
Khalili et al. Biochar             (2024) 6:6  
https://doi.org/10.1007/s42773-023-00286-y

ORIGINAL RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Biochar

Biochar: a high performance and renewable 
basic carbocatalyst for facilitating room 
temperature synthesis of 4H‑benzo[h]chromene 
and pyranopyrazoles in water
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Abstract 

This study has introduced a pioneering methodology by employing biochars as  a basic carbocatalyst in the context 
of multicomponent reactions. Biochars were produced from different manures and organic wastes using the pyrol-
ysis-carbonization process under limited oxygen conditions. The prepared biochars were well characterized using 
Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectros-
copy (EDX), Brunauer–Emmett–Teller (BET) analysis, and powder X-ray diffraction (XRD). The chemical characteristics 
and potentiometric titration analysis provide compelling evidence of the intriguing basicity properties exhibited 
by the prepared biochars. The pH values, ash content, and potentiometric titration results confirmed the exceptional 
basicity characteristics of cow manure biochar formed at 600 oC (CB600), establishing it as the most basic carbocata-
lyst in this study. Encouraged by these initial results, the activity of the biochars as basic carbocatalysts was evalu-
ated in multicomponent synthesis of 4H-benzo[h]chromene and pyranopyrazoles and 600 °C  exhibited the most 
pronounced catalytic performance owing to its superior total basicity. By these findings, it can be asserted that this 
work introduces the groundbreaking application of biochars as potent basic carbocatalysts for the multicomponent 
synthesis of structurally diverse heterocycles. Unveiling the vital basic role of biochars will definitely open up new 
opportunities in organic chemistry and provide salient features for environmentally-friendly chemistry, including easy 
retrieval, non-toxicity, and widespread accessibility.

Highlights 

•	  Biochars were introduced as potent basic carbocatalysts for multicomponent synthesis of heterocycles.
•	 Quantitatively assess basicity of the prepared biochars was performed using potentiometric titration.
•	 The activity of  the biochars as basic carbocatalysts was evaluated in multicomponent synthesis of chromenes 

and pyranopyrazoles.
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Graphical Abstract

1  Introduction
In order to ensure a sustainable future for both society 
and the scientific community, we must prioritize the 
use of renewable feedstocks, mainly due to the escalat-
ing concerns pertaining to environmental pollution and 
the growing severity of energy shortages (Albers et  al. 
2016). Biomass obtained from urban, domestic wastes 
and bio-wastes is a naturally plentiful resource with 
enormous potential as a source of raw materials for 
the generation of power, heat, and value-added chemi-
cals with minimum gas emissions (Qian et  al. 2015). 
Pyrolysis and gasification are commonly employed 
techniques to convert  biomass to solid carbon residue 
called biochar (Shan et  al. 2020; Zaimes et  al. 2015). 
Recently, microwave-assisted pyrolysis (MWP) has 
emerged as a viable and eco-friendly technology for 
the efficient biochar production from biomass (Li et al. 
2016). Biochar resulting from the thermal decomposi-
tion of biomass is a low-cost, carbon-dense substance 
that is considered in a sustainability context, since it 
enhances soil quality, effectively removes both organic 
and inorganic contaminants, and promotes carbon 
sequestration (Kookana et  al. 2011; Tang et  al. 2013; 
Xiong et al. 2017). Moreover, due to its economic syn-
thesis (Jiang et al. 2023; Oni et al. 2019; Owsianiak et al. 
2021), maneuverability characteristics, and sustain-
ability benefits, biochar applications have recently been 
expanding to high-end industries including the energy 

