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ORIGINAL RESEARCH

Machine learning models reveal how biochar 
amendment affects soil microbial communities
Chaotang Lei1,2, Tao Lu1, Haifeng Qian1 and Yuxue Liu2,3*    

Abstract 

The biochar amendment plays a vital role in maintaining soil health largely due to its effects on soil microbial commu-
nities. However, individual cases and the variability in biochar properties are not sufficient to draw universal conclu-
sions. The present study aimed to reveal how the biochar application affects soil microbial communities. Metadata 
of 525 ITS and 1288 16S rRNA sequencing samples from previous studies were reanalyzed and machine learning 
models were applied to explore the dynamics of soil microbial communities under biochar amendment. The results 
showed that biochar considerably changed the soil bacterial and fungal community composition and enhanced 
the relative abundances of Acidobacteriota, Firmicutes, Basidiomycota, and Mortierellomycota. Biochar enhanced 
the robustness of the soil microbial community but decreased the interactions between fungi and bacteria. The 
random forest model combined with tenfold cross-validation were used to predict biomarkers of biochar response, 
indicating that potentially beneficial microbes, such as Gemmatimonadetes, Microtrichales, Candidatus_Kaiserbacteria, 
and Pyrinomonadales, were enriched in the soil with biochar amendment, which  promoted plant growth and soil 
nutrient cycling. In addition, the biochar amendment enhanced the ability of bacteria to biosynthesize and led 
to an increase in fungal nutrient patterns, resulting in an increase in the abundance and diversity of saprophytic fungi 
that enhance soil nutrient cycling. The machine learning model more accurately revealed how biochar affected soil 
microbial community than previous independent studies. Our study provides a basis for guiding the reasonable use 
of biochar in agricultural soil and minimizing its negative effects on soil microecosystem.

Highlights 

•	 Biochar considerably affected the soil community composition of bacteria and fungi.
•	 14 bacterial orders and 7 fungal families were enriched in biochar-amended soils.
•	 Biochar enhanced positive interactions and the stability of soil community.
•	 Biochar led to an increase in soil fungal nutrient patterns.
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1  Introduction
Maintaining soil health is crucial for sustaining terres-
trial life on Earth (Bardgett and Van Der Putten 2014). 
Progressive deterioration of soil conditions and poor 
nutrient use efficiency have severely limited agricultural 
productivity, posing a potential food safety risk (Singh 
et al. 2022; Xu et al. 2022b). To address the various issues 
limiting agricultural productivity, including the nutrient 
imbalance and inefficient water utilization, the design 
and functioning of agroecosystems need continuous opti-
mization (Lal 2013). One potential solution is to return 
organic nutrients in plant residue, such as biochar, straw, 
or compost, back to the soil, which would improve the 
soil properties, especially the soil organic matter content.

For example, biochar, as a carbon-rich material pro-
duced by biomass pyrolysis under oxygen limited con-
ditions, has potential as a soil amendment owing to 
its multiple agricultural and environmental returns (Li 
et  al. 2018a, b), like improving soil fertility and struc-
ture (Ding et  al. 2016), mitigating carbon emissions 
(Lehmann et  al. 2021), immobilizing heavy metals 
(Lu et  al. 2017), and adsorbing or degrading contami-
nants in farmland (Liu et  al. 2018a; Zhu et  al. 2017). 
Biochar is widely applied for soil improvement and 
environmental remediation. For instance, biochar can 

substantially reduce the content of cadmium in various 
plant systems, including soil rhizosphere, plant roots, 
and edible parts (Duan et al. 2023; Liu et al. 2018b). The 
biochar application during the growth stage of rice cul-
tivation has been found to have a sustainable positive 
influence on soil properties and it has been observed to 
enhance rice yield (Liu et al. 2016).

The biochar application in soil can improve its biologi-
cal properties by enhancing the functional activity of soil 
microbial community (Li et  al. 2018a, b; Palansooriya 
et al. 2019). Soil microbial communities play a vital role 
in agricultural ecosystems by determining soil nutrient 
cycling, crop yield, and plant stress resistance (Hartmann 
& Six 2022). The pores in biochar provide a suitable habi-
tat for soil microbes, facilitating their colonization and 
growth in the soil environment (Lehmann et  al. 2011). 
Simultaneously, the biochar application leads to improve-
ments in soil chemical properties like pH and dissolved 
organic carbon content, which in turn promote the pro-
liferation of soil microbial communities (Farrell et  al. 
2013; Muhammad et  al. 2014). However, the effects of 
biochar on soil microbial communities can be neutral or 
negative in some cases (Elzobair et al. 2016). The relation-
ship between biochar and microorganisms, particularly 
the specific roles of biochar in soil microbial processes, 
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has been the focus of many studies, but the mechanisms 
remain unclear (Palansooriya et al. 2019).

