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Reduced sulfur compounds and carboxylic 
acid groups in dissolved PFRs of iron‑biochar 
enhance Cr(VI) reduction in anaerobic 
conditions
Shujie Hu1,3, Chengshuai Liu2*   , Hongling Bu4, Manjia Chen1, Jiao Tang5, Bin Jiang5 and Yong Ran5 

Abstract 

In addition to the adsorption and immobilization capacities of iron-modified biochars, these materials produce per-
sistent free radicals (PFRs) that can carry out metal [i.e., Cr(VI)] redox transformations, but the primary forms and active 
species of PFRs involved are not well understood. Here, we investigated the key species of PFRs of α-Fe2O3-modified 
biochar (MBC) and their influence on Cr(VI) reduction under anaerobic conditions simulating paddy soil environ-
ments. MBC produced bulk phenoxyl PFRs that promoted Cr(VI) reduction due to the catalytic effect of the transition 
metal Fe. In addition, MBC was more efficient in reducing Cr(VI) under anaerobic conditions than under aerobic con-
ditions due to the more active and accessible dissolved PFRs present in the dissolved organic matter (DOM). The elec-
tron transfer capacity of DOM was demonstrated by excitation-emission matrix (EEM) spectrophotometry combined 
with parallel factor analysis, which showed that the protein-like and humic-like components of DOM were involved 
in Cr(VI) reduction. Furthermore, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analy-
sis indicated that reduced-S compounds (O/S < 4) and carboxylic acid (–COO) groups in the unsaturated aliphatic 
and lignin-like compounds are potentially the main active species accelerating Cr(VI) reduction under anaerobic 
conditions. Our results provide new insights into the role of dissolved PFRs from iron-modified biochar in promoting 
Cr(VI) reduction under anaerobic conditions such as flooded soils.

Highlights 

•	 Iron modification promoted a 5.6-fold increase in the concentration of bulk phenoxyl PFRs over unmodified bio-
char.

•	 Dissolved PFRs in iron-biochar derived dissolved organic matter enhanced Cr(VI) reduction under anaerobic con-
ditions.

•	 Reduced sulfur compounds and carboxylic acid groups were the major reducing species in the dissolved PFRs.
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1  Introduction
Biochar, due to its redox activity in contaminant removal 
in water and soil systems, has attracted considerable 
interest (Fei et al. 2022; Zhu et al. 2020; Yuan et al. 2017; 
Klüpfel et  al. 2014). Through its electron transfer and 
mediation capabilities, biochar can facilitate the degrada-
tion and transformation of environmental contaminants, 
thereby influencing their biogeochemical cycling and 
environmental fate (Yuan et al. 2017; Klüpfel et al. 2014). 
Generally, phenolic moieties and conjugated π-electrons 
in biochar, as well as persistent free radicals (PFRs) on 
biochar, contribute to its electron transfer capability 
(Cuong et al. 2021; Klüpfel et al. 2014).

PFRs, as a class of organic free radicals on biochar, 
have great potential for applications in micropollutant 
transformation in the environment (Fang et  al. 2014, 
2015; Zhu et al. 2020). PFRs can trigger sequential single-
electron transfer to oxidants (i.e., H2O2 and O2) to gen-
erate reactive oxygen species (ROS, ·OH, ·O2

−, etc.) for 
the degradation of organic pollutants (Fang et  al. 2014, 
2015). The direct reductive capacity of PFRs has also 
been demonstrated for p-nitrophenol degradation and 
Cr(VI) remediation (Zhu et  al. 2020; Yang et  al. 2016a). 
For example, PFRs on biochar can reduce Cr(VI) to less 
toxic Cr(III) through direct single-electron transfer and 
indirect formation of ·O2

− (Xu et  al. 2020a; Zhu et  al. 
2020). Our recent study showed that PFRs on iron-modi-
fied biochar can promote Fe(III)/Fe(II) cycling and accel-
erate the reduction of Cr(VI) to Cr(III) (Hu et al. 2024). 
The transformation reactions of PFRs to contaminants 

in these studies were predominantly executed under 
aerobic conditions. The reactivity of PFRs under anaer-
obic environments, such as inundated paddy soil, is 
rarely reported (Fang et  al. 2014, 2015; Xu et  al. 2020a; 
Zhu et  al. 2020). To date, only two recent studies have 
focused on the reactivity of PFRs under anaerobic condi-
tions (Guan et al. 2023; Xu et al. 2023). Based on solution 
color development after a reaction, Guan et  al. (2023) 
reported that biochar-based PFRs could react with ter-
tiary butanol under anaerobic conditions, but no relevant 
mechanism was investigated. Xu et  al. (2023) revealed 
that PFRs could transfer electrons to H2O to form ·O2

−, 
which promoted the abiotic oxidation of tire antioxi-
dants. Therefore, further investigations are needed on the 
reaction mechanisms of PFRs under anaerobic environ-
ments. Anaerobic environments are more prevalent in 
deep  soils or flooded paddy  soils, which are commonly 
contaminated with hexavalent Cr(VI) near urban indus-
trial areas, threatening the safety of agricultural products 
and human health (Liu et al. 2021). However, the mecha-
nism of Cr(VI) reduction by biochar PFRs under anaero-
bic conditions is not clear.

Dissolved organic matter (DOM) also contains these 
“long-lived” PFRs (Jacobs et  al. 2012), and the reactiv-
ity of PFRs is higher in biochar-derived DOM than in 
bulk biochar (Chen et  al. 2021; Dong et  al. 2014; Lian 
et  al. 2020). The PFRs present in DOM can increase 
the number of contact sites with pollutants (Lian et  al. 
2020). Here, these PFRs in the DOM are considered to 
be dissolved PFRs. In addition, lignin in river water DOM 
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and saturated compounds in soil DOM were the main 
species promoting sulfamethoxazole degradation and 
arsenic oxidation under aerobic conditions, as deter-
mined by Fourier transform ion cyclotron resonance 
mass spectrometry (FTICR-MS) (Liang et al. 2023; Zeng 
et  al. 2021). In our previous investigation, we focused 
exclusively on the bulk PFRs in biochar (Hu et al. 2024). 
However, the key active compounds of DOM for Cr(VI) 
reduction under anaerobic conditions, especially the 
essential reductive species in biochar-derived dissolved 
PFRs,  remain undetermined. A combination of excita-
tion-emission matrix (EEM) spectroscopy and ultrahigh-
resolution FTICR-MS (Jia et  al. 2021; Zeng et  al. 2021) 
could allow the identification of key dissolved PFRs active 
species involved in Cr(VI) reduction and thus improve 
our understanding of the redox processes occurring in 
dissolved PFRs under anaerobic soil conditions.

