments for most of the months in 2015, 2017, and 2019 
(Fig. 2). The application of 20 t biochar  ha−1 could store 
more  NO3

− and  NH4
+ than 10 t biochar  ha−1 in most 

treatments that received N1 and N2, but in the control 
treatments without biochar, the inorganic N content was 
higher than in the biochar-treated soils.

Figure  3 compares the  NO3
− and  NH4

+ contents 
in soil under spring barley cultivation in 2014 and 
2018 with the same amount of N-fertilizer applied. 
Similar to maize in 2015, 2017, and 2019, the highest 

Table 1 Biochar (B) and N-fertilizer (N) application rates for each treatment during the study period from 2014 to 2020

"–" indicates that neither biochar nor N-fertilizer were applied

Treatment 2014 2015 2016 2017 2018 2019 2020
Spring barley Maize Spring wheat Maize Spring barley Maize Pea

N0 (Control) B (t  ha−1) – – – – – – –

N (kg  ha−1) – – – – – – –

N1 B (t  ha−1) – – – – – – –

N (kg  ha−1) 40 160 100 160 40 160 30

N2 B (t  ha−1) – – – – – – –

N (kg  ha−1) 80 240 150 240 80 240 45

B10N0 B (t  ha−1) 10 – – – – – –

N (kg  ha−1) – – – – – – –

B10N1 B (t  ha−1) 10 – – – – – –

N (kg  ha−1) 40 160 100 160 40 160 30

B10N2 B (t  ha−1) 10 – – – – – –

N (kg  ha−1) 80 240 150 240 80 240 45

B10reapN0 B (t  ha−1) 10 – – – 10 – –

N (kg  ha−1) – – – – – – –

B10reapN1 B (t  ha−1) 10 – – – 10 – –

N (kg  ha−1) 40 160 100 160 40 160 30

B10reapN2 B (t  ha−1) 10 – – – 10 – –

N (kg  ha−1) 80 240 150 240 80 240 45

B20N0 B (t  ha−1) 20 – – – – – –

N (kg  ha−1) – – – – – – –

B20N1 B (t  ha−1) 20 – – – – – –

N (kg  ha−1) 40 160 100 160 40 160 30

B20N2 B (t  ha−1) 20 – – – – – –

N (kg  ha−1) 80 240 150 240 80 240 45

B20reapN0 B (t  ha−1) 20 – – – 20 – –

N (kg  ha−1) – – – – – – –

B20reapN1 B (t  ha−1) 20 – – – 20 – –

N (kg  ha−1) 40 160 100 160 40 160 30

B20reapN2 B (t  ha−1) 20 – – – 20 – –

N (kg  ha−1) 80 240 150 240 80 240 45
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cumulative content of  NO3
− and  NH4

+ was observed 
in the N2 treatments for both 2014 and 2018. Nota-
bly, the  NO3

− and  NH4
+ contents for certain treat-

ments with the highest biochar application in 2018 
(B20N1, and B20N2) were three to four times higher 
than the corresponding treatments in 2014. This high-
lights the significant impact of biochar reapplication on 
the inorganic N content. Significant differences were 
noted between treatments for the majority of months 
in 2018. However, in 2014, significant differences were 
observed solely in the months of April and June. After 
the first application of biochar in 2014, the increase in 
 NO3

− and  NH4
+ content in soil treated with biochar 

did not fully indicate impact of biochar on soil inor-
ganic N  (NO3

− and  NH4
+) in the first application when 

compared to control, due to limited effects of biochar 
in the first application (Hagemann et  al. 2017). In 
2018, there was a decline in the  NO3

− and  NH4
+ con-

tent within B10N0 and B10N1 treatments compared to 
treatments without biochar. Conversely, these contents 
increased in the B20N0 and B20N1 treatments. Nota-
bly, there was a substantial reduction observed in some 
months within the N2 treatments as biochar applica-
tion increased. The cumulative inorganic N content 
experienced a decrease over a span of 7 months when 
biochar was applied (specifically in the B10N2 and 
B20N2 treatments) compared to N2 treatments with-
out biochar addition. During May 2018, noteworthy 
increases in inorganic N content were evident in N2 
and B10N2 treatments compared to other treatments. 