The effects on soil microbial communities under differ-
ent biochar treatments have been investigated in many 
independent experiments with the fast development of 
high-throughput sequencing (HTS) technology in the 
last decade. However, contrasting results have been occa-
sionally reported because of the heterogeneity of soils 
from different regions, the diversity of biochar proper-
ties, and the variation in experimental conditions. There-
fore, identifying the key driving factors that regulate the 
soil microecosystem remains challenging due to the lack 
of consensus concerning soil microbiota responses to 
biochar amendment (Xu et al. 2021).

Traditional microbiological methods were often lim-
ited by environmental factors, sequencing tools, and ana-
lytical methods, making it difficult to analyze complex 
microbiomes more closely. Machine learning is becom-
ing an efficient research tool with powerful training and 
prediction capabilities, and it has already been used suc-
cessfully in precision medicine, compound design, and 
bioinformatics  research  (Ban et  al. 2020; Zhang et  al. 
2022). Machine learning can also be used to advance 
microbiome research and further reflect potential com-
munity structure and sensitive microbial population 
structure related to soil properties and soil health. Raw 
sequencing data from public databases and the devel-
opment of machine learning models for microbial eco-
logical research provide the possibility to study the 
alteration rule of soil microbial communities (Lu et  al. 
2023). Machine learning has been applied by case studies 
to explore the correlations between soil microbial com-
munities and environmental pollutants or plant patho-
gens (Palansooriya et  al. 2022; Yuan et  al. 2020; Zhang 
et  al. 2022). However, how biochar amendment affects 
soil microbial communities has rarely been fully revealed 
by machine learning models. Therefore, this study 
aimed to : (i) investigate the responses of microbial com-
munities (bacteria and fungi) to biochar amendment in 
agricultural soils through a global meta-analysis, (ii) pre-
dict the roles of soil microorganisms in biochar-amended 
soil using machine learning models, (iii) explore the 
relationship between biochar-mediated changes in soil 
microorganisms and the role of biochar in agriculture 
and the environment, and (iv) investigate the effects of 
biochar application on soil bacterial metabolic functions 
and fungal nutrient patterns.

2 � Materials and methods
2.1 � Data collection and description
Metadata were collected from 53 studies including 2225 
samples, of which 1547 were bacterial samples and 678 
were fungal samples, obtained by searching the Web of 

Science and the Sequence Read Archive (SRA) database 
for metadata on October 5, 2022. The keywords ‘Bio-
char soil microbial community,’ ‘Biochar soil microbi-
ome,’ ‘Biochar bacteria,’ ‘Biochar fungal,’ and ‘Biochar soil 
structure’ were searched, and the results were compiled 
into a summary data file. The metadata sample covers 
twelve countries on five continents and mainly includes 
samples from China (Additional file  2: Tables S1 and 
S2). The biochar used in these experimental samples was 
either unmodified or added to other fertilizers. Straw, 
wood waste, green waste, and manure were used as raw 
materials for preparing the biochar (Additional file  2: 
Table S3). In this study, all the biochar was alkaline with a 
pH of 9.23 ± 1.09 (Additional file 2: Table S3). After inte-
grating and grouping the metadata, soil biological sam-
ples treated with biochar were defined as the biochar 
group (1059 samples), and biological samples without any 
biochar addition were defined as the control group (756 
samples). This dataset includes the 16S rRNA sequences 
of soils from 23 host plant species. Detailed information 
on the metadata, such as biochar type and crop species, 
is provided in Additional file 2: Tables S1 and S2.

2.2 � Data processing
2.2.1 � Processing of high‑throughput sequencing metadata
The data of microbial HTS were imported into the 
QIIME 2 bioinformatics platform (v2021.08) for further 
analysis according to a standardized workflow (Bolyen 
et al. 2019). The detailed processing procedure was as fol-
lows: The raw data and the manifest file that contained 
the sample IDs, absolute path file, and direction of the 
reads were imported into QIIME 2, and the adapters and 
primer sequences were removed from the reads using 
Cutadapt (Martin 2011). The next workflow was per-
formed using dada2, a plug-in installed in QIIME 2 for 
filtering, deletion, chimerization, double-end merging, 
noise reduction of sequences, and resolution of amplicon 
variants (Callahan et al. 2016). The length of the trimmed 
sample sequence when running dada2 depends on the 
sequencing quality of the sample. If the sequencing qual-
ity of the double-ended sample was poor, we attempted 
to run it again with the single-ended dada2 code to 
ensure that more reads were obtained after running 
dada2. The dada2 data-processing procedure generates 
a list of amplicon sequence variants (ASVs) and feature 
tables. The number of ASVs present in each sample was 
recorded. Representative sequences and ASVs were 
merged according to the merge instructions of QIIME2, 
and each representative sequence was classified using 
the SILVA database (v138.1, https://​www.​arb-​silva.​de/), 
and fungal ASVs were taxonomically classified using the 
UNITE database (v8.3, https://​unite.​ut.​ee/). Characteris-
tic sequences annotated as mitochondria or chloroplasts 