Therefore, in this study, iron oxide (α-Fe2O3) modified 
rice husk biochar with high PFRs contents was prepared 
to investigate the reactivity and major active species of 
biochar-derived PFRs under anaerobic conditions. This 
research can help to provide a new perspective on the 
reductive species released by iron-biochar, and improve 
the understanding of the molecular reduction mecha-
nism of Cr(VI) by iron-biochar.

2 � Materials and methods
2.1 � Preparation of biochar and iron‑biochar
Rice husk was selected as the biomass. Since in our prior 
study, it was reported that the content of PFRs was high-
est for biochar prepared at a 500 °C pyrolysis temperature 
(Hu et al. 2024),    the subsequent iron-modified biochar 
was synthesized at 500  °C. Nanometer-sized α-Fe2O3 
powder was mixed with rice husk (Fe/biomass = 5%, w/w) 
by using a Pulverisette-6 Planetary Mill (FRITSCH, Ger-
many) for 1 h. The mixed sample was slowly pyrolyzed at 
500 °C in a tube furnace (GSL-1100-X, HF-Kejing, China) 
under a N2 atmosphere for 2  h, yielding MBC. Biochar 
without added α-Fe2O3 was included as a control sample 
and designated BC.

2.2 � Characterization of biochar and iron‑biochar
The C, H, O, N, and S contents, pH, zeta potential, micr-
oporosity, surface morphologies, surface elemental com-
positions (C, O, S, Fe, and Cr), oxygen functional groups, 
and crystalline iron in BC and MBC were determined 
as reported in our previous study (Hu et  al. 2024) and 
can be referred to in Additional file 1: Text S1. The dis-
solved sulfate in biochar was extracted with deionized 
water (1:20 w/v) for 1 h, and sulfate concentrations were 
determined by ion chromatography (ICS-5000+, Thermo 
Fisher Scientific, USA).

2.3 � Batch sorption kinetics and isothermal sorption 
experiments

Anaerobic Cr(VI) sorption kinetic and isothermal sorp-
tion experiments were conducted with MBC and BC in 
a glovebox filled with 3–5% H2-balanced N2. The Cr(VI) 
solution was first purged with high purity N2 (99.999%) 
for 2 h to remove dissolved oxygen. The biochar samples 
were placed in a glovebox for 2 days prior to the experi-
ment for removal of adsorbed O2. Batch Cr(VI) sorption 
by MBC and BC was performed as described in our pre-
vious study (Hu et  al. 2024). All sorption experiments 
were conducted in triplicate. Briefly, 2.0 g of the biochar 
sample was added to 200 mL of 50 mg L−1 Cr(VI) solu-
tion in a 250  mL glass bottle. The pH was adjusted to 
3.0 ± 0.1 with the addition of 0.1 M HCl or NaOH solu-
tion. No buffer was added for this experiment. Kinetic 
experiments were performed in the dark at 25 ± 1 °C and 
500  rpm. Samples were collected from the solution at 
different reaction times (0, 0.5, 1, 2, 3, 4, 8, 12, and 24 h) 
and then filtered through a 0.45 μm membrane (PTFE). 
At the end of the kinetic experiments, biochar particles 
were collected, rinsed with deionized water, and freeze-
dried prior to X-ray photoelectron spectroscopy (XPS) 
and electron paramagnetic resonance (EPR) analysis. For 
subsequent DOM analysis, the filtered solution was col-
lected. Concentrations of total Cr, Cr(VI), Cr(III), total 
Fe, Fe(II), and Fe(III) in solution were measured and  are 
detailed  in Additional file  1: Text S2. Sorption kinetic 
models of pseudo-first-order (PFO) and pseudo-second-
order (PSO)  are provided in Additional file 1: Text S3.

For isothermal sorption experiments, Cr(VI) solu-
tions ranged from 5 to 1000 mg L−1. Cr(VI) solution and 
biochar were mixed at a ratio of 100:1 in 15 mL centri-
fuge tubes. Centrifuge tubes were shaken in the dark at 
25 ± 1 °C and 250 rpm for 48 h. Total Cr, Cr(VI), total Fe, 
and Fe(II) concentrations in solution were then deter-
mined. Sorption isotherm models of Freundlich and 
Langmuir   are listed in Additional file  1: Text S3. The 
experiments for aerobic Cr(VI) sorption kinetics and 
isothermal sorption by MBC and BC were carried out 
under conditions without oxygen controlling, and the 
other sorption conditions were consistent with anaerobic 
experiments.

2.4 � EPR and quenching experiments
To quantify the intensity of bulk PFRs, 20  mg of BC or 
MBC was injected into a micropipette in an EPR instru-
ment (Bruker A300 spectrometer, Germany). The specific 
parameters were as follows: center field 3510 G, sweep 
width 300 G, microwave frequency 9.85 GHz, microwave 
power 19.23 mW, modulation frequency 100 kHz, mod-
ulation amplitude 1.0 G, and sweep time 60.42  s (Liang 
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et al. 2020; Zhu et al. 2020). As the dissolved PFRs can-
not be isolated from DOM, we characterized the DOM in 
this study instead of the dissolved PFRs. DOM was col-
lected through a 0.45 μm pre-combusted glass fiber filter 
membrane (Whatman), freeze-dried, and measured by 
EPR in subsequent kinetic experiments.

ROS identification was performed using EPR coupled 
with 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as a 
spin-trapping agent to characterize ·O2

− and ·OH (Han 
et  al. 2022). 4-Amino-2,2,6,6-tetramethylpiperidine 
(TEPM) was used to capture 1O2. Briefly, each 10 g  L−1 
biochar suspension was filtered after 10  min or 30  min 
dark shock. The filtered solution was then mixed with 
100 mM scavenger in a 1:1 volume ratio to obtain 1 mL 
of mixed solution. Then, 30 μL of the mixed solution was 
absorbed into a capillary glass tube for the EPR assay.

Moreover, to identify the impacts of ROS on Cr(VI) 
reduction, different scavengers were used as electron 
competitors during the quenching tests. ρ-Benzoquinone 
(BQ, 100  mM) was added to probe ·O2

−, isopropanol 
(IPA, 100 mM) and terephthalic acid (TPA, 50 µM) were 
used to probe ·OH, and furfuryl alcohol (FFA, 100 mM) 
was selected to  act as the scavenger of 1O2 (Zhu et  al. 
2020, 2022; Liu et al. 2022).

2.5 � UV–vis absorption spectra and EEM fluorescence spectra
Absorption and fluorescence spectra of biochar-derived 
DOM before and after Cr(VI) removal were obtained 
simultaneously using an Aqualog fluorometer (HOR-
IBA Scientific, USA). The detailed UV–vis and fluores-
cence properties are listed in Additional file  1: Text S4. 
A total of 40 EEMs from MBC and BC were corrected 
and decomposed using parallel factor analysis (PARA-
FAC) to extract components using the drEEM toolbox 
version 2.0 with MATLAB software (http://​models.​life.​
ku.​dk/​drEEM, last accessed: June 2014) (Murphy et  al. 
2013), and the details were described in our previous 
studies (Tang et  al. 2020, 2021). A two- to seven-com-
ponent PARAFAC model was explored in the context of 
core consistency and residual analysis (Additional file 1: 
Figs. S1 and S2). A four-component PARAFAC model 
was identified, which explained 95.8% of the variance and 
successfully passed the split-half validation test with a 
split style of S4C6T3 (Additional file 1: Fig. S3), indicating 
that the model was stable.