Fig. 2 Comparison of monthly mean  NO3
− and  NH4

+ content (mg  kg−1) between treatments in the years 2015, 2017, and 2019 with N-fertilizer 
application rates based on maize crop. N0: control; B10N0: 10 t biochar  ha−1 and without N; B20N0: 20 t biochar  ha−1 and without N; N1: 
without biochar and with 160 kg N  ha−1; B10N1: 10 t biochar  ha−1 and 160 kg N  ha−1; B20N1: 20 t biochar  ha−1 and 160 kg N  ha−1; N2: 
without biochar and with 240 kg N  ha−1; B10N2: 10 t biochar  ha−1 and 240 kg N  ha−1; B20N2: 20 t biochar  ha−1 and 240 kg N  ha−1. Bars followed 
by at least one same letter do not differ at the confidence level of 5%
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Similarly, B20N2 also exhibited significant distinc-
tions from most treatments during May. In August and 
October 2018, there was an increasing trend in inor-
ganic N as biochar increased in most of the treatments 
(Fig. 3). The lowest levels of  NO3

− and  NH4
+ contents 

were observed in May 2014, ranging from 0.8 to 7.8 
mg  kg−1. Conversely, the highest inorganic N content 
was recorded in the N2 treatments without biochar 
application across most months, with the exception of 
August, during which B10N2 displayed a higher inor-
ganic N content compared to N2. The comparison of 
 NO3

− and  NH4
+ (mg  kg−1) content when 3 different 

rates of N-fertilizer were applied to spring wheat in 
biochar-treated soil in 2016 is presented in Table 2. For 
the same N-fertilizer application, the content of  NO3

− 
and  NH4

+ generally increased after biochar application, 
but these increases varied across different months. For 
instance, in August 2016, a higher increase in the  NO3

− 
and  NH4

+ content was observed at the application of 
10 t biochar  ha−1 compared to 20 t biochar  ha−1 appli-
cation in some treatments. In May 2016, the inorganic 
N content decreased with biochar application but in 

April and October, most treatments showed an increase 
after biochar addition. In 2016, the maximum content 
of  NO3

− and  NH4
+ was observed in the N2 treatment 

(without biochar addition) across most months, except 
of June (99.9 mg  kg−1) and August (43.0 mg  kg−1), when 
the highest significantly different amount of inorganic 
N was measured in B10N2 treatment when compared 
to other treatments.

The effect of N-fertilizer and biochar application on 
 NO3

− and  NH4
+ (mg  kg−1) content is shown in Table 2 

when pea was planted in 2020. Across most months, 
there was an increase in inorganic N content with an 
increasing biochar rate. We recorded significant differ-
ences between treatments that received biochar when 
compared to control. But there were exceptions such as 
a decrease in August 2020, when the  NO3

− and  NH4
+ 

(mg  kg−1) content decreased with biochar application 
while it increased in April and October, like in 2016 for 
spring wheat. The highest content of  NO3

− and  NH4
+ 

was observed in different treatments depending on the 
month, with significant differences between treatments 

Fig. 3 Comparison of monthly mean  NO3
− and  NH4

+ content (mg  kg−1) between treatments in the years 2014 and 2018 with N-fertilizer 
application rates based on spring barley crop. N0: control; B10N0: 10 t biochar  ha−1 and without N; B20N0: 20 t biochar  ha−1 and without N; N1: 
without biochar and with 40 kg N  ha−1; B10N1: 10 t biochar  ha−1 and 40 kg N  ha−1; B20N1: 20 t biochar  ha−1 and 40 kg N  ha−1; N2: without biochar 
and with 80 kg N  ha−1; B10N2: 10 t biochar  ha−1 and 80 kg N  ha−1; B20N2: 20 t biochar  ha−1 and 80 kg N  ha−1. Bars followed by at least one same 
letter do not differ at the confidence level of 5%
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that received biochar when compared to the control. 
For example, in 2020, the maximum content of  NO3

− 
and  NH4

+ was observed in April and July for B20N1 and 
B10N2, respectively. These contents were significantly 
different from other treatments across all months in 
2020 except for October (Table 2). Figure 4 demonstrates 
the comparison between treatments with single biochar 
application in 2014 and treatments with biochar reappli-
cation in 2018. The content of  NO3

− and  NH4
+ signifi-

cantly increased in most N1 application treatments when 
compared to N0 and N2 in 2019 and 2020 in both types 
of biochar amendment intervals. There were no signifi-
cant differences between most treatments with biochar 
reapplication when compared to treatments with single 
biochar application in 2014. However, in 2019, significant 
differences were observed between reapplied biochar 
treatments (10 t biochar  ha−1) and treatments with single 
application of biochar (Fig. 4) because the application of 
coupled biochar and N-fertilizer directly influenced nitri-
fication rate.