https://www.arb-silva.de/
https://unite.ut.ee/
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were excluded from analysis. Samples with fewer than 
2000 feature sequence reads were also excluded (Zhang 
et  al. 2022). A table of species characteristics was then 
generated. Finally, 412 samples were filtered, and the 
remaining 1813 samples were used for further analysis, 
including 1288 16S rRNA sequencing samples and 525 
ITS rRNA sequencing samples (Additional file 2: Tables 
S1 and S2). The R package Tax4Fun2 (v1.1.5) was used to 
classify microorganisms into different metabolic function 
groups (Wemheuer et al. 2020). For fungal communities, 
FUNGuild (v0.2.0.9000) was used to classify microorgan-
isms into different nutrient pattern groups (Nguyen et al. 
2016).

2.2.2 � Construction and validation of machine learning 
models

To better distinguish the subtle changes in soil bacterial 
and fungal community structure from biochar applica-
tions, and to identify specific microbial taxa, three well-
established machine learning methods including random 
forest (RF) (Liaw and Wiener 2002), logistic regression 
(LR), and support vector machine (SVM) (Cortes and 
Vapnik 1995) were used. The metadata were divided 
into a training set (75%) and a test set (25%) (Xu et  al. 
2022a). The performance of the classifier was evaluated 
by conducting tenfold cross-validation using the train-
ing set. The tenfold cross-validation is an important data 
training tool to solve the problem of model overfitting. 
It randomly divides the training set into 10 subsets, one 
of which is used for validation and the rest for train-
ing, repeating the process 10 iterations. With species 
level as the candidate feature, the optimal parameters 
of the model were selected for hyper-parameter tun-
ing to ensure the accuracy of the model and reduce the 
degree of overfitting of the model. The results of model 
hyperparameterization showed that the random forest 
model was the most accurate in both bacterial and fun-
gal community, with optimal parameters of mtry = 40, 
ntree = 800, and nodesize = 6 for bacterial communities 
and mtry = 20, ntree = 500, and nodesize = 7 for fun-
gal communities (Additional file  1: Fig. S1 and S2). The 
best-performing classifiers were applied to a test set to 
independently verify their predictive ability at the phy-
lum, order, family, genus, and species levels. Based on 
receiver-operating characteristic (ROC) curves and area 
under the curve (AUC) scores, the final best machine-
learning model and the optimal taxonomic hierarchy of 
microorganisms were derived to distinguish the effects of 
biochar on soil microorganisms. An out-of-bag estimate 
of the error rate was used to assess the accuracy of each 
taxonomic levels and determine the optimal taxonomic 
levels for machine learning (Yuan et  al. 2020). Several 
measures were implemented to prevent the model from 

overfitting. For example, microbial species with ambigu-
ous classifications, such as those containing species 
names like ’uncultured’, ’unclassified’, and ’unidentified’, 
were filtered out before a machine learning model com-
bined with tenfold cross-validation was performed.

2.2.3 � Statistical analysis and visualization
The α-diversity indexes (Chao1, Pielou evenness, Shan-
non and richness indices) were generated by using the R 
packages vegan and picante (v4.0.3). Permutational multi-
variate analysis of variance (PERMANOVA) (Adonis test, 
using Bray–Curtis transformed data, permutation = 999) 
was used to distinguish differences in the β-diversity of 
the biochar-treated and untreated soil microbial commu-
nities. Principal coordinate analysis (PCoA) data based 
on the Bray–Curtis distance matrix was performed by 
vegan (v4.0.3) and plotted using ggplot2 (v4.0.3). Global 
sample distribution and stacked and circos plots were 
generated using ggmap, ggplot2, and circlize software 
(v4.0.3). A parallel computational code was constructed 
based on the R package psych (version 2.3.6) to calculate 
the Spearman correlation coefficient of microbial com-
munities. The detailed code is  presented in the Data and 
Codes Availability Statement section of the article. Spear-
man correlation coefficients (|R|> 0.6, p < 0.05) for the 
species were used to construct microbial co-occurrence 
networks. The criterion for the Spearman correlation 
coefficient of the co-occurrence network for biomark-
ers was (|R|> 0.4, p < 0.05), as reported in previous stud-
ies (Yuan et al. 2020). Co-occurrence networks between 
biomarkers and soil microbial communities were visual-
ized in R by calculating Spearman correlation coefficients 
and applying Cytoscape (version 3.9.1). Machine learn-
ing models were executed using the R packages caret 
(v6.0-94) and random forest (v4.7-1.1), and performance 
was evaluated using the R packages pROC (v1.18.0) and 
ROCR (v1.0-11). Annotation of bacterial metabolic func-
tions: the R package Tax4fun2 (v1.1.5). Functional group-
ing of the fungi: the R package FUNGuild (v0.2.0.9000).