2.6 � Ultrahigh‑resolution electrospray ionization FTICR‑MS 
analysis

Eight DOM samples of MBC and BC were selected for 
FTICR-MS analysis. These samples were taken before 
and after 24  h of reaction with Cr(VI) under anaerobic 
and aerobic conditions. Desalting and concentration of 
anaerobic DOM were performed, and the samples were 

kept in a glovebox to prevent O2 exposure until FTICR-
MS analysis. The DOM samples were desalted and con-
centrated using Varian Bond Elute PPL cartridges (1  g 
per 6  mL) (Lv et  al. 2016; Spencer et  al. 2014; Dittmar 
et  al. 2008). Our previous study showed that the aver-
age extraction efficiency for DOM routinely obtained 
with this procedure yielded an average value of 71.8% 
(on a carbon basis, unpublished data). Ultrahigh-resolu-
tion mass spectra for the purified DOM fractions were 
acquired using a solari X XR FTICR-MS (Bruker Dal-
tonik GmbH, Bremen, Germany) equipped with a 9.4 T 
refrigerated actively shielded superconducting magnet 
(Bruker Biospin, Wissembourg, France) and a Para-
cell analyzer cell. Samples were ionized by electrospray 
ionization (ESI) (Bruker Daltonik GmbH, Bremen, Ger-
many) in negative ion mode. The detection mass range 
was set to m/z 100–800. Elemental ratios of O/C ≤ 1.2 
and H/C ≤ 2.5 were used to further constrain the formula 
calculations. The O/C ratio, H/C ratio, molecular weight 
(MW), nominal oxidation state of carbon (NOSC), dou-
ble bond equivalent (DBE), and modified aromaticity 
index (AImod) were used to describe the molecular prop-
erties of DOM, which are detailed in Additional file  1: 
Text S5. Seven molecular groups were further delineated 
by the AImod and H/C cutoffs (Lv et  al. 2016; Spencer 
et al. 2014): (1) saturated compounds (H/C > 2), (2) pep-
tides (2 > H/C ≥ 1.5 and N > 0), (3) unsaturated aliphatic 
compounds (2 > H/C ≥ 1.5 and N = 0), (4) carbohydrates 
(H/C ≤ 2, O/C > 0.9), (5) lignin-like/phenolic formu-
las (AImod ≤ 0.5 and H/C < 1.5), (6) aromatic formulas 
(0.5 < AImod ≤ 0.66), and (7) condensed aromatic formulas 
(AImod > 0.66).

3 � Results and discussion
3.1 � Cr(VI) removal and transformation
Iron modification significantly improved the conversa-
tion of Cr(VI). The amount of Cr(VI) removed and the 
amount of Cr(III) generated by MBC were 1.69–1.76 
and 1.49–3.18 times higher than those by BC, respec-
tively (Fig.  1a, b and Additional file  1: Fig. S4a, b). The 
amount of Cr(VI) removed by MBC was 48.6  mg  L−1 
within 24  h under anaerobic conditions, much higher 
than the 34.8  mg  L−1 of Cr(VI) removed under aerobic 
conditions (Fig. 1a). The models for the kinetics of Cr(VI) 
removal and sorption isotherms showed higher values 
under anaerobic conditions compared to aerobic condi-
tions (Additional file 1: Tables S1 and S2). Further discus-
sion can be found in Additional file 1: Text S6. However, 
the amount of Cr(III) produced by MBC was lower 
under anaerobic conditions (0.72–2.78  mg  L−1) than 
under aerobic conditions (1.31–7.77  mg  L−1) (Fig.  1b). 
These results suggest that O2 has a dual effect on Cr(VI) 
removal and Cr(III) generation by MBC. Cr(VI) is more 

http://models.life.ku.dk/drEEM
http://models.life.ku.dk/drEEM
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efficiently removed under anaerobic conditions, while 
Cr(III) is predominantly formed under aerobic condi-
tions. This disparity is due to an electron transfer mech-
anism under aerobic conditions where electrons from 
PFRs are transferred to O2, producing ·O2

− which facili-
tates Cr(VI) reduction, resulting in a higher concentra-
tion of Cr(III). Conversely, aerobic environments harbor 
an abundance of ROS (such as ·OH and 1O2) with higher 
redox potentials that have the ability to re-oxidize the 
reduced Cr(III), resulting in a diminished Cr(VI) removal 
efficiency compared to anaerobic conditions (a detailed 
discussion is provided in the subsequent section). In 
addition, the concentrations of Cr(III) for MBC initially 
increased rapidly and then decreased with increasing 
reaction time due to the electrostatic attraction between 
MBC and Cr(III) (Fig. 1b and Additional file 1: Figs. S5a 
and S6). However, the decreases in the concentrations of 

Cr(III) were much greater under aerobic conditions than 
under anaerobic conditions (Fig. 1b), suggesting the reox-
idation of Cr(III) under aerobic conditions.

The species of Cr adsorbed on biochar and the 
changes in surface functional groups of biochar after 
Cr(VI) removal were investigated using XPS analysis. 
To avoid interferences from oxygen, sample prepara-
tion was performed in an anaerobic glovebox. The sam-
ples used for XPS analysis were collected at 24 h from 
the anaerobic/aerobic kinetics experiments. Approxi-
mately 92.2% and 88.9% of the Cr sorbed on MBC 
was in the form of Cr(III) under anaerobic and aero-
bic conditions, respectively, greater than that on BC 
by 89.3% and 76.6% (Fig.  2a, b and Additional file  1: 
Fig. S7a, b). Given that the quantity of Cr(III) gener-
ated in the solution is less than the amount of Cr(VI) 
removed (Fig.  1a, b), it can be inferred that Cr(VI) is 
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more susceptible to adsorption followed by reduction, 
as demonstrated by a prior study (Zhong et al. 2018). In 
addition, the efficiency of Cr(VI) reduction was inves-
tigated by estimating the content of Cr(III) adsorbed 
on the biochar surface and the Cr(III) generated in the 
sorbent solution. The proportion of Cr(III) adsorbed 
by biochar was determined by XPS. The Cr(VI) reduc-
tion efficiencies on MBC were 89.8% and 62.2% under 
anaerobic and aerobic conditions, respectively, greater 
than those on BC by 32.7% and 49.3%, accounting for 
92.5% and 89.4% of Cr(VI) removal (Fig. 1d and Addi-
tional file 1: Fig. S4d). The above results indicated that 
a higher reduction efficiency of Cr(VI) was observed on 
MBC, especially under anaerobic conditions. Addition-
ally, the micropore volume and pore size distribution of 
MBC were essentially the same as those of BC (Addi-
tional file  1: Fig. S5e, f and Table  S3), suggesting that 
the active species on MBC, rather than the micropores, 

mainly facilitated Cr(VI) transformation, as discussed 
below.