3.2  Changes in soil pH
A comprehensive comparison of soil pH across all stud-
ied months and years in soil treated with biochar and 
N-fertilizer is provided in Additional file  1: Tables S2 
and S3. Additionally, Additional file 1: Fig. S1 showcases 
the Pearson correlation coefficients between soil pH 
and  NO3

− and  NH4
+ content for the entire 7-year study 

period in our designated area. The pH values ranged 
between 4.0 and 6.3 throughout all the studied years. A 
consistent negative and significant relationship existed 
between these two parameters, apart from the years 2014 
and 2019. The highest correlation coefficient between 
these two parameters (r = 0.44; p < 0.01) was observed in 
2018 after the reapplication of biochar. Moreover, this 
outcome indicates that the reapplication of biochar sta-
tistically enhanced pH in both 10 and 20 t biochar  ha−1 
application rates.

In April 2014, just after the first biochar application, 
the pH in treatments ranged from 5.0 (B0N1) to 6.1 
(B20N2) and it generally increased after biochar applica-
tion. In the following years, the increases were lower than 

Table 2 Monthly comparison of  NO3
− and  NH4

+ content (mg  kg−1) (mean ± standard deviation) between control and treatments 
with biochar and N-fertilizer addition in 2016 and 2020 when spring wheat and pea crops were grown, respectively

*Nitrogen application rates in 2016: treatments N0, B10N0 and B20N0: 0 kg N  ha−1; N1, B10N1and B20N1: 100 kg N  ha−1; N2, B10N2 and B20N2: 150 kg N  ha−1

** Nitrogen application rates in 2020: treatments N0, B10N0 and B20N0: 0 kg N  ha−1; N1, B10N1and B20N1: 30 kg N  ha−1; N2, B10N2 and B20N2: 45 kg N  ha−1. Different 
letters within the same column in a specific year indicate significant differences between treatments, as determined by two-way ANOVA with p < 0.05

Treatments 2016*

April May June July August September October

N0 18.1 ± 0.9 f 15.7 ± 2.6 f 11.1 ± 1.6 f 17.7 ± 1.0 e 17.9 ± 0.1 e 13.3 ± 3.0 e 13.6 ± 0.8 d

B10N0 18.4 ± 2.3 f 15.1 ± 3.3 f 10.9 ± 1.4 f 16.2 ± 1.6 e 22.4 ± 4.1 de 17.6 ± 3.2 de 13.3 ± 1.1 d

B20N0 18.9 ± 1.0 f 14.8 ± 3.4 f 9.6 ± 0.7 f 17.4 ± 3.2 e 20.9 ± 3.4 de 17.6 ± 4.0 de 15.0 ± 4.6 d

N1 47.3 ± 2.3 e 62.5 ± 4.8 b 50.5 ± 4.9 c 67.1 ± 4.2 b 25.5 ± 2.9 d 24.2 ± 2.0 c 21.8 ± 2.6 c

B10N1 54.1 ± 1.4 d 34.2 ± 1.4 e 38.1 ± 3.9 d 26.3 ± 4.3 d 32.4 ± 3.4 c 17.7 ± 3.5 de 20.4 ± 1.1 c

B20N1 46.6 ± 4.6 e 40.4 ± 2.7 d 32.7 ± 2.7 e 39.8 ± 2.8 c 31.9 ± 3.4 c 20.5 ± 2.1 cd 34.6 ± 3.8 b

N2 129.5 ± 4.2 a 75.0 ± 2.7 a 75.7 ± 3.7 b 87.3 ± 3.4 a 35.6 ± 2.7 bc 42.3 ± 4.6 a 48.0 ± 4.0 a

B10N2 116.2 ± 4.0 b 63.1 ± 3.8 b 99.9 ± 2.3 a 83.5 ± 1.8 a 43.0 ± 2.7 a 37.3 ± 4.3 ab 42.9 ± 3.0 a

B20N2 84.5 ± 3.1 c 47.3 ± 2.2 c 79.2 ± 3.0 b 63.7 ± 3.0 b 40.4 ± 3.5 ab 32.2 ± 2.2 b 33.7 ± 2.9 b

Treatments 2020**

April May June July August September October

N0 12.5 ± 1.1 de 18.9 ± 4.7 e 12.0 ± 1.8 bc 17.8 ± 2.7 cde 20.2 ± 2.0 d 29.7 ± 3.0 de 15.2 ± 1.5 a

B10N0 11.2 ± 0.8 e 19.2 ± 3.1 e 11.3 ± 3.0 c 17.1 ± 1.6 e 21.9 ± 1.9 cd 24.8 ± 1.1 e 13.2 ± 1.4 a

B20N0 11.8 ± 1.1 de 18.4 ± 4.5 e 13.5 ± 2.7 abc 19.3 ± 2.7 cde 21.8 ± 2.8 cd 27.6 ± 3.8 de 14.2 ± 2.0 a