3 � Results
3.1 � Microbial community structure affected by biochar 

application
A total of 2225 HTS samples from 53 independent stud-
ies conducted in 12 countries (Additional file  1: Fig. 
S3A, Additional file 2: Tables S1 and S2) were collected, 
encompassing research on the effects of biochar on soil 
microbiota (Additional file 1: Fig. S3C, Additional file 2: 
Tables S1 and S2). The PCoA based on Bray–Curtis dis-
tances showed that the addition of biochar significantly 
affected the bacterial composition (PERMANOVA using 
the Adonis test: R2 = 0.004, p < 0.001; Fig.  1A). The rela-
tive abundances of Acidobacteriota and Firmicutes were 
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higher in the biochar-amended soils, whereas those 
of Proteobacteria and Actinobacteriota were higher in 
the control soils (Fig.  1B). The biochar group had more 

unique genera in the soil bacterial community than the 
control group (Fig.  1C). However, the addition of bio-
char did not significantly change the α-diversity of the 
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Fig. 1  Effect of biochar application on the structure of soil bacterial and fungal microbial communities. A and D Principal coordinates analysis 
(PCoA) based on Bray–Curtis dissimilarity on community structure at genus level (A Bacteria; D Fungi). Statistical significance was evaluated 
via Adonis test. B and E The top 10 relative abundances of soil microbial community phylum level (B Bacteria; E Fungi). G–J represent the alpha 
diversity of soil microbial communities (G and H Bacteria; I and J Fungi) (Statistical significance was determined by Kruskal–Wallis test ns, 
not significant; ***p < 0.001)
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soil bacterial community, as measured by the Shan-
non and richness indices (p > 0.05, Kruskal–Wallis test; 
Fig. 1G, H). Significant difference was also found in the 
fungal composition between soils with and without bio-
char amendment (PERMANOVA using the Adonis test: 
R2 = 0.039, p < 0.001; Fig. 1D). Ascomycota was the main 
phylum constituting the fungal community in both the 
biochar and control groups. Compared to the control 
group, biochar treatment increased the relative abun-
dances of Basidiomycota and Mortierellomycota and 
decreased that of Chytridiomycota and Olpidiomycota 
(Fig. 1E). Biochar produced more specific fungal genera 
than Control, similar to its effect on bacteria (Fig.  1F). 
Moreover, biochar treatment significantly lowered the 
Shannon and richness indices of soil fungal communities 
in the biochar group than in the control group (Kruskal–
Wallis test, p < 0.01; Fig. 1I, J).

3.2 � Co‑occurrence network among microbial communities 
under biochar application

Neutral models were constructed to clarify the potential 
importance of stochastic processes in microbial assem-
bly following biochar application. The results showed 
that the relative contribution of the stochastic processes 
to the microbial community gradually decreased with 
increasing biochar content (Additional file 1: Fig. S4A, B), 
and this trend was more pronounced in the fungal com-
munity assembly than that of the bacteria (Additional 
file  1: Fig. S4C, D). Biochar changed the aggregation 
pattern of soil microbial communities, increasing the 
contribution of deterministic processes to community 
aggregation, suggesting that soil microbial aggregation 
is more substantially influenced by biochar than by sto-
chastic factors.

To reveal the potential effects of biochar addition on 
soil bacterial and fungal communities, a microbial co-
occurrence network was constructed based on Spear-
man’s correlation coefficient (|R|> 0.6, p < 0.05) (Fig.  2). 
Biochar application reduced the number of nodes 
(biochar nodes: 527, control nodes: 561) (Additional 
file  1: Fig. S5; Additional file  2: Table  S4) but increased 
the number of edges (biochar edges: 3107, control 
edges: 3098) (Additional file 1: Fig. S5; Additional file 2: 
Table  S5), indicating that the application of biochar led 
to closer interactions between soil microbial communi-
ties (Fig. 2A, B). Based on the number of nodes and edge 
connections, Ascomycota, Proteobacteria, and Basidi-
omycota were the key taxa driving soil microbial com-
munity interactions, the proportions of which were 
reduced by biochar. However, the proportions of Fir-
micutes, Actinobacteriota, and Bacteroidota increased in 
biochar-amended soils (Fig.  2C). There was no signifi-
cant difference in the degree of co-occurrence of network 

nodes between the biochar and control groups (p > 0.05, 
Kruskal–Wallis test); however, biochar increased the 
overall average degrees (average degrees: biochar 11.79, 
control 11.04) (Fig. 2D), indicating that biochar increases 
the mutualistic relationships among soil microorganisms. 
To compare the strength of the microbial network against 
disturbances in the biochar and control groups, a robust-
ness analysis was conducted by gradually removing the 
nodes. Successive node removals caused a linear decrease 
in the natural connectivity of soil microbial communities 
in both biochar and control groups, with a more obvi-
ous decrease in that of the control group (Slope: − 0.08, 
R2: 0.95; Fig. 2E). This indicates that biochar reduced the 
natural connectivity and enhanced the anti-interference 
ability of the soil microbial communities.