O-containing functional groups on the biochar sur-
face can adsorb or reduce Cr(VI) via complexation or 
redox processes (Hu et  al. 2024; Fei et  al. 2022; Zhang 
et al. 2020). In the O1s spectra, the peaks at 530.4, 531.6 
and 533.5  eV are iron-bound lattice oxygen (OL), sur-
face-adsorbed oxygen (OA), and oxygen banded to car-
bon surface (OS), respectively (Mian et  al. 2018; Yang 
et al. 2016b). The OA and total O content of MBC after 
Cr(VI) removal increased from   2.12% to 8.44% and 
13.2% to 25.4%, respectively (Fig.  2d and Additional 
file 1: Table S4), indicating that chromium oxides formed 
on the MBC surface. In addition, the content of surface 
reductive C–O groups of MBC decreased by 10.9% after 
Cr(VI) removal under anaerobic conditions,   4.95 times 
higher than that of 2.2% under aerobic conditions (Fig. 2c 
and Additional file 1: Table S4). However, the content of 
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surface oxidative C=O groups also decreased by 0.51% 
under anaerobic conditions (Fig. 2c and Additional file 1: 
Table  S4). These results suggested that the reduction of 
Cr(VI) by surface C–O is limited because phenolics are 
theoretically oxidized to carboxyl groups, leading to an 
increase in C=O content (Liu et  al. 2020; Zhang et  al. 
2020). Therefore, these reduced C–O groups were prob-
ably released into solution, consistent with the higher 
C–O intensity of MBC-derived DOM observed in the 
FTIR spectra (Additional file 1: Fig. S5d).

Magnetite (Fe3O4) was successfully loaded onto biochar 
after α-Fe2O3 doping, as shown by energy dispersive spec-
trometry (EDS), XPS, FTIR, and XRD analyses (Fig. 3 and 
Additional file 1: Figs. S5 and S8). Before Cr(VI) removal, 
Fe(II) (710.7 and 724.3 eV), Fe(III) (712.1 and 725.7 eV), 
and satellite peaks of Fe(II) (715.1  eV) were observed 
in the Fe 2p3/2 XPS spectra of MBC (Fig. 3a). Previous 
studies have reported that Fe(II) atoms can transfer elec-
trons or diffuse from the internal Fe3O4 or Fe3S4 to the 
iron-based surface of the magnetically modified bulk 
biochar, thus reducing the adsorbed Cr(VI) to Cr(III) 
(Zhong et  al. 2018; Wang et  al. 2020). Electron transfer 
between solid Fe(II) and adsorbed Cr(VI)   was obvious 
under aerobic conditions, with the satellite Fe(II) peaks 
apparently disappearing and the Fe(III) peaks increasing 

from 42.6% to 63.7% after Cr(VI) removal (Fig. 3b). How-
ever, the Fe(III) peaks increased slightly from    42.6% to 
46.2% after Cr(VI) removal under anaerobic conditions 
(Fig.  3c), which may be due to a re-reduction of Fe(III) 
to Fe(II). In addition, MBC released a small amount of 
ionic Fe(II) (4.33  mg  L−1) in the control group [without 
Cr(VI)], and its surface Fe content decreased from 1.32% 
to 0.78% after Cr(VI) removal (Additional file  1: Fig. S9 
and Table S4). However, no Fe(II) or Fe(III) was detected 
in the experimental group [with Cr(VI)]. This indicated 
that the released Fe(II) was immediately oxidized by 
Cr(VI), and insoluble hydroxide precipitates may have 
formed via the hydrolysis of Fe(III) or the mixing of 
Fe(III) oxide with ions, as reported in our recent study 
(Hu et al. 2024). The stoichiometric ratio between Cr(VI) 
and Fe(II) without biochar is 1:3 (Xu et al. 2020b). How-
ever, the released concentration of Fe(II) in this study 
(4.33 mg L−1) was much lower than the concentration of 
Cr(VI) reduced (44.9 mg L−1). Therefore, other reductive 
substances were involved in the conversion of Cr(VI), 
because the Fe(II) loaded or released from MBC in this 
study was not sufficient to reduce such a large amount of 
Cr(VI).

3.2 � Influence of bulk PFRs on Cr(VI) transformation
PFRs with delocalized unpaired electrons can engage 
in direct reactions with contaminants through single-
electron transfer. The concentration and type of these 
radicals predominantly influence the redox reactivity of 
biochar (Zhu et  al. 2020; Ruan et  al. 2019). An increase 
in the concentration of PFRs enhances the electron trans-
fer capability of biochar (Zhu et al. 2020). PFRs are typi-
cally classified into three categories: oxygen-centered 
radicals, carbon-centered radicals, and oxygenated 
carbon-centered radicals, based on their spectroscopic 
splitting factors (g values) (Vejerano et  al. 2011). Oxy-
gen-centered radicals are represented by semiquinone 
radicals (g > 2.0040), oxygenated carbon-centered radi-
cals by phenoxyl radicals (g = 2.0030–2.0040), and car-
bon-centered radicals by cyclopentadienyls (g < 2.0030). 
Prior studies have demonstrated that a higher g value of 
PFRs corresponds to a lower electron donation ability 
(Ruan et  al. 2019; Zhong et  al. 2018). For instance, car-
bon-centered radicals (i.e., cyclopentadienyls) possess 
a potent electron-donating ability to reduce pollutants 
[such as Cr(VI)] with high redox potential (Zhong et al. 
2018), while oxygen-centered radicals (i.e., semiquinone 
radicals) can function as reversible electron carriers in 
redox reactions (Xu et al. 2019). In the present study, the 
bulk PFRs concentration of MBC increased dramatically 
by  5.6 times compared to that of unmodified BC (Fig. 4a, 
d and Table 1), indicating that the addition of transition 
metals significantly promoted bulk PFRs formation (Fang 
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et al. 2015; Vejerano et al. 2011). The g values of MBC and 
BC were 2.0035, suggesting a class of carbon–oxygen-
centered PFRs (phenoxyl radicals). This finding implies 
that α-Fe2O3 doping only altered the concentration of 
the bulk PFRs on biochar but did not modify the type of 
PFRs, consistent with results from FeCl3-modified bio-
char in previous studies (Hu et  al. 2024; Vejerano et  al. 
2011). Furthermore, PFRs exhibit properties akin to free 

electrons and display a high electron donor capacity, as 
the g value of 2.0035 is close to the g factor of free-elec-
tron (2.0023) and carbon–oxygen-centered PFRs have 
low Mulliken charge (0.150 e) (Zhong et al. 2018).