N1 13.5 ± 1.4 cde 60.7 ± 2.5 b 12.0 ± 1.3 bc 23.2 ± 3.1 cd 25.6 ± 2.2 bc 34.5 ± 2.2 abc 14.3 ± 1.1 a

B10N1 14.3 ± 0.8 cde 42.6 ± 2.1 d 12.3 ± 2.2 bc 19.9 ± 2.2 cde 25.7 ± 1.9 bc 30.7 ± 3.2 bcd 14.7 ± 2.0 a

B20N1 21.6 ± 4.3 a 52.1 ± 4.4 c 14.7 ± 3.9 abc 21.9 ± 3.9 cde 20.0 ± 1.3 d 35.0 ± 3.3 ab 14.0 ± 0.6 a

N2 16.3 ± 4.4 bcd 70.4 ± 3.6 a 18.8 ± 2.0 a 28.6 ± 1.1 b 32.2 ± 2.8 a 36.0 ± 2.3 a 14.2 ± 0.8 a

B10N2 17.3 ± 2.6 abc 66.5 ± 2.7 ab 17.4 ± 4.0 ab 38.2 ± 1.5 a 34.2 ± 3.1 a 35.1 ± 2.1 ab 15.2 ± 1.2 a

B20N2 19.1 ± 2.5 ab 38.8 ± 2.9 d 12.9 ± 3.0 bc 26.5 ± 5.2 bc 26.7 ± 3.2 b 30.1 ± 2.4 bcd 15.4 ± 2.1 a
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in the first year, which might be caused by the buffering 
capacity of soils (Xu et al. 2012). In October 2017, the pH 
of treatments without biochar ranged from 4.4 up to 5.1 
and treatments with 10 t biochar  ha−1 application had pH 
of around 5.0 (4.8 in B10N2 and 5.1 in B10N0). Then, the 
pH rose by 0.4 to 0.9 units in the treatments that received 
the second biochar application (in 2018) compared to 
treatments with single biochar addition (in 2014). This 
increase continued in most treatments up to 2 years after 
biochar reapplication. However, the differences were not 
statistically significant for some treatments (Table  S3). 
Then, the increase in pH dropped in 2020 (2 years after 
reapplication of biochar). No significant differences in 
pH were observed in July, June, and August 2017, which 
showed that the effect of biochar on pH decreased with 
aging.

Binned scatter data were used to group pH and N inor-
ganic content into specific bins, and an aggregate statis-
tic was employed to summarize the data within each bin 
(Fig. 5). The highest counts of  NO3

− and  NH4
+ contents 

were observed in 2016 (20) and 2017 (7) at pH = 5.5 and 
pH = 5.1, respectively. These results indicate that the pH 

range of 5 to 6, which is lower than the initial soil pH 
before the experiment began, exhibited the highest con-
centrations of  NO3

− and  NH4
+.

3.3  Changes in SOC
The changes and comparison of SOC means in biochar 
and reapplied biochar treatments from 2014 to 2020 are 
shown in Fig.  6. These contents were measured twice 
in a year (spring (Fig. 6a) and fall (Fig. 6b)). The results 
revealed fluctuations in SOC over the course of 7-year 
period. Notably, for the treatments with biochar reap-
plication from 2018 to 2020, the extent of these changes 
demonstrated a decreasing trend. The results of the study 
also showed that the SOC content ranged from 0.95 up 
to 1.8 (g  kg−1) during the spring of 2014. Following the 
initial biochar application, no significant changes were 
observed during the subsequent fall sampling of the same 
year. However, when biochar was applied at high rate of 
20 t  ha−1, the SOC content in spring was higher than in 
fall sampling. This increase in SOC with 20 t  ha−1 bio-
char when compared to 10 t  ha−1 biochar application 
was confirmed by Šimanský and Šrank (2021) who also 

Fig. 4 Comparison of monthly mean  NO3
− and  NH4

+ content (mg  kg−1) between biochar and reapplied-biochar treatments with different 
N-fertilizer rates applied in 2018, 2019 and 2020. Treatments are combination of biochar application and reapplication at (a) 10 t  ha−1 and at (b) 
20 t  ha−1 with different N-fertilizer rates: N0: control with no soil amendments; N1 and N2: 40 kg N  ha−1 and 80 kg N  ha−1 in 2018; 160 kg N  ha−1 
and 240 kg N  ha−1 in 2019; 30 kg N  ha−1 and 45 kg N  ha−1 in 2020, respectively. Bars within the same month followed by at least one same letter 
do not differ at the confidence level of 5%
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reported an increase in SOC content after reapplication 
of biochar in 2018 and two years after that. The content 
of SOC in reapplied biochar treatments increased in half 

of the treatments (0.4 to 115%) when compared to treat-
ments with the first application of biochar. For example, 
the highest increase was observed in the spring of 2018 