and healthcare sectors (Ok et  al. 2015). Considering 
these important uses, biochar chemistry has recently 
attracted impressive public and scientific attention, 
so the discovery of new applications is still very much 
in demand in both academia and industrial research. 
Despite all these applications and unique properties 
such as the abundance of surface functional groups, 
easily tunable surface functionality and porosity, the 
handling of biochar or modified biochar in the field of 
catalysts has been studied in a limited area:   biodiesel 
production (Azman et  al. 2023; Bazargan et  al. 2015; 
Chong et  al. 2021; da Luz Corrêa et  al. 2023; Jayaraju 
et  al. 2022; Li et  al. 2014; Maroa and Inambao 2021; 
Tobío-Pérez et al. 2022; Velusamy et al. 2021) removal 
and/or mitigation of tar (Kastner et al. 2015; Shen and 
Fu 2018; Tian et  al. 2021; Tian et  al. 2022a, b), syngas 
production (Wang et al. 2022; Xu et al. 2022; Yang et al. 
2022), and bio-oil upgrading (Liu et al. 2021; Qiu et al. 
2020; Wu et  al. 2021). Besides, there have been a few 
reports concerning the use of biochar as a platform for 
organic transformations or catalyst support (Chhabra 
et  al. 2022; Dong et  al. 2022a, b; Jenie et  al. 2020a, b; 
Lyu et al. 2020; Moradi and Hajjami 2022; Sadjadi et al. 
2019a, b; Steingruber et  al. 2020; Tian et  al. 2022a; 
Vidal et  al. 2019; Vidal et  al. 2021; Wang et  al. 2023a; 
Zhang et  al. 2022b) Compared to other carbocatalysts 
widely utilized in organic synthesis, such as carbon 
nanotubes (Corcho-Valdés et al. 2022; John et al. 2012), 
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carbon nanofibers (Kulkarni et  al. 2022; Ruiz-Cornejo 
et al. 2020), graphene (Pandey et al. 2023; Zhang et al. 
2022a), graphene oxide (GO) (Brisebois and Siaj 2020; 
Gao et al. 2022), and carbon nitrides (Suja et al. 2023; 
Wang et al. 2023b), the catalytic potential of biochar is 
relatively nascent. While these aforementioned carbon-
based catalysts have demonstrated promising catalytic 
applications, biochar’s catalytic uses are still in the early 
stages of development and to achieve commercializa-
tion, further research and development are needed for 
practical applications in diverse catalytic processes. So, 
extending the current approaches towards enhancing 
the progress of application-oriented biochar catalysts 
within the field of organic transformations is highly 
advantageous.

In the last decade, the concept of multicomponent 
reactions (MCRs) has garnered considerable enthu-
siasm within the scientific community owing to their 
exceptional synthetic efficiency and great atom econ-
omy (Cioc et al. 2014; Veisi et al. 2023). MCR approach 
offers a highly flexible synthetic toolbox that enables 
access to a library of substituted heterocyclic systems 
and complex molecules in a convergent way (Chen 
et  al. 2019; Ibarra et  al. 2018). It is obvious that the 
implementation of such strategies using green chemis-
try related materials such as natural acid/base catalysts 
(Ballini et  al. 2000; Gupta and Paul 2014; Mohamad-
pour 2020; Patil et  al. 2012), biopolymers (Shaabani 
and Maleki 2007), carbonaceous catalysts (Rajesh et al. 
2015; Singha et al. 2022), and biocatalysts (Jumbam and 
Masamba 2020) would allow the minimization of both 
waste generation and human labour costs (Jacobi von 
Wangelin et al. 2003).

Given the beneficial features associated with biochar 
as a safe carbocatalyst as well as our current interest in 
using carbon-based materials in organic synthesis (Khal-
ili et al. 2020, 2021, 2019, 2022; Rousta et al. 2021), herein 
we disclose our efforts on biochar-mediated direct mul-
ticomponent synthesis of 4H-benzo[h]chromenes and 
pyranopyrazoles. Chromenes and pyranopyrazoles con-
stitute an extremely important class of fused heterocy-
cles due to their broad range of potential pharmaceutical 
and biological properties (Gourdeau et  al. 2004; Kumar 
et  al. 2012; Mamaghani and Hossein Nia 2021; Prabha-
kara et al. 2015). It is noteworthy that biochar has been 
utilized as a basic carbocatalyst for the multicomponent 
synthesis of structurally diverse heterocycles with satis-
fied yields, operational simplicity, and good tolerance. 
This appears to be the first report of such an application. 
The established catalytic system not only opens an ave-
nue to access 4H-benzo[h]chromenes and pyranopyra-
zoles under mild conditions, but also exhibits numerous 
distinctive attributes associated with green organic 

synthesis such as recyclable catalyst and easy product 
separation.