The bulk PFRs of MBC and BC showed significantly 
different EPR signals under anaerobic/aerobic conditions. 
The concentrations of bulk PFRs for MBC decreased 
sharply from 3.56 × 1018 spins g−1 to 0.448 × 1018 spins g−1 
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Table 1  The PFRs properties of BC and MBC

a Original: conditions after pyrolysis

Sample Condition 1018 spins g−1 1018 spins g−1 C−1 g value Radical type

BC Originala 0.639 1.20 2.0035 Phenoxyl

Aerobic, without Cr(VI) 0.639 – 2.0035 Phenoxyl

Aerobic, with Cr(VI) 0.595 – 2.0035 Phenoxyl

Anaerobic, without Cr(VI) 0.471 – 2.0045 Semiquinone

Anaerobic, with Cr(VI) 0.419 – 2.0045 Semiquinone

MBC Originala 3.56 7.86 2.0035 Phenoxyl

Aerobic, without Cr(VI) 2.47 – 2.0035 Phenoxyl

Aerobic, with Cr(VI) 0.608 – 2.0035 Phenoxyl

Anaerobic, without Cr(VI) 0.448 – 2.0045 Semiquinone

Anaerobic, with Cr(VI) 0.516 – 2.0045 Semiquinone

MBC-derived DOM Aerobic, without Cr(VI) 1.33 30.8 2.0035 Phenoxyl

Anaerobic, without Cr(VI) 1.06 35.7 2.0035 Phenoxyl
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in systems without Cr(VI) and increased slightly to 
0.516 × 1018  spins  g−1 after Cr(VI) treatment under 
anaerobic conditions (Fig. 4e and Table 1), indicating that 
these bulk PFRs did not directly participate in Cr(VI) 
reduction. In addition, the g values of MBC in these sys-
tems increased from 2.0035 to 2.0045 both in the pres-
ence and absence of Cr(VI), indicating that the PFRs 
changed from carbon–oxygen-centered (phenoxyl radi-
cals) to oxygen-centered (semiquinone radicals) species 
under anaerobic conditions (Xu et al. 2023). These results 
suggested that the bulk PFRs on MBC had a lower abil-
ity to donate electrons to Cr(VI) under anaerobic condi-
tions. However, the PFRs signals in MBC under aerobic 
conditions were completely different from those under 
anaerobic conditions. Under aerobic conditions, the con-
centration of bulk PFRs for MBC decreased slightly from 
3.56 × 1018  spins  g−1 to 2.47 × 1018  spins  g−1 in systems 
without Cr(VI). After Cr(VI) removal, the concentration 
decreased significantly to 0.608 × 1018  spins  g−1 (Fig.  4d 
and Table 1). This suggests that PFRs were consumed by 
providing electrons to Cr(VI).

In addition to the direct reduction of bulk PFRs, indi-
rect reduction of Cr(VI) can also occur for MBC under 
aerobic conditions. Superoxide radical (·O2

−) signals were 
detected in the MBC solutions (Fig. 4f ) and disappeared 
following the addition of BQ (Additional file 1: Fig. S11a). 
The neutralization of  ·O2

− with BQ (100  mM) led to a 
decrease in Cr(VI) removal efficiency from   69.6%  to 
60.9% within 24 h (Additional file 1: Fig. S11d), suggest-
ing an indirect reduction of Cr(VI) by PFRs transfer-
ring electrons to O2 to generate ·O2

−, consistent with a 
previous study (Xu et  al. 2020a). Moreover, hydroxyl 
radical (·OH) and singlet oxygen (1O2) signals were also 
detected in the MBC solutions under aerobic conditions 
and disappeared following the addition of IPA and FFA, 
respectively (Additional file 1: Figs. S10 and S11). These 
·OH (2.8 eV) and 1O2 (1.88 eV) are capable of re-oxidiz-
ing the generated Cr(III) to Cr(VI). However, quenching 
·OH with IPA (100  mM) decreased the Cr(VI) removal 
efficiency from   69.6% to 65.8% (Additional file  1: Fig. 
S11d), potentially due to the fact that IPA can also neu-
tralize the PFRs, thus resulting in a lower removal of 
Cr(VI). A prior study reported that PFRs on biochar 
were easily extracted by polar solvents such as methanol, 
dichloromethane, and IPA (Fang et  al. 2014). Tereph-
thalic acid (TPA, 50  µM) was further used to neutral-
ized ·OH (Liu et al. 2022), and marginally increased the 
removal of Cr(VI) to 70.9% (Additional file 1: Fig. S11d). 
Similarly, FFA (100 mM) was used to neutralize 1O2 (Liu 
et al. 2022), and the Cr(VI) removal efficiency increased 
to 74.6% (Additional file  1: Fig. S11d). These quench-
ing results indicated that ·OH and 1O2 can re-oxidize 
Cr(III) under aerobic conditions, resulting in low Cr(VI) 

removal efficiency. This could explain the phenomenon 
that the decrease in Cr(III) concentrations was higher 
under aerobic conditions than under anaerobic condi-
tions. Similar results were observed for BC (Fig.  4a–c). 
The above results indicated that the bulk PFRs on MBC 
and BC were directly or indirectly involved in Cr(VI) 
reduction under aerobic conditions, while the generation 
of ·OH and 1O2 could also hinder the reduction of Cr(VI). 
However, the bulk PFRs on MBC and BC had little effect 
on Cr(VI) reduction under anaerobic conditions.

Organic functional groups containing unpaired elec-
trons (such as PFRs) in biochar could be present in 
the form of DOM that participated in Cr(VI) reduc-
tion (Dong et  al. 2014). Evidently, phenoxyl PFRs was 
detected in DOM derived from MBC under anaero-
bic conditions (Fig.  4e). Although the concentration of 
PFRs in the DOM (1.06 × 1018 spins g−1) was lower than 
bulk biochar (3.56 × 1018  spins  g−1), its carbon content 
(2.97%)   was also significantly less than bulk biochar 
(45.3%) (Table  1 and Additional file  1: Table  S3). Given 
that PFRs are organic radicals, we correlated the PFRs 
concentration to its carbon content. The PFRs/C in DOM 
was 35.7 × 1018  spins  g−1  C−1 (Table  1), much higher 
than in bulk MBC (7.86 × 1018 spins  g−1  C−1), indicating 
a superior electron transfer capacity of DOM. Previous 
research also suggested that the active intermediates in 
the DOM electron transfer process primarily consist of 
electron-rich phenoxyl radicals (Remke et al. 2022, 2023). 
Additionally, compared to bulk PFRs, these dissolved 
PFRs increased contact sites with contaminants and thus 
resulted in higher reactivity (Lian et  al. 2020). Moreo-
ver, humic acids with high aromatic carbon content are 
more susceptible than fulvic acids to forming these dis-
solved PFRs (Jacobs et  al. 2012). Biochar produced at 
500  °C contains a high aromatic carbon content of over 
90%, according to our prior studies (Hu et  al. 2019, 
2021). Therefore, these abundant dissolved PFRs derived 
from MBC may play an important role in the reduction 
of Cr(VI). We further analyzed these dissolved PFRs by 
EEM and FTICR-MS.