Fig. 5 Changes in pH and  NO3
− and  NH4

+ contents (mg  kg−1) across various treatments during the period from 2014 to 2020 depicted 
through binned scatter plots. Distinct colors represent the frequency of data points within each bin. Increasing color saturation refers to increasing 
number of bins
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for B20reapN1 and B20reapN2 treatments. The largest 
increase in SOC for 2019 was found in the B10reapN0 
treatment. In 2020, the content of SOC increased in 
four reapplied treatments (B10reapN0, B10reapN1, 
B10reapN2, and B20reapN2) when compared with the 

first biochar application. The increase in SOC due to the 
reapplication of biochar was also observed during the fall 
measurement, in most treatments in 2018 and half of the 
treatments in 2019. In our study, biochar application had 
both direct and indirect impacts on soil fertility resulting 

Fig. 6 The SOC content (g  kg−1) of treatments with single biochar application and biochar reapplication from 2014 to 2020 measured biannually 
in (a) spring and (b) fall. B10 and B20: 10 and 20 t biochar  ha−1; B10reap and B20reap: 10 and 20 t reapplied-biochar  ha−1 with different rates 
of N-fertilizer: N0: control; N1 and N2: 40 kg N  ha−1 and 80 kg N  ha−1 in 2014 and 2018; 160 kg N  ha−1 and 240 kg N  ha−1 in 2015, 2017, and 2019; 
100 kg N  ha−1 and 150 kg N  ha−1 in 2016; 30 kg N  ha−1 and 45 kg N  ha−1 in 2020, respectively. Bars within the same sampling period (spring/fall) 
and year followed by different letter indicate significant differences between treatments, as determined by two-way ANOVA with p < 0.05
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in increased in N and SOC contents, as well as pH. The 
highest SOC content in 2018 was recorded in B20reapN1 
(23.5 g  kg−1) (Fig. 6a) and B20reapN2 (28.4 g  kg−1) dur-
ing spring and fall measurements (Fig. 6b), respectively. 
Biochar-amended treatments maintained a significantly 
higher SOC content than that of B0 treatments, espe-
cially after the reapplication of biochar.

4  Discussion
4.1  Effect of biochar and N‑fertilizer application 

on inorganic N content
The higher content of inorganic N in control treatment 
is probably related to the surface area and the abil-
ity of biochar to sorb  NO3

− and  NH4
+, which can make 

them unextractable for a short time (Peng et  al. 2021). 
Badu et  al. (2019) confirmed that the application of 10 
t biochar  ha−1 was more efficient in N uptake and grain 
yield than the amendment of 20 t biochar  ha−1. In addi-
tion, Khan et  al. (2022) reported improved N-uptake 
by rice and rapeseed with higher nitrate reductase, glu-
tamate synthase and glutamine synthetase at seedling 
and flowering stages in soils treated with biochar at 30 
t  ha−1 compared to a high level of biochar application 
(60 t  ha−1). Active sites and functional groups rapidly 
increased with the application of biochar, which could 
improve available forms and sorption of  NO3

− and  NH4
+ 

by plants from the soil solution and cause a decrease in 
 NO3

− and  NH4
+ contents in the soil. In our study, the 

highest contents of  NO3
− and  NH4

+ were detected in N2 
treatments and these contents were significantly different 
from the most treatments with biochar application across 
all studied years (Fig. 2). In April, significant differences 
were evident between the identical treatments in 2019 
and those of other years (2017 and 2015). This diver-
gence is likely attributed to the reapplication of biochar 
in 2018. When utilizing the highest rate of N-fertilizer 
and biochar (B20N2), a significant increase was observed 
in comparison to B20N1 during specific months (August 
in 2015; October, July, and September in 2017; May, 
June, July, and August in 2019). However, this significant 
increase was not observed in the remaining months. A 
study similar to ours, wherein maize was grown in soil 
treated with biochar (6 t  ha−1) and chemical fertiliz-
ers containing N, phosphorus and potassium, revealed a 
noteworthy increase exceeding 290% in the δ15N peak 
within the topsoil after a span of 3 years. This increase 
facilitated N uptake, marking a significant contrast to the 
control treatment (Peng et al. 2021). Likewise, Ullah et al. 
(2020) reported analogous findings. In their investigation 
conducted on paddy soils, the application of N-fertiliz-
ers in conjunction with biochar resulted in significantly 
higher levels of  NO3