3.3 � Identification of biomarkers of soil microbial 
communities under biochar application

To determine whether the properties of soil bacterial 
and fungal communities could be used as biomarkers in 
the biochar and control groups, three machine learning 
models, RF, SVM, and LR, were constructed. To avoid 
overfitting the model to the limited training dataset, a 
tenfold cross-validation was performed to evaluate the 
prediction accuracy of the model based on different clas-
sification levels. The RF model had the best overall per-
formance at different taxonomic levels for bacteria and 
fungi, with the highest prediction accuracy of 99.54% for 
the classification model constructed at the order level 
of bacterial community, and the prediction accuracy of 
nearly 100% for that at the family level of fungal commu-
nity (Fig. 3A, D). The RF model performed well for both 
test and training set classifications (Additional file 1: Fig. 
S6). The bacterial and fungal AUCs reached 1.000 in the 
training set of the RF model, and the accuracy of the test 
set was also high at 0.812 for bacteria and 0.822 for fungi 
(Fig.  3B, E). These results show that the bacterial and 
fungal models can both accurately predict the effects of 
biochar on soil microbial communities. The most impor-
tant 60 bacterial orders and 40 fungal families were iden-
tified as biomarkers using tenfold cross-validation error 
curves and simplified analysis (Fig.  3C, F; Additional 
file  2: Tables S6 and S7). Among the bacterial biomark-
ers, 14 bacterial orders were significantly enriched in 
biochar-amended soils, with Gemmatimonadetes, Micro-
trichales, Candidatus_Kaiserbacteria, and Pyrinomon-
adales being potentially beneficial (Kruskal–Wallis test, 
p < 0.05; Fig. 3G). Notably, among the fungal biomarkers, 
seven fungal families were enriched in biochar-amended 
soils, among which four belonged to Ascomycota phylum, 
and the abundance of Erythrobasidiaceae significantly 
increased (Kruskal–Wallis test, p < 0.05; Fig. 3H).
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3.4 � Coordination of biomarkers
Co-occurrence networks were used to assess the coop-
erative features among biomarkers, and only those with 
significant correlations were shown (|R|> 0.4, p < 0.05) 
(Fig.  4; Additional file  2: Tables S8 and S9). The results 
showed that biochar made the interaction between the 
biomarkers substantially stronger than in the soil with-
out biochar, and that even biomarkers with lower abun-
dances could play a stronger linkage role. The application 

of biochar reduced the proportion of negatively related 
edges among the biomarkers, indicating that biochar pro-
moted beneficial synergies in soil microbial communities. 
Notably, biochar made Aspergillus and Bacteroides more 
inhibitory to the synergistic ability of the fungal commu-
nities (Fig.  4C, D). In order to further explore the rela-
tionship between biomarkers and soil microorganisms, 
a co-occurrence network between biomarkers and soil 
microbial communities was also constructed. The results 

Fig. 2  Co-occurrence network analysis of microbial communities in the soils of biochar and control groups. A and B Co-occurrence network 
of soil microbial communities (A Biochar, B Control). C Proportion of the most dominant nodes in the co-occurrence network of soil microbial 
communities. D Degree comparison of nodes in co-occurrence networks of soil microbial communities (Kruskal–Wallis test; p > 0.05, ns). E 
Robustness assessment of soil microbial communities. The decreasing trend of natural connectivity is fitted with 80% node loss, and R2 and slope 
are shown in the figure. The smaller the absolute value of the slope is, the more stable the network is (Statistical significance was determined 
by a two-sided t-test, p < 0.001***)
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Fig. 3  Effect of biochar application on the structure of soil bacterial and fungal microbial communities. A and D Out-of-bag (OOB) error 
curves were obtained by ten-fold cross-validation of different machine learning algorithms on different microbial species hierarchies to assess 
the performance of the predictive models (A bacteria; D fungi), with the corresponding microbial species taxonomic hierarchies in the horizontal 
coordinate. B and E AUC and ROC curves of different machine learning prediction models built on microbial communities (B Bacteria, E Fungi). 
C and F The errors of the tenfold cross-validation increase with the number of microorganisms, and the OOB error is calculated in this process 
to determine the number of biomarkers (C Bacterial order level, F Fungal family level). G and H The upper part of the graph shows the relative 
abundance of biomarkers, and the bottom graph shows the importance of biomarkers calculated by the random forest model, rearranged 
in descending order, and colored by taxonomic phylum. (G Bacteria, H Fungi. Statistical significance was determined by Kruskal–Wallis test, 
p < 0.05*)
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showed that although the number of nodes of biochar 
in the bacterial community (365) was less than that in 
the control group (383), the number of edges increased 
by as much as 242, which significantly increased the 

proportion of positive microbial community correlations 
(Biochar positive correlation edges ratio: 98.43%, nega-
tive correlation edges ratio: 1.57%; Control positive cor-
relation edges ratio: 92.24%, negative correlation edges 