2 �  Experiment
2.1 � General: biochar production
Cow and sheep dung, licorice root pulp, and compost 
made from municipal garbage were all acquired from 
active animal husbandries in Darab, and Zarghan town, 
Fars province, respectively. Following collection, the raw 
materials underwent a 48-h air-drying period, were sub-
sequently ground using a high-speed mechanical grinder, 
and then placed in an oven for 24 h at 105 °C. The pow-
dered biomass underwent slow pyrolysis in an electric 
muffle furnace (Shimifan, F47) at   the temperatures of 
300 and 600 °C under limited oxygen conditions. The 
temperature was gradually increased from room temper-
ature by 5  °C per minute until it reached the final tem-
perature, which was maintained for 2 h to facilitate slow 
pyrolysis. The produced biochars were allowed to cool 
slowly and passed through a 0.5 mm sieve for uniform-
ity (Boostani et  al. 2019). The biochars obtained from 
the pyrolysis of cow manure at 300 °C and 600 °C, sheep 
manure at 300 °C and 600 °C, licorice pulp at 300 °C and 
600 °C and municipal compost at 300 °C and 600 °C were 
denoted as CB300, CB600, SB300, SB600, LB300, LB600, 
MB300 and MB600, respectively.

General procedure for synthesis of 4H-benzo[h]
chromenes: A mixture of aldehyde (1 mmol), malon-
onitrile (1 mmol), α-naphthol (1 mmol) and CB600 (10 
mg) in H2O (2 mL) was stirred at room temperature. 
After being stirred at room temperature (optimal tem-
perature, Table  3) for 10 h, the reaction mixture was 
filtered through a pad of Celite to remove the CB600. 
The removal of the solvent under vacuum, followed by 
recrystallization with ethanol/water, afforded the pure 
4H-benzo[h]chromene derivatives.

General procedure for synthesis of pyrano[2,3-c]pyra-
zoles:  Malononitrile (1.1 mmol), ethylacetoacetate (1 
mmol), hydrazine hydrate (1 mmol) and CB600 (10 mg) 
were added to a solution of aldehyde (1 mmol) in EtOH 
(2 mL) at room temperature.  After stirring at room 
temperature for 12 h, the resulting mixture was  sub-
jected  to  filtration  via a pad of Celite to remove the 
CB600.  The removal of the solvent under vacuum, fol-
lowed by recrystallization with ethanol/water, afforded 
the pure pyranopyrazoles.

Potentiometric titration of biochar samples: In order to 
obtain the basicity constant, 1 mg of biochar sample was 
dispersed in 1.0 mL of distilled water as the stock solu-
tion. For potentiometric titration, 300 µL of stock solu-
tion of dispersed biochar dissolved in 8 ml distilled water 
that  contained  0.1 M KCl to   keep the ionic strength 
constant. The aqueous dispersion of biochar sample was 
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titrated with small increments of HCl 0.1 M, under stir-
ring. The pH was monitored by a pH meter after each 
addition of titrant. The new portion of titrant was added 
when the pH was constant for ∼ 20 s. Experimental val-
ues of pH vs volume, were fitted by Curve Expert pro-
gram to obtain the pH at the midpoint of equivalent.

3 � Results and discussion
The biochars were obtained from local sources (cow 
and sheep manure) and organic wastes (licorice pulp) 
through a slow pyrolysis process. Initially, the biomasses 
were air-dried, crushed using a mechanical grinder and 
then passed through a 2 mm sieve. Under low oxygen cir-
cumstances, slow pyrolysis was used to produce the bio-
chars.(Additional file  1, Fig. S1) The prepared biochars 
were subjected to characterization through a series of 
analytical techniques, such as Fourier transform infra-
red (FT-IR) spectroscopy, energy-dispersive X-ray spec-
troscopy (EDX), scanning electron microscopy (SEM), 
and X-ray diffraction (XRD). The FTIR of the produced 
biochars (400–2000 cm−1) was carried out and the pure 
CB300 powder exhibited characteristic absorption bands 
of -COOH groups (1612 cm−1), lignin and cellulose func-
tionalities (~ 1578, 1172 and 1016 cm−1) (Boeriu et  al. 
2004; Keiluweit et  al. 2010), Si–O (1159 cm−1), calcium 
carbonate (1788, 1440, 872 and 712 cm−1) (Bruckman 
and Wriessnig 2013), and phosphate functional groups 
in calcium hydroxyapatite (1098, and 618 cm−1) (Trinku-
naite-Felsen et  al. 2014) (Fig.  1). Whereas, the CB600 
exhibited much lower absorption bands of higher inten-
sity that pertained to –COOH groups, lignin and cellu-
lose functionalities, as well as phosphates. In accordance 
with the previous findings (Cao and Harris 2010), for 
the sample annealed at 600 °C (CB600; increasing char-
ring temperature), the CaCO3 peaks steadily increase in 
intensity, mainly due to the increasing amounts of crys-
talline calcium carbonate in the sample (Boostani et  al. 
2021). A quite similar pattern of absorption bands was 
observed for the other biochars.