− and  NH4
+ content compared to 

treatments without such amendments. This approach 

aimed at enhancing C and N content of the soil through 
the utilization of N-fertilizer in tandem with biochar. It 
was repeatedly concluded that biochar plays an impor-
tant role in enhancing N content due to its high CEC, 
which has great nutrient retention capability and is gen-
erally enhanced with aging (Ippolito et al. 2012; Cayuela 
et al. 2014; Li–li et al. 2017; Oni et al. 2019). However, the 
exact mechanisms for  NH4

+ retention are not yet under-
stood. Fuertes-Mendizábal et al. (2019) hypothesized that 
 NH4

+ is physically captured in the biochar pore struc-
tures, which may be responsible for  NH4

+ retention in 
soils treated with biochar. Bista et  al. (2019) observed 
that soil  NO3

− decreased with an increase in biochar 
rates when N-fertilizer was applied with biochar because 
of the wheat shoot and root biomass improvement and 
higher  NO3

− uptake than at individual N-fertilizer appli-
cation. Similarly, studies on wheat, maize, soybean, and 
barley have also revealed the beneficial effects of biochar 
on improving N fertilizer utilization and crop produc-
tivity (Agegnehu et  al. 2016; Nagappan et  al. 2020; Xiu 
et al. 2021; Dong et al. 2022). The study by Berihun et al. 
(2017) also showed an increase in total N (0.17%) with 
application of 12 t  ha−1 of biochar for peas compared to 
the highest rate of biochar application (18 t  ha−1). These 
findings are consistent with the results of the present 
study as across most of studied months the inorganic N 
content was lower in treatments with 20 t  ha−1 biochar 
application when compared to treatments with10 t  ha−1 
(Table 2).

Tian et al. (2017b) and Liao et al. (2020) reported a sig-
nificant increase in nitrification rates in biochar-treated 
soils when N-fertilizers were applied during the growing 
season. However, in contrast to these findings, Li et  al. 
(2021) observed a decreased nitrification rate when urea 
and biochar were applied together. They suggested that 
the high CEC and exchange sites for  NH4

+ absorption on 
biochar might have contributed to this effect. A micro-
bial mechanism inhibited nitrification in the presence of 
biochar by activating heterotrophs for  NH4

+ consump-
tion and attributing reduced nitrification rates (Martin 
et al. 2015). Nonetheless, Clark and Tang (2015) reported 
that biochar might provide  NO3

− and  NH4
+ or enough 

available N to increase N-mineralization and nitrification 
by microorganisms during the growing season.

The concentration of inorganic N in the soil, which 
influences N transportation and assimilation, is a crucial 
factor to consider during biochar application. Biochar 
demonstrates the potential to alleviate N deficiency by 
decomposing organic N or mitigating N toxicity through 
adsorption (Khan et  al. 2023). This action optimizes 
the N balance in the soil. To regulate and offset the low 
or high levels of inorganic N in the soil and enhance N 
uptake and utilization by plants, it is recommended to 
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apply biochar at appropriate levels (Li et al. 2019). Adopt-
ing such environmentally friendly fertilization strategies 
becomes essential to reduce N inputs, enhance NUE, 
ensure high yields, and promote sustainable agriculture 
in the future.

4.2  Effect of biochar and N‑fertilizer application on soil pH
The results have validated our expectations, indicating 
that incorporating biochar led to an elevation in soil pH 
compared to the control treatment in the first year. The 
biochar’s alkalinity may be linked to its surface organic 
functional groups, including phenolic, hydroxyl, and car-
boxyl groups. These functional groups possess the capac-
ity to absorb protons and swiftly mitigate soil acidity 
(Geng et al. 2022; Murtaza et al. 2024). In this study area, 
Juriga and Šimanský (2019) also reported a significant 
increase (by more than 0.4 units) in pH (measured in  H2O 
as well as KCl) at the highest rates of biochar application. 
Results obtained by Oladele et al. (2019) showed that soil 
pH dropped with an increase in N-fertilizer rates, while 
it increased with enhancing biochar application. Biochar 
has the capacity to improve soil acidity due to its alkaline 
nature and high pH buffering capacity (Dai et  al. 2017). 
Also, soil pH significantly decreased in the presence of 
individual N-fertilizer during harvest stages in studied 
soils as reported by Liao et  al. (2020). This reduction 
could be ascribed to the high level of N-fertilizer applica-
tion because roots uptake  NH4

+ and exchange  H+ to alle-
viate charge balance. The application of biochar generally 
enhanced soil pH, and changes were strongly affected by 
different properties like soil type, feedstock material and 
the liming amount of biochar (DeLuca et  al. 2015; Tian 
et al. 2017a). According to the study reported by Sarfraz 
et  al. (2017), the combined application of biochar and 
N-fertilizer significantly decreased soil pH, which could 
be due to increased N mineralization by N-fertilizer 
transformation to the  NH4

+. Additionally, Liao et  al. 
(2020) reported that soil pH significantly decreased dur-
ing the harvest stages in the studied soils in the presence 
of individual N-fertilizer, which could be attributed to the 
high level of N-fertilizer application. This process, along 
with the slow oxidization and decomposition of biochar, 
can enhance hydrogen  (H+) concentration in soil solu-
tion, causing acidification and a decrease in soil pH by 
production of acidic functional groups such as carboxyl 
(Zavalloni et al. 2011; Liu et al. 2014).