Fig. 4  Co-occurrence network of biomarkers in soils of biochar and control groups. A and B show that biochar application is a Co-occurrence 
network for biomarkers of soil bacterial communities. The co-occurrence was constructed by screening 59 bacterial orders based on Spearman’s 
correlation coefficient (|R|< 0.4, p < 0.05). C and D show that biochar application is a Co-occurrence network for biomarkers of soil fungal 
communities. 38 fungal families were screened in soils of biochar applied group based on Spearman’s correlation coefficient (|R|< 0.4, p < 0.05), 
while 39 constructed networks in the control group
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ratio: 7.76%) (Additional file  1: Fig. S7A, B). This phe-
nomenon was more obvious in the co-occurrence net-
work of fungal biomarkers and soil fungal communities. 
The biochar group had a total of 2923 edges, of which 
98.97% were positively correlated, but only 320 nodes 
(Additional file 1: Fig. S7C). The control group had 2237 
edges, of which 98.92% were positively correlated, and 
had more nodes (348) than the biochar group (Additional 
file 1: Fig. S7D). This further suggests that soil microbial 
community altered the relationship between collabora-
tive relationships to promote better uptake of nutrients 
from biochar.

3.5 � Effect of biochar on soil microbial functions
The 16S rRNA gene sequencing data were entered into 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database to evaluate the effects of biochar on bacterial 
function (Fig. 5A). In the present study, more than 37% 
of the sequences were enriched in organismal systems, 
followed by metabolism, which accounted for more 
than 28.9% of the sequences (Additional file  1: Fig. S8). 
However, there was no visible difference in the soil bac-
terial function between the biochar and control groups. 
Changes in the endophyte functions of soil fungal com-
munities after biochar application were predicted using 
FUNGuild. Fungal endophytes were identified as prob-
able and highly probable factors in this study. The 

results showed that the fungal trophic patterns could be 
divided into seven groups: symbiotrophs, saprotrophs, 
pathotrophs, pathotroph-saprotrophs, pathotroph-sym-
biotrophs, saprotroph-symbiotrophs, and pathotroph-
saprotroph-symbiotrophs (Fig.  5B). Saprotrophs and 
saprotrophic symbiotrophs were the dominant trophic 
modes of soil fungal communities. Biochar increased the 
proportion of soil fungal endophytes in the trophic mode 
of saprotrophs and decreased the proportion of soil fun-
gal endophytes in the saprotroph-symbiotrophs mode 
(Fig. 5C).

4 � Discussion
Biochar has attracted heightened attention in recent 
years owing to its role in improving soil properties, as 
well as in mitigating climate change and environmental 
pollution (Agarwal et al. 2022; Hossain et al. 2020). The 
role of biochar in affecting soil microbial communi-
ties provides multiple agricultural and environmental 
benefits (Chen et al. 2019; Xu et al. 2023). In this study, 
machine learning was integrated with metadata to eluci-
date the mechanisms underlying the effects of biochar on 
soil microbial communities on a global scale. This inves-
tigation focused on assessing the specific impacts of bio-
char on the diversity, composition, and function of soil 
microbial communities.

Fig. 5  Bacterial metabolic function and fungal nutrient patterns in soils of biochar and control groups. A Circular heatmap demonstrating 
the different of relative abundance of soil bacterial functions in biochar and control groups. B Chord diagram demonstrating the composition 
of fungal trophic patterns. C Relative abundance of seven trophic modes of fungi
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4.1 � Biochar affects soil microbial community structure 
and function