The SEM images of different biochars are depicted in 
Fig.  2. For CB300, the image taken at ~ 1000 magnifica-
tion showed disordered pores in the structure of biochar 
while at ~ 3000 magnification of CB600, the SEM image 
showed  clearly more ordered pores in its structure. The 
images obtained for LB600 and MB600 exhibited a con-
spicuous presence of well-defined tubular pores that were 
closely adhered to the walls of specific particles. As can be 
seen from these SEM images, the macro-cellular organi-
zation of the original plant tissues is still discernible. It 
was also revealed that increasing pyrolysis temperature 
led to  the increase in porosity biochar structure. This is 
due to the biochar being formed at higher temperatures 
having less volatile organic content and more minerals 

and black C structures crystallize (Cao and Harris 2010; 
Ma et  al. 2016). Furthermore, it has been reported that 
increasing the pyrolysis temperature results  in the dehy-
droxylation and the removal  of aliphatic groups within 
the biochar structure, subsequently facilitating pore for-
mation through the concurrent formation of fused-ring 
structures (Bagreev et  al. 2001; Kloss et  al. 2012) The 
structural morphology of biochars at 300 °C was rela-
tively compact. The SEM–EDX of all biochars revealed 
rich amount of mineral elements (Additional file  1, Fig. 
S2).

The chemical structure and the crystallinity of the syn-
thesized biochars were further characterized by X-ray 
powder diffraction (XRD) as shown in Fig.  3. The XRD 
patterns of the CB300 and CB600 display peaks corre-
sponding to the quartz (SiO2) crystalline compounds at 
around 2θ = 21.2, 26.5 and 51.7 (Bayarjargal et  al. 2021; 
Han et  al. 2017). The identification of quartz serves as 
clear evidence that the original feedstocks were abundant 
in Si, which is further supported by the Si–O–Si stretch-
ing band observed in the FT-IR spectra. The X-ray dif-
fraction spectra of SB, LB, and MB biochars exhibited 
identical peaks.

The identification of calcite (CaCO3) in biochars pro-
duced at two different temperatures was determined 
through the observation of peaks at 2θ =  ~ 28, ~ 39.5, 

Fig. 1  FTIR spectra of CB600, CB300, SM300, SM600, LB300, LB600, 
MB300 and MB600
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and ~ 47, as reported in previous studies (Kong and Liu 
2019; Xie et  al. 2022; Zhang et  al. 2021). The presence 
of Ca3(PO4)2 was confirmed through the observation of 
two peaks at 2θ = 37° and 68°, which were consistent with 
literature. (Yu et  al. 2021) Unknown and smaller weak 

peaks indicated the miscellaneous inorganic compounds. 
The chemical characteristics of the prepared biochars 
were also investigated using established laboratory meth-
ods. The pH values were measured in a suspension con-
taining a 1:10 ratio of solid to distilled water, while the 

Fig. 2  SEM images of cow manure biochars produced at 300 °C (CB300), 600 °C (CB600), sheep manure biochar at 300 °C (SB300), 600 °C (SB600), 
licorice root pulp biochars at 300 °C (LB300), 600 °C (LB600), and municipal compost biochars at 300 °C (MB300) and 600 °C (MB600)
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CHN Analyzer was utilized to determine the percentage 
of total carbon (C), hydrogen (H), and nitrogen (N).