4.3  Effect of biochar and N‑fertilizer application on SOC 
content

Our findings are consistent with outcomes from other 
long-term experiments where the incorporation of 
plant residue has demonstrated a propensity to elevate 
SOC and sequester C from the atmosphere (Lal 2004; 

Lugato et al. 2006). Overall, our study showed that the 
SOC in reapplied biochar treatments decreased with 
aging in both sampling events across the years (Fig. 6). 
Horák and Šimanský (2016) suggested that further bio-
char application in this area after 2014 could lead to 
an increase in SOC and positive effects on soil fertility 
and nutrient retention, which supports the findings of 
this study. However, further investigation is needed to 
determine the potential of replacing chemical fertilizers 
with biochar for plant nutrition support. Berihun et al. 
(2017) also observed an increase in SOC from 3.35% 
to 5.05% and 4.89% when 12 t  ha−1 or maize cob and 
lantana biochar, respectively were applied with 2 kg of 
nitrogen, phosphorus, and sulfur (NPS) fertilizer to soil 
compared to the control treatments.

The impact of incorporating organic matter (OM) 
and N-fertilizer on SOC and N content was investi-
gated in various studies (Tian et  al. 2017b; Ali et  al. 
2020). Tian et  al. (2017b) explored different mecha-
nisms to explain diverse responses of SOC to OM and 
N-fertilizers incorporation. Ullah et  al. (2020) found a 
significantly positive correlation between SOC and N 
in paddy soils after applying N-fertilizers with biochar. 
Cameron et al. (2013) and Khan et al. (2022) observed 
an increase in SOC content with the application of 
biochar and N-fertilizers compared to non-biochar-
treated soils. Biochar with stable interior structures 
can improve SOC and reduce the mineralization rate 
of SOC, enhancing its stability against surface oxida-
tion and microbial degradation. This effect is attributed 
to the enhanced adsorption and polymerization of the 
organic molecules to form stable OM through surface 
catalytic activity (Zhang et  al. 2019). Furthermore, Ali 
et  al. (2020) found that the application of biochar and 
N-fertilizers increased the amount of N metabolism 
enzymes, including  NO3

− reductase, glutamine syn-
thetase and glutamine 2-oxoglutarate aminotransferase 
playing critical roles in the absorption and transloca-
tion of soil N.

The beneficial impact of biochar on nitrogen efficacy 
can be attributed to 2 important mechanisms. Firstly, 
biochar itself contains N nutrients that undergo gradual 
release into the soil solution. This phenomenon could 
contribute to the observed increases in  NH4

+ and  NO3
− 

levels, which were particularly notable in certain treat-
ments of our study. This effect became more pronounced 
as biochar application rates increased, even when main-
tained at similar N-fertilizer rates. Secondly, biochar 
promotes soil N retention, increases SOC, and prevents 
N loss by improving electrostatic adsorption and reten-
tion of  NH4

+ due to biochar’s high CEC and large sur-
face area. It can also increase N immobilization by soil 
microorganisms by providing labile carbon and changing 
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carbon content in the soil (Jeffery et al. 2017; Mehmood 
et al. 2020; Phares et al. 2022; Li et al. 2023).

4.4  Effect of biochar and N‑fertilizer on crop production
Since the establishment of the field experiment in Dolná 
Malanta in 2014, the application of soil amendments (sin-
gle biochar, N-fertilizer, and their combination), did not 
exhibit a significant influence on observed crop yields, 
except for one notable exception in treatment B20N2 in 
2019 (Aydin et al. 2020a). This specific treatment demon-
strated a significant increase in crop yield by + 71%, com-
pared to the fertilized control treatment N2, and + 50% 
compared to the control without any amendment. 
Intriguingly, this effect manifested six years after the ini-
tial biochar application in 2014.