The α-diversity of soil fungal communities in the bio-
char group was significantly higher than that in the con-
trol group. However, biochar treatment did not cause 
statistically significant difference in the α-diversity of 
soil bacterial community, which was in accord with a 
previous study in which biochar had a greater effect on 
soybean inter-root soil fungal diversity than on bacte-
rial diversity (Gao 2021). This may be due to the differ-
ence in carbon utilization of the major components of 
biochar by bacteria and fungi, with most fungi acting as 
decomposers in the soil and being more capable of uti-
lizing the carbon composition of biochar than bacteria 
(Lehmann et  al. 2011; Liu et  al. 2022, 2017). This could 
be because the raw materials for biochar production are 
mostly composed of cellulose, hemicellulose, and lignin, 
and thus  the prepared biochar often contains a certain 
amount of incomplete carbonized organic matter, which 
brings more benefits  to the growth of saprophytic fungi 
than bacteria (Dai et  al. 2021). The differences between 
biochar and control groups were significantly higher than 
those within groups (PERMANOVA: p < 0.001) for both 
bacterial and fungal communities, indicating that the bio-
char treatment does significantly change the soil micro-
bial composition, which corroborates  previous studies 
(Bello et al. 2021; Xu et al. 2023). Proteobacteria, Acido-
bacteriota, Actinobacteria, Ascomycota, Basidiomycota, 
and Mortierellomycota are the primary phyla found in 
agriculture soils. Biochar was previously found to upreg-
ulate certain beneficial bacterial phyla such as Acido-
bacteria, which play an important role in regulating soil 
community biogeochemical cycles (Kalam et  al. 2020). 
Basidiomycota and Mortierellomycota were enriched in 
soils amended with biochar (Fig.  1). The fungal phylum 
Basidiomycota was a representative group of oligotrophic 
fungi, which plays a crucial role in the decomposition of 
complex organic matter in soils (Li et al. 2021; Yu et al. 
2021). It breaks down the large molecular carbon com-
pounds present in biochar into smaller molecules that 
are more easily absorbed by microorganisms and crops, 
thereby facilitating soil carbon nutrient cycling (Louca 
et al. 2018; Xu et al. 2021). Mortierellomycota is adapted 
to growing in nutrient-rich soil environments, which 
suggests that the application of biochar increases soil 
nutrients (Yu et  al. 2020). Furthermore, biochar led to 
a considerable change in the trophic status of soil fungi 
and an obvious increase in the proportion of saprophytic 
fungi, among which the genus Lophiostoma contains a 
variety of beneficial endophytic bacteria that are present 
in biochar amended soils (Bai et al. 2020). Soil metabo-
lites are important carbon sources for microbes (Swen-
son et  al. 2018). The addition of biochar to oily sludge 

leads to an increase in the abundance of bacterial genes 
related to carbohydrate metabolism and xenobiotic bio-
degradation and metabolism (Shi et  al. 2022). Bacterial 
carbon metabolism  also increased after biochar was 
added to inter-root soils with polycyclic aromatic hydro-
carbon contamination (Li et  al. 2020). Our study also 
showed similar results: biochar led to changes in the soil 
bacterial functions including carbohydrate metabolism, 
and the global and overview maps increased by 0.03% 
and 0.10%, respectively (Fig. 5A). However, the effect of 
biochar on the bacterial metabolic function was not as 
great as expected, which may be due to the differences 
in the amount, source and properties of biochar. Fungal 
and bacterial communities were both affected by biochar 
treatment, with biochar affecting fungi to a greater extent 
in terms of α-diversity, community composition, species 
interactions, and shifts in trophic patterns.

4.2 � Biochar promotes cooperation rather 
than competition among soil microbes

Co-occurrence network analysis provides a visualization 
of the interaction intensity between microbial communi-
ties and allows the evaluation of the soil micro-ecology 
stability (Ma et  al. 2020). Biochar treatment increased 
the proportion of positive correlations and the num-
ber of edges in the microbial co-occurrence network, 
but decreased the number of nodes. This indicates that 
biochar promotes cooperation among microorganisms 
rather than competition to drive the uptake of biochar 
nutrients (Fig.  2A,B). Here we speculate that this phe-
nomenon may be attributable to mutually beneficial 
interactions between fungal communities over a longer 
period of co-evolution (Zhang et  al. 2014). This expla-
nation was also confirmed in our study, as Ascomycota 
was a key taxonomy forming the soil microbial network 
in the biochar group, but with a downregulated propor-
tion of soil nodes in the control group. This may be due 
to changes in the microbial pattern of resource acquisi-
tion and the trophic status of Ascomycota caused by 
the biochar. Biochar can alter the soil microenviron-
ment, and the extent of this alteration depends largely 
on the characteristics of biochar. For example, the pH 
of biochar prepared at high temperatures is alkaline, 
and previous researchers have observed that high pH 
levels improve soil characteristics required for micro-
bial colonization (Chen et  al. 2017). However, certain 
microorganisms do not adapt to this improvement, 
which also leads to a decrease in their abundance in the 
soil environment. Actinomycetes prefer acidic and neu-
tral pH environments, and higher pH biochar inevitably 
reduces the abundance of actinomycetes (Xu et al. 2021). 
The high porosity and high surface area of biochar pro-
vide a favorable habitat for soil microorganisms. Water 
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molecules and soluble substances involved in microbial 
metabolism (such as acids, alcohols, aldehydes, ketones, 
and sugars) are stored in the mesopore and micropore 
of biochar. Therefore, when biochar  is applied to a soil 
environment, it can regulate the abundance and activity 
of certain microorganisms that can take advantage of the 
physical properties of biochar (Palansooriya et al. 2019). 
Nutrients from biochar are also key factors in altering 
the structure and abundance of soil microbial communi-
ties, and increased soil phosphorus input due to biochar 
application leads to a subsequent decrease in fungal spe-
cies (Nie et al. 2018).