As shown in Table 1, all of the prepared biochars had 
a H:C mole ratio of 0.7 or less and 50% or greater total 
carbon content, making them all sufficiently pyro-
lyzed to qualify as biochars (According to the EBC and 

International Biochar Initiative (IBI)) (Comparison of 
European Biochar Certificate Version 4. 8 and IBI Bio-
char Standards Version 2. 0 European Biochar Certificate 
first publication March 2012 2012) The H:C mole ratio of 
the biochars also provides information about their aro-
maticity and degree of carbonization (Krull et al. 2021). A 
lower value of H:C mole ratio indicates a greater degree 
of aromatic condensation and carbonization. Among the 
studied biochars, CB600 and MB600 had the lowest H:C 
ratio and were the most carbonized biochars. By compar-
ing the CB300 and CB600, it is evident that an increase 
in pyrolysis temperature from 300°C to 600°C results in 
a proportional increase in the degree of carbonization, as 
well as the C/H ratio. Comparing the pH values of CB300 
and CB600 shows that with the increase of charring tem-
perature, pH value elevates from 10.73 to 11.51. The pH 
rise can be attributed to the pyrolysis-induced increase in 
the amount of crystalline calcium carbonate, ash content, 
and the loss of surface acidic functional groups (Reeves 
et al. 2007). Such findings are supported by increasing the 
intensity of CaCO3 peaks in IR spectrum of CB600. The 
findings indicate that the biochars had an alkaline pH, 
with values ranging from 9.38 to 11.51; the CB600 had 
the highest pH value (11.51), while the LB600 had the 
lowest (9.38). Generally, animal manures typically have 
substantially lower C content because they have a much 
larger percentage of inorganic components (ash content) 
(Boostani et al. 2018; Ro et al. 2010). The ash content of 
cow manure (CB) and sheep manure (MB) biochars was 
found to be higher (48.86% and 54.26%)  than that of 
licorice pulp (LB) biochar (23.4%), therefore it is expected 
that CB and SB show more basic character than LB (as 
a plant biomass). The texture features (surface area) 
of the produced biochars were also analyzed using the 
Brunauer–Emmett–Teller (BET) method (N2 as a sorb-
ate gas). Based on the nitrogen quantity adsorbed at 
different relative pressures, the surface areas of CB300, 
CB600, SB600, LB600 and MB600 were found to be 67.6, 
85.4, 35.2, 51.5 and 78.8 m2g−1, respectively. On compar-
ing SBET of CB300 and CB600, it was clear that biochar 
surface area is greatly affected by the pyrolysis tempera-
ture: At a low temperatures (e.g., 300 °C), the surface 
area of cow manure biochar is less than 68  m2g−1. When 
the temperature is increased to 600 °C, this surface area 
increases sharply to more than 85   m2g−1 (Brown et  al. 
2006; Liu et al. 2015). To support the obtained chemical 
properties and quantitatively assess the basicity of the 
prepared biochars, a series of potentiometric titration 
was performed (Dimiev et  al. 2013). According to the 
protocol, the stock solution of samples (1 mg of CB300, 
CB600, SB600, LB600 and MB600 in 1 mL of distilled 
water) containing 0.1 M KCl was titrated with small 
increments of HCl 0.1 M, under stirring. The additional 

Fig. 3  Comparison of the XRD patterns of cow manure biochars 
produced at 300 °C (CB300), 600 °C (CB600), sheep manure biochar 
at 300 °C (SB300), 600 °C (SB600), licorice root pulp biochars at 300 °C 
(LB300), 600 °C (LB600), and municipal compost biochars at 300 °C 
(MB300) and 600 °C (MB600). Q, C, and P represents features of quartz, 
calcite and calcium phosphate

Table 1  Chemical properties of the biochars

CB300  denotes cow manure biochar produced at 300 °C; CB600 denotes cow 
manure biochar produced at 600 °C; SB600 denotes sheep manure biochar 
produced at 600 °C; LB600 denotes licorice root pulp biochar produced at 600 
°C; MB600 denotes municipal compost biochar at 600 °C

 Properties CB300 CB600 SB600 LB600 MB600

H:C molar ratio 0.50 0.10 0.25 0.20 0.05

pH 10.73 11.51 10.32 9.38 10.64

Carbon (%) 53.14 57.30 52.74 72.92 52.76

Hydrogen (%) 2.63 0.82 1.19 1.34 0.34

Nitrogen (%) 3.05 2.12 2.84 2.65 2.81

Ash content (%) 25.32 48.86 54.26 23.43 41.97

SBET (m2 g−1) 67.6 85.4 35.2 51.5 78.8
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volume of titrant was added at the point of pH stabili-
zation, which lasted approximately ∼20 s. Experimen-
tal values of pH vs volume were fitted by Curve Expert 
program to obtain the pH at the midpoint of equivalent. 
Table 2 and Fig. 4 present the obtained basicity constants 
of the samples.