3.3 � UV–vis and fluorescence evidence of dissolved PFRs 
involved in Cr(VI) transformation

PFRs in DOM released by biochar can directly transfer 
electrons to reduce Cr(VI) to Cr(III), resulting in changes 
in the photochemical properties of the solution (Dong 
et  al. 2014; Chen et  al. 2021). Since the dissolved PFRs 
could not be isolated from the DOM, we characterized 
the DOM instead of the dissolved PFRs. UV–vis spec-
troscopy can be used to reflect the chemical composi-
tion of DOM, and the Napierian absorption coefficient 
(m−1) was calculated (detailed in Additional file  1: Text 
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S4). The UV–vis absorbance intensities of the MBC solu-
tion in systems with Cr(VI) increased under both anaero-
bic and aerobic conditions and were much higher than 
those of systems without Cr(VI) (Fig.  5a, b). Two spec-
tral regions, 250–300 nm and 320–450 nm, showed sig-
nificant changes in systems with Cr(VI). Similar results 
were observed for the absorbance of BC-derived DOM 
(Additional file  1: Fig. S12). It is noted that these two 
regions were more involved in DOM-Cr(VI) binding 
interactions (Mu et al. 2022). Generally, the 230–300 nm 
spectral region is associated with conjugated carboxylic 
groups, while the 300–450 nm spectral region reflects the 
absorption characteristics of both phenolic and carbox-
ylic groups (Habibul and Chen 2018).

Compared to the significant increase in DOM absorb-
ance at 250–450  nm for MBC under aerobic conditions, 
the value at 250–450  nm was slightly increased under 
anaerobic conditions. The low concentration of elec-
tron acceptors (Cr(VI), 1.45  mg  L−1) in the MBC sys-
tem under anaerobic conditions can explain the small 
change in absorbance, as Mu et  al. (2022) reported that 

the absorbance of a solution was highly related to Cr(VI) 
concentration. In addition, with increasing reaction time, 
the wavelengths of the highest peaks in the 250–300 nm 
and 320–450 nm regions of MBC increased from 254 to 
272 nm and 347 nm to 371 nm, respectively. These obser-
vations suggested that DOM interacted with Cr(VI) to gen-
erate compounds with higher degrees of unsaturation or 
greater amounts of conjugation, which contributed to the 
absorbance redshift (Mu et al. 2022; Worms et al. 2019). In 
addition, the formation of DOM-Fe complexes was prob-
ably responsible for a slight increase in the absorbance of 
MBC under anaerobic conditions in the Cr(VI)-free sys-
tems (Fig. 5b and Additional file 1: Fig. S13) (Jia et al. 2021; 
Kim et al. 2019). Bianco et al. (2014) revealed that electron 
transfer of  L-tryptophan , L-tyrosine, and 4-phenoxyphe-
nol occurred after irradiation ≥ 8 h, resulting in an increase 
in the spectrum above 330–350  nm. Phillips and Smith 
(2015) reported that the adsorption spectrum of fulvic 
acid decreased at 250–400 nm after reduction by NaBH4. 
Therefore, the absorbance spectrum of DOM changes 
when electron transfer occurs.
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Visual and quantitative estimation of DOM compo-
nents was performed by EEM fluorescence spectros-
copy and PARAFAC analysis (Jia et  al. 2021; Zhang 
et al. 2019). The fluorescence spectra of MBC solutions 
showed significant quenching after Cr(VI) removal 
(Additional file  1: Figs. S14 and S15), indicating that 
DOM has a strong capacity to bind Cr(VI) (Mu et  al. 
2022; Zhang et al. 2021). Four components (referred to 
as C1, C2, C3, and C4) were identified by PARAFAC 
analysis (Additional file  1: Fig. S16). The C1, C2, and 
C3 components (Em/Ex = 284/263  nm, 315/275  nm, 
306/263  nm, respectively) were classified as protein-
like substances (Coble 2007). The C4 component (Em/
Ex = 411/< 250, 302  nm) was characterized as a low 
molecular weight UVA humic-like component (Sted-
mon and Markager 2005). In systems without Cr(VI), 
the relative intensity of the protein-like components 
(C1–C3) was higher in MBC than in BC (Additional 
file 1: Fig. S17), suggesting that the addition of α-Fe2O3 
changed the composition of DOM (Jia et al. 2021). In 
systems with Cr(VI), the relative intensities of C1 and 
C4 for MBC decreased significantly, and those of C1, 
C2, and C4 for BC dropped markedly after the removal 
of Cr(VI) (Fig. 5c and Additional file 1: Fig. S17). This 
suggested that these components tend to bind Cr(VI) 
and may participate in Cr(VI) reduction. The protein-
like components contain reducing groups, such as 
amino groups and phenolic groups, which allow the 
reduction of Cr(VI) to Cr(III) (Mu et  al. 2022). The 
absorption and fluorescence spectra of DOM indi-
cated that protein-like and humic-like components of 
DOM were involved in Cr(VI) reduction, and these 
components may be the main species of PFRs, includ-
ing conjugated carboxylic groups and phenolic groups. 
Subsequent FTICR-MS analysis verified the specific 
components of these dissolved PFRs.

3.4 � Molecular evidence of dissolved PFRs involved 
in Cr(VI) transformation

The molecular composition of MBC-derived DOM 
changed significantly under anaerobic conditions, 
with the average DOM formula changing from 
C21.1H26.0O5.25N0.31S0.47 to C22.3H28.3O6.79N0.91S0.45 after 
Cr(VI) removal (Additional file 1: Table S5). In addition, 
a significant increase in molecular weight (MWw) and 
double-bond equivalents (DBEw) indicated the formation 
of molecules of larger sizes and more unsaturated com-
pounds, consistent with the increased absorbance shown 
in Fig.  5a, b. Three categories were established: the for-
mulas removed from DOM after Cr(VI) removal (F1), the 
formulas remaining before and after Cr(VI) removal (F2), 
and newly produced formulas after Cr(VI) removal (F3). 
The Cw, MWw, DBEw, and modified aromaticity index 
(AImod,w) values of MBC increased from 22.9 to 29.2, 423 
to 541, 9.40 to 13.5, and 0.27 to 0.37 (F1 vs. F3), respec-
tively (Additional file 1: Table S5), indicating that DOM 
compounds with higher MW and degrees of unsatura-
tion were formed; additionally, a higher aromatic index 
was obtained. Moreover, the proportions of CHO and 
CHOS compounds for MBC-derived DOM decreased 
after Cr(VI) removal, while the proportions of CHON 
and CHONS compounds increased (Additional file  1: 
Table S5). These results suggested that CHO and CHOS 
compounds were mainly involved in Cr(VI) transforma-
tion, while CHON and CHONS compounds were likely 
retained in DOM after Cr(VI) removal.