In summary, the application of biochar in soil increased 
the activity, diversity, and abundance of soil microor-
ganisms, and enhanced the ability of microorganisms to 
cooperate with each other. However, the physicochemical 
properties of biochar may inhibit the abundance of cer-
tain microorganisms, which make up only a small frac-
tion of the overall microbial community. This results in 
diminished interactions of certain microorganisms in the 
soil environment.

4.3 � Biochar enriches biomarkers with ecological functions
Machine learning further revealed the response patterns 
of the soil microbial communities to biochar application, 
considerably narrowing the search for potentially ben-
eficial bacteria. Previous studies have successfully used 
RF models to identify biomarkers (Xu et al. 2022a; Yuan 
et  al. 2020; Zhang et  al. 2022). In the present study, RF 
also outperformed SVM and LR and identified 60 bacte-
rial and 40 fungal biomarkers. Among them, 14 bacterial 
orders and 7 fungal families were enriched in biochar-
amended soils, including potentially beneficial orders 
that promote plant growth and soil nutrient cycling, 
such as Gemmatimonadetes, Microtrichales, Candida-
tus_Kaiserbacteria, and Pyrinomonadales (Cai et  al. 
2020; Mujakić et  al. 2022; Paulraj et  al. 2022; Wu et  al. 
2022; Xu et al. 2023). Notably, biochar enriches methano-
genic-related microorganisms, such as the S085 genera of 
Dehalococcoidia and Beggiatoales (Paoli et al. 2022; Sax-
ton et al. 2016). Micrococcales is adapted to arid habitats, 
but its abundance decreased in biochar-applied soils (Sun 
et al. 2020). This indicates that biochar allows the soil to 
increase its water-holding capacity. Pirellulales  lives in 
low-oxygen environments, and the pore structure of bio-
char allows more oxygen to circulate in the soil, leading 
to a decrease in the abundance of Pirellulales (Dedysh 
et  al. 2020). Burkholderiales is widely reported to be a 
plant probiotic (Banerjee et al. 2018), and its abundance 
decreased in biochar-amended soils, yet it maintained a 
high relative abundance of 6.35%. Among the fungal bio-
markers, Nectriaceae was enriched in biochar-amended 
soils in previous studies, where an increase in pH led 

to an increase in their abundance (Yang et  al. 2019). 
There was also a strong response of Umbelopsidaceae to 
changes in soil pH (Rincón et  al. 2015). Erythrobasidi-
aceae was significantly enriched in the biochar-amended 
soils (Adonis test: p < 0.001); however, its function has 
not been reported in detail or systematically (Peršoh 
et  al. 2013). Helotiaceae includes many dark-isolated 
endophytes, a diverse group of filamentous ascomycetes 
commonly found in soils that act as saprophytic fungi 
to promote soil nutrient cycling (Detheridge et al. 2016; 
Herzog et al. 2019). The Helotiaceae family contains phy-
topathogenic bacteria that can cause serious plant dis-
eases, such as dieback in ash trees (Griffiths et al. 2020). 
The biochar treatment greatly reduced the abundance of 
Helotiaceae, thereby reducing disease. Overall, it is con-
sidered that biochar has a positive influence on the soil 
micro-ecology in terms of its ability to improve soil nutri-
ent accessibility and suppress plant diseases, which is 
mainly reflected in the enhanced positive interactions of 
soil microbes and the stability of soil community struc-
ture, as well as the reduced proportion of plant patho-
gens in the soil microbial community.

5 � Conclusions
Through metadata analysis, our study showed that the 
application of biochar in agricultural land improves the 
soil microbial microenvironment, stimulates microbial 
activity, improves microbial interactions, and enhances 
microbial stability. Although large amounts of data could 
reduce the heterogeneity of individual experiments and 
help explain the rule of biochar shaping soil microorgan-
isms, the decisive role of environmental factors, such as 
the physical and chemical characteristics of regional soil 
and certain structures of indigenous microorganisms, 
should be fully considered when carrying out agricultural 
production in a certain area. The biomarkers identified 
in this study have different ecological functions and their 
enrichment effects in biochar-amended soils require fur-
ther study, especially the experimental verification should 
be strengthened in future work. In addition, the combi-
nation of biochar with key microorganisms may further 
promote soil improvement and plant growth.
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