As evident from Table 2, typical data obtained for bio-
char titrations exhibit a substantial correlation with the 
chemical properties of the biochars. Among the studied 
materials, CB600 exhibited the most basicity as well as 
the largest pH.

After the characterization of the biochars, the catalytic 
activities of these carbon-based materials were exam-
ined in the multicomponent synthesis of 4H-benzo[h]
chromenes. At the outset of this study, work on the 
optimization of the reaction conditions was focused on 
the catalyst and the solvent, using a model reaction of 
α-naphtol 1 (1.0 mmol), malonitrile 2 (1 mmol), and ben-
zaldehyde (1 mmol), and the results are summarized in 
Table 3.

The control experiment showed that no product was 
detected over 24 h in the absence of the biochars under 
solvent-free conditions (Table 3, entry 1). The same result 
was observed when the model reaction was carried out 
without the biochars in H2O as solvent (entry 2). Inter-
estingly, a 56% yield of 4a was achieved when the reaction 
was carried out by using 5 mg of CB300 (cow manure 
biochar produced at 300 °C) (entry 3). We then studied 
the influence of various biochars (Table  3, entries 4–7) 
and found that CB600 was superior to SB600, LB600, and 
MB600. An increase in CB600 loading to 10 mg resulted 
in a notable enhancement of the yield of product 4a, as 

evidenced in entry 8 (87%). An important advantage of 
this simple catalytic system is that the model reaction 
also proceeded well at room temperature to afford excel-
lent yield of the desired product (entry 9). To provide 
more insight into the efficiency of all the synthesized 
biochars, an investigation was conducted to assess the 
catalytic capabilities of the biochars (10 mg) in the multi-
component synthesis of 4H-benzo[h]chromenes 4a, both 
at 70 °C and at room temperature. While all biochars gave 
poor-to- moderate product yields, only CB600 resulted in 
the quantitative formation of 4H-benzo[h]chromenes 4a 
under the aforementioned reaction conditions (Table  1, 
entries 8–23). We have chosen to employ CB600 as the 
catalyst in the subsequent studies. Upon conducting the 
model reaction in the absence of solvent, it was observed 
that the resulting yield of 4a was only 76%, as indicated in 
entry 24. Among the screened solvents, H2O was found 
to be an effective solvent. As shown in Table  1, other 
organic solvents, such as toluene, THF, EtOH, CH3CN 
and CHCl3 had moderate activity, giving the desired 
product in 41–79% yields (entries 25–29). With respect 
to the catalyst loading, no significant improvement was 
observed with 15 mg of CB600 (entry 30). After deter-
mining the optimized reaction conditions, a diverse set 
of aldehydes  was examined in conjunction with 1-naph-
tol and malonitrile to demonstrate the effectiveness 
and scope of this novel approach towards producing 
4H-benzo[h]chromenes (Table  4). Generally, aldehydes 
bearing electron-rich and electron-deficient substituents 
underwent the multicomponent condensation smoothly 
to give the desired 4H-benzo[h]chromenes 4a–p in good 
to excellent yields. It should be noted that aldehydes with 
electron-withdrawing groups, such as NO2 and halogens 
on their para-positions gave the desired products with 
better yields than electron-poor substrates. On the other 
hand, aldehydes with halogen groups, such as Br, Cl, and 
F on their para-, and meta-positions also generated the 
corresponding products 4d–i in 85–91% yields (entries 
4–6, 8 and 9). It is obvious that an ortho-position effect 
with the sterically more hindered 2-chlorobenzalde-
hyde was observed in the reactions with 1 and 2 (entry 
10). However, aldehydes bearing electron-rich substitu-
ents (–OMe, –OH, and –Me) on their para-, and meta-
positions showed low reactivity (Table 4, entries 11–15) 
and the yields of the obtained desired products were 
72–79%. Disubstituted aldehydes, such 3,4-dimethoxy-
benzaldehyde also underwent the condensation reaction 
and gave the corresponding product 4p in 70% yield with 
an observed steric effect. However, the reaction of 1 and 
2 with aliphatic aldehydes (such as butanal), and ketones 
(acetophenone) could not give the desired 4H-benzo[h]
chromene product under the optimized reaction 
conditions.