Reductive soluble sulfur compounds can effectively 
reduce Cr(VI) to Cr(III) in soil remediation (Yang et al. 
2021). Higher proportions of CHOS compounds and 
dissolvable sulfate content were observed in MBC-
derived DOM than in BC-derived DOM, especially 
under anaerobic conditions (Additional file  1: Fig. 
S18a and Table S5). These results showed that α-Fe2O3 

Table 2  Molecular parameters for CHO and CHOS compounds of MBC-derived DOM

a F1: the removed formulas in DOM after Cr(VI) removal
b F3: the newly produced formulas in DOM after Cr(VI) removal

Compound Category Percentage Cw Hw Ow Sw MWw DBEw AImod,w NOSCw

Aerobic

 CHO F1a 26.9 22.9 22.4 4.73 0.00 372 12.7 0.43 − 0.48

F3b 16.2 26.6 29.9 8.87 0.00 490 12.6 0.37 − 0.39

 CHOS F1 31.6 23.3 29.4 6.77 1.45 463 9.65 0.28 − 0.46

F3 24.8 25.6 31.1 6.81 1.25 486 11.1 0.30 − 0.51

Anaerobic

 CHO F1 31.9 23.0 26.3 4.11 0.00 367 10.9 0.36 − 0.82

F3 10.9 29.4 38.2 5.52 0.00 479 11.3 0.34 − 0.80

 CHOS F1 35.8 23.2 29.5 6.14 1.23 445 9.49 0.25 − 0.43

F3 22.6 29.8 31.1 7.79 1.41 557 15.2 0.40 − 0.33
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doping increased the release of S-containing com-
pounds. In addition, the proportions of F1 and F3 for 
CHOS compounds for MBC were higher than those 
of CHO compounds (Table  2), suggesting that CHOS 
compounds were mainly involved in Cr(VI) reduction. 
Among these S-containing compounds, 31.6% of the 
CHOS formulas in F1 for MBC showed O/S ratios < 4 
(Fig.  6a). In addition, C17H28O3S and C18H30O3S were 
the dominant molecules in the CHOS compounds 
of MBC before Cr(VI) removal (Additional file  1: Fig. 
S18b). The above findings indicated that MBC con-
tained a high proportion of highly reduced-S com-
pounds (Song et al. 2018). After Cr(VI) removal, these 

highly reduced-S compounds decreased to 27.6% in F3 
for MBC, suggesting the oxidation of low O/S CHOS 
compounds to highly oxygenated sulfides, especially 
those with O/S ratios above 6 (Fig.  6a). The nominal 
carbon oxidation state (NOSC) describes the aver-
age C oxidation state per formula and is expected to 
respond to DOM redox changes (Wang et  al. 2019; 
Patel et  al. 2021). The NOSCw value of F3 categories 
for CHOS compounds of MBC under anaerobic con-
ditions was  −0.33, and was higher than    −0.43 of F1 
categories, further indicating that the newly formed 
compounds in DOM were more oxidized as a result of 
electron donating to Cr(VI) (Table 2).
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The changes in the composition of the major compound 
classes were further analyzed by calculating the rela-
tive changes in the percentages of the compound classes 
after the reactions (Fig.  6b and Additional file  1: Fig. 
S19). Under anaerobic conditions, a significant decrease 
in the unsaturated aliphatic compounds and lignin-like 
compounds was observed after Cr(VI) removal by MBC-
derived DOM, indicating that these compounds could 
react with Cr(VI) (Fig.  6b). Unsaturated aliphatic com-
pounds contain a number of unsaturated acids, such as 
monocarboxylic acids and binary carboxylic acids, which 
can promote the conversion of Cr(VI) by electron trans-
fer (Xu et  al. 2019; Fei et  al. 2022). Similarly, lignin-like 
compounds were oxidized by Cr(VI). Unsaturated and 
hydroxylated aliphatic carboxylic acids are involved in 
the first step in lignin oxidation, and the generated con-
jugated unsaturated (hydroxylated) acids can undergo 
aromatization and condensation to form condensed aro-
matic structures (Waggoner et  al. 2015; Waggoner and 
Hatcher 2017). As expected, a significant increase in 
condensed aromatic compounds was observed in MBC-
derived DOM after Cr(VI) removal (Fig. 6b).

A series of Kendrick Mass Defect (KMD) analyses were 
performed to identify the major active species reduc-
ing Cr(VI). According to the KMD definition, formu-
las with the same KMD value differ only in multiples of 
the selected mass corresponding to atoms or functional 
groups, such as O, H2, or COOH (Zeng et  al. 2020). 
As shown in Fig.  6c, d, the regular –COO spacing pat-
tern in unsaturated aliphatic compounds and lignin-
like compounds reflected the presence of abundant 
polycarboxylic, conjugated carboxylic, and/or carbox-
ylic acid ester groups in DOM prior to Cr(VI) removal. 
However, the amounts of –COO compounds with low 
DBE values decreased significantly, while some –COO 
compounds with high DBE values were produced after 
Cr(VI) removal. These results indicated that most of the 

molecules were carboxyl-substituted and that decarboxy-
lation may be an important reaction between DOM and 
Cr(VI). A loss of carboxyl groups can lead to the forma-
tion of organic radicals that can sacrifice hydrogen and 
undergo aromatization and condensation to form con-
densed aromatic structures (Waggoner et al. 2015; Wag-
goner and Hatcher 2017), consistent with the increased 
absorbance at 250–450  nm (Fig.  5). Moreover, single 
electron transfer reactions of organic molecules with 
strong reductivity are more favorable under anaerobic 
conditions due to the lower Eh values of the solution 
(Additional file 1: Fig. S6).