Šimanský et al. (2019) studied nutrient uptake and the 
effect of biochar application on soil properties in Dolná 
Malanta in years 2015 and 2017 and they found that bio-
char significantly increased soil pH and specific nutrients, 
especially in treatment with 20 t  ha−1 biochar (B20N0). 
However, variations in macro- and micronutrient content 
in corn organs indicated complex relationships. Negative 
correlations occurred between P in corn seeds and total/
available P, while positive correlations linked total K in 
soil to K in leaves and corn seeds. Higher total Mn in soil 
correlated with increased Mn in stalks and corn seeds, 
and positive correlations emerged between total Zn in 
soil and Zn in corn roots. The authors suggested that 
the apparent disconnection between soil nutrient avail-
ability and plant nutrient uptake may be attributed to the 
intricate interactions occurring in the rhizosphere. Their 
study emphasizes the need to consider various factors 
influencing nutrient cycling, including microbial activity, 
soil pH, and specific crop demands. Negative correlations 
with crop yield elements suggest that the impact of bio-
char on nutrient availability may not uniformly enhance 
plant growth. Šimanský et al. (2019) reported synergistic 
and antagonistic effects, highlighting the necessity for a 
nuanced understanding of how biochar influences nutri-
ent dynamics in diverse soils and cropping systems.

Aydin et  al. (2020b) investigated soil properties and 
yield in Dolná Malanta during the maize and spring bar-
ley seasons in 2017 and 2018, respectively. The study 
revealed positive correlations between grains per ear and 
SOC. Conversely, average grain weight showed nega-
tive correlations with both SOC and soil pH, emphasiz-
ing the varied impact of soil properties, including those 
influenced by biochar, on crop yield. This confirmed the 
fact that the effect of biochar application on crop yields 
is generally not as pronounced as that on C sequestra-
tion and improvement of soil properties (Blanco-Can-
qui 2021). The results of this study are consistent with a 
field experiment conducted by Karer et al. (2013), under 

relatively similar climatic (temperate climate zone) but 
different soil conditions (Cambisols and Chernozems). In 
the first year after biochar application, Karer et al. (2013) 
found that despite significant increases in pH and SOC, 
plant nutrient uptake did not increase significantly and 
the improvement in soil properties had no effect on the 
yields achieved for maize and spring barley.

An in-depth analysis of rainfall and average air temper-
ature highlighted suboptimal weather conditions during 
the 2014–2019 seasons (Aydin et al. 2020b; Aydin 2021). 
Variability, including warmer periods and uneven rainfall 
distribution, likely adversely affected crop yields. Water 
stress, influenced by temperature and rainfall patterns, 
could impact nutrient availability and susceptibility to 
pests, contributing to fluctuations in crop yields.

In summary, while biochar application has shown posi-
tive effects on soil nutrient content, its impact on nutri-
ent uptake by plants is multifaceted and influenced by a 
range of factors. In the context of soil amendments, the 
primary concern for producers is the impact on crop pro-
duction and resulting profitability. However, it should 
be noted that biochar does not necessarily act as a uni-
versal solution for all ecosystem services, and its effects 
vary across different parameters evaluated (Blanco-Can-
qui 2021). Insights from different studies contribute to 
a more holistic understanding, emphasizing the impor-
tance of context-specific assessments to harness the full 
potential of biochar as a soil amendment for optimizing 
nutrient availability and enhancing crop productivity.

5  Conclusions
Investigating the effects of biochar as a soil amendment is 
crucial in predicting the dynamics of N and C and other 
chemical properties in treated soils with this organic mate-
rial. Results from a 7-year field experiment showed that 
adding 10 t biochar  ha−1 along with N-fertilizer, led to a 
significant decrease in  NO3

− and  NH4
+ content across 

most months when compared to the 20 t of biochar  ha−1 
and control treatments. This indicates that optimal bio-
char application can improve the efficacy of N-fertilizer by 
increasing the availability of N for plant uptake. Increasing 
biochar rates also resulted in a rise of soil pH and SOC in 
soils treated with biochar. The surface and porous struc-
tures of biochar can be coated in organic compounds, lead-
ing to an increase in SOC. However, this effect diminished 
over time as the compounds decomposed, highlighting the 
need for biochar reapplication after a few years. The study 
also found that biochar had a more significant impact on 
inorganic N concentration in soils with low organic matter 
due to the high content of C embedded in the soil matrix. 
The results suggest that the first application of biochar had 
a significant influence on the levels of nitrates, ammonium, 
and organic carbon in the soil. However, the efficacy of 
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field-aged biochar was limited due to microbial and chemi-
cal composition, emphasizing the importance of biochar 
reapplication. Further research could help determine the 
optimal timing for biochar reapplication in long-term field 
studies and clarify whether biochar merely increases availa-
ble N to plant uptake. Climatic conditions during the grow-
ing season, rather than biochar type or rates, appeared to 
have a more significant influence on yield values.
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