Table 2  Basicity constant of bochars obtained by 
potentiometric method

Samples CB300 CB600 SB600 LB600 MB600

pKb 6.66 5.72 7.93 7.14 7.08

Fig. 4  pKb of the studied biochars
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To evaluate the present catalytic method on larger 
scales, we subsequently carried out the model reaction 
on a gram scale to demonstrate its utility. 4H-benzo[h]
chromene (4a) was prepared using 5 mmol of materials 
under optimized conditions in 79% yield (Scheme 1).

In this study, a marginal decline in yield was recorded 
while synthesizing the desired product 4a, however, 

more than 1 g of the final product 4a could be obtained 
in less than 15 mL of water at room temperature. The 
most important aspect of a catalyst for its expanded 
use in industrial processes is its capacity to be recycled. 
The recovery of CB600 could be easily accomplished 
through simple filtration. Experimentally, after each 
run, the catalyst underwent recycling through filtration, 

Table 3  Optimization of reaction conditions

Experimental conditions: α-naphtol 1 (1 mmol), malonitrile 2 (1 mmol), and benzaldehyde (1 mmol), Biochar (type indicated), and solvent (2.0 mL)
a Yield of pure isolated product
b Bold value signifies the best reaction conditions

Entry Catalyst (mg) Solvent T (°C) Time (h) Yield (%)a

1 – – 70 24 –

2 – H2O 70 24 –

3 CB300 (5) H2O 70 18 56

4 CB600 (5) H2O 70 15 74

5 SB600 (5) H2O 70 15 67

6 LB600 (5) H2O 70 18 18

7 MB600 (5) H2O 70 15 60

8 CB600 (10) H2O 70 10 87

9b CB600 (10) H2O r.t 10 84
10 CB300 (10) H2O 70 12 68

11 CB300 (10) H2O r.t 12 52

12 SB300 (10) H2O 70 12 62

13 SB 300 (10) H2O r.t 12 55

14 SB600 (10) H2O 70 10 74

15 SB 600 (10) H2O r.t 10 67

16 LB300 (10) H2O 70 18 14

17 LB300 (10) H2O r.t 18  < 10

18 LB600 (10) H2O 70 18 31

19 LB600 (10) H2O r.t 18 23

20 MB300 (10) H2O 70 15 60

21 MB300 (10) H2O r.t 15 53

22 MB600 (10) H2O 70 12 70

23 MB600 (10) H2O r.t 12 64

24 CB600 (10) Solvent-free r.t 12 76

25 CB600 (10) Toluene r.t 15 41

26 CB600 (10) THF r.t 15 59

27 CB600 (10) EtOH r.t 12 73

28 CB600 (10) CH3CN r.t 12 79

29 CB600 (10) CHCl3 r.t 15 52

30 CB600 (15) H2O r.t 10 85
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Table 4  CB600 mediated synthesis of 4H-benzo[h]chromenesa



Page 10 of 19Khalili et al. Biochar             (2024) 6:6 

followed by washing with ethanol (3 × 10 mL), air dry-
ing, and   the subsequent application for the next run. 
The recycling test was conducted using the model reac-
tion, indicating a slight loss of catalytic activity over six 
cycles (Fig. 5).

In order to conduct a more comprehensive assessment 
of the catalytic activity, the turnover numbers (TONs) 
and turnover frequency (TOF) of CB600 were calculated 
for the model reaction. The turnover numbers (TONs) 
were observed to be 5.9 under the given conditions. This 
catalytic system also afforded turnover frequencies (TOF) 
of 0.59 h−1, which was high and acceptable (Ormsby et al. 
2012; Xiong et al. 2017). Using the CB600-catalyzed reac-
tion between α-naphtol 1, malonitrile 2, and benzalde-
hyde, as an example, the environmental factor (kg waste 
per kg product) (Sheldon 2007) of this catalytic system 
was 1.02 kg/kg (taking into account a loss of 10% of the 
solvent used). Atom economy is another significant green 
chemistry metric of the reaction that is frequently con-
sidered when assessing how "green" chemical processes 
are (Trost 1995). The atom economy (AE) of the present 
synthetic route was 94%. This value compares well with 
the AE of well-known MCR reactions (Cioc et al. 2014). 
These findings show that this novel effective catalytic 