In contrast, under aerobic conditions, after reac-
tion with Cr(VI), MBC-derived DOM decreased the 
content of unsaturated aliphatic compounds and con-
densed aromatic compounds and increased the content 
of saturated compounds, lignin-like compounds, and 
aromatic/polyphenol compounds (Fig.  6b). Phenols are 
expected to promote Cr(VI) reduction because of their 
strong correlation with electron donor capacity (Lv et al. 
2018). In this study, a portion of the condensed hydro-
carbons was ionized, and these compounds with high 
DBE values were more prone to attack by ·OH or 1O2 in 
solution (Additional file  1: Fig. S10), leading to the for-
mation of lignin-like or aromatic compounds by ring-
opening. Westerhoff et al. (1999) first reported that ·OH 
tends to attack the aromatic carbon structure in DOM. 
Our recent study also showed that ·OH prefers to react 
with unsaturated bonds through addition reactions dur-
ing oxidation (Zhuo et  al. 2019). Additionally, aliphatic 
and saturated compounds can promote 1O2 formation 
(Zeng et  al. 2020), consistent with the higher EPR sig-
nals of 1O2 in solution after Cr(VI) removal (Additional 
file 1: Fig. S10). Moreover, in DOM-only systems where 
the dissolved organic carbon content  was approximately 
8.0  mg  L−1, the Cr(VI) removal efficiency by MBC-
derived DOM under anaerobic conditions was 3.93 times 
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higher than that under aerobic conditions (Fig. 7a). Fur-
thermore, DOM derived from MBC under anaerobic 
conditions contained higher S/C ratio and oxygen-rich 
functional groups (Additional file 1: Table S3 and Fig. 7b, 
c). These results further demonstrated the high electron 
transfer capability of dissolved PFRs for Cr(VI) reduction 
under anaerobic conditions.

3.5 � Mechanistic insights
The mechanisms of Cr(VI) transformation by MBC-
derived PFRs are shown in Scheme  1. The bulk PFRs 
on MBC showed little effect on Cr(VI) reduction under 
anaerobic conditions, as the PFRs changed from a high 
concentration of phenoxyl radicals with high reducing 
activity to a low concentration of semiquinone radicals 
with low reducing activity. The dissolved PFRs containing 
high contents of phenoxyl radicals released by MBC pro-
moted Cr(VI) reduction. Additional FT-ICR MS analysis 
showed that low O/S (O/S < 4) reductive S-containing 
compounds and –COO in the unsaturated aliphatic and 
lignin-like compounds of the dissolved PFRs dominated 
the reduction of Cr(VI). In contrast, the bulk PFRs on 
MBC promoted the reduction of Cr(VI) by direct elec-
tron transfer or indirect formation of ·O2

− under aerobic 
conditions. However, the reduced Cr(III) could be re-oxi-
dized due to the presence of large amounts of ROS (·OH 
and 1O2) in solution.

4 � Conclusion
This study highlights the importance of α-Fe2O3-
modified biochar in remediating Cr(VI) in anaerobic 
environments and the potential impact of dissolved PFRs 

on Cr(VI) reduction. Compared to unmodified biochar, 
α-Fe2O3 incorporation increased the concentration of 
phenoxyl radicals  by 5.6 times, thereby enhancing Cr(VI) 
transformation. In addition, α-Fe2O3-doped biochar was 
more efficient in reducing Cr(VI) under anaerobic condi-
tions than under aerobic conditions due to the release of 
dissolved PFRs, which have high reactivity and accessibil-
ity. Additional FTICR-MS analysis indicated that reduced 
S compounds (O/S < 4) and carboxylic acid (–COO) 
groups in the unsaturated aliphatic and lignin-like com-
pounds in dissolved PFRs were the potential major active 
species accelerating Cr(VI) reduction under anaerobic 
conditions. In contrast, under aerobic conditions, these 
dissolved PFRs promoted the generation of ·OH and 1O2, 
which in turn re-oxidized the reduced Cr(III). Based on 
our work, we recommend that the reactivity of dissolved 
PFRs in iron-biochar be considered in anaerobic envi-
ronments such as paddy soils. This study provides new 
insights into the role of dissolved PFRs from iron-mod-
ified biochar in promoting Cr(VI) reduction in flooded 
paddy soils.
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Scheme 1  Schematic illustration of Cr(VI) reduction pathways by MBC
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with the split style ‘S4C6T3’ for all EEMs of DOM from the BC and MBC. 
Figure S4. a Cr(VI) removal kinetics, b Cr(III) generation kinetics, c Cr(VI) 
adsorption isotherms, and d Cr(VI) removal and reduction efficiencies for 
BC. Figure S5. a Zeta potential, b XRD, c, d FTIR, e CO2 adsorption, and f 
nanopore size distribution of BC and MBC. Figure S6. a, b pH and c, d Eh 
values of BC and MBC under aerobic and anaerobic conditions. Figure 
S7. XPS spectra of BC. a, b Cr 2p XPS spectra under aerobic and anaerobic 
conditions; c C1s XPS spectra; and d O1s XPS spectra. OA and OS in panel 
d represent  surface-adsorbed oxygen and oxygen banded to the carbon 
surface, respectively. Figure S8. Morphological characterization of bio-
char. a–c SEM images of BC; d–f SEM images of MBC; g energy dispersive 
spectroscopy mapping images of MBC. Figure S9. The concentration of 
Fe(II) released by MBC in the absence of Cr(VI) under aerobic and anaero-
bic conditions. Figure S10. EPR signals of 1O2 and ·OH in the solution of 
BC and MBC. Figure S11. EPR signals of a ·O2

−, b 1O2 and c ·OH in the 
solution of MBC under aerobic conditions with the addition of scavengers 
of BQ, IPA, and FFA, respectively. d The Cr(VI) removal efficiency with dif-
ferent added scavengers. The initial Cr(VI) concentration was 50 mg L−1. 
The initial pH was 3.0 ± 0.1. Figure S12. UV–vis spectra of BC solutions 
under a aerobic and b anaerobic conditions. Figure S13. DOC concentra-
tions in control and Cr(VI) system of a BC and b MBC solutions. Figure 
S14. Fluorescence spectra of BC and MBC solutions before and after Cr(VI) 
removal at 24 h under aerobic conditions. Figure S15. Fluorescence 
spectra of BC and MBC solutions before and after Cr(VI) removal at 24 h 
under anaerobic conditions. Figure S16. EEM of the four fluorescence 
components identified by PARAFAC analysis. Figure S17. The relative 
contributions of each PARAFAC component to BC and MBC. Figure S18. a 
Concentration of dissolvable SO4

2− for BC and MBC. b Molecular intensity 
of CHOS compounds for MBC under anaerobic conditions before Cr(VI) 
removal. Figure S19. Relative changes in compound classes between the 
BC-derived DOM before and after reaction with Cr(VI). The relative change 
was calculated by subtracting the percentage of a compound class in the 
BC-derived DOM from the percentage of the compound class in the DOM 
after reactions with Cr(VI). Table S1. Kinetic parameters of pseudo-first-
order and pseudo-second-order models for Cr(VI) removal by BC and 
MBC under aerobic and anaerobic conditions. Table S2. Parameters of 
Langmuir and Freundlich models for Cr(VI) adsorption by BC and MBC 
under aerobic and anaerobic conditions. Table S3. Elemental, nanopore 
and pH properties of BC and MBC. Table S4. Surface elemental properties 
of biochar samples before and after Cr(VI) removal determined by XPS. 
Table S5. Molecular parameters of BC and MBC before and after Cr(VI) 
removal under aerobic and anaerobic conditions.
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