system, optimized for the 4H-benzo[h]chromenes deriva-
tives, could be of interest to pharmaceutical companies 
willing to create a more environmentally-friendly method 
of drug synthesis. We then monitored the fate of the 
catalyst in the model reaction after being reused. After 
the completion of the 6th cycle, the residual catalyst was 
isolated from the reaction mixture via filtration and the 
resulting carbon material was characterized by IR and 
XRD diffraction (Fig. 6a, b). As shown in Fig. 6, all peaks 
were preserved in the IR spectrum and XRD pattern of 
spent CB600, showing the active functional groups were 
kept in the recycled catalyst without substantial struc-
tural modifications. The results indicated that the catalyst 
exhibits stability and robustness when subjected to opti-
mized reaction conditions. To evaluate the morphologi-
cal alterations of the CB600 after being reused, the SEM 
and HRTEM images were obtained for the retrieved cata-
lyst. SEM image of the reused catalyst showed less devel-
oped pore structures with more shrinkage or contraction 
after the  6th cycle. The TEM image of fresh CB600 in 
Fig. 6d (left) showed the presence of graphite-like struc-
tures at the edges of the   biochar. As can be seen from 
TEM image, (Fig. 6d, right) the morphology of the spent 
catalyst showed a discernible degree of agglomeration, 
so the catalyst deactivation after six consecutive cycles 
has been attributed to the slight aggregation of the bio-
char layers. These findings demonstrated the stability and 
robustness of the introduced catalyst under optimized 
reaction conditions.

Encouraged by the successful outcomes achieved 
through the utilization of CB600 as a catalyst in the pro-
duction of 4H-benzo[h]chromenes, and having high-
yielding conditions in hands, we set out to optimize the 
reaction conditions for the synthesis of pyranopyra-
zoles. Considering the importance of pyranopyrazoles 

a Experimental conditions: α-naphtol 1 (1 mmol), malonitrile 2 (1 mmol), and aldehyde (1 mmol), CB600 (10 mg), and water (2.0 mL)
b Isolated yield

Table 4  (continued)

Scheme 1:  Scheme Gram-Scale Synthesis of 4a 

Fig. 5  Recycling of CB600. Conditions: α-naphtol 1 (3 mmol), 
malonitrile 2 (3 mmol), and benzaldehyde (3 mmol), CB600 (30 mg), 
and H2O (5.0 mL)
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(Chougala et al. 2017; Reddy et al. 2019), numerous syn-
thetic methods have been developed to produce these 
biologically significant heterocycles (Sikandar and 
Zahoor 2021). The one-pot reaction of β-ketoesters, 
hydrazine derivatives, substituted aldehydes, and maloni-
trile is a typical four-component approach to   giving 
pyrano[2,3-c]pyrazole derivatives (Mamaghani and Hos-
sein Nia 2021; Sikandar and Zahoor 2021). Therefore, 
the applicability of the biochars was examined for the 
synthesis of pyranopyrazoles using malonitrile 2 (1.1 
mmol), benzaldehyde 3a (1 mmol), ethyl acetoacetate 5 
(1 mmol), and hydrazine hydrate 6 (1 mmol) as a model 
substrates. The outcome is summarized in Table 5.

It was found that the condensation of the reactants 
was not observed in the absence of either biochar or 
solvent, indicating that both of them are crucial for 
the reaction (Table 5, entries 1 and 2). To our delight, 

the desired product 7a was formed in 24% isolated 
yield (Table  1, entry 1) with 10 mg of SB300. Further 
biochar screening suggested that CB600 is the best 
among different examined biochars (entries 3–10). 
These results align with the obtained basicity of the 
biochars in Table  2. Upon decreasing the temperature 
to ambient conditions, surprisingly, 85% of the desired 
product 7a was obtained, indicating the nearly equal 
efficiency of these two examined temperatures (entry 
11). The reaction could also proceed in other solvents, 
such as H2O, CH3CN, THF, and CHCl3, albeit in lower 
yields (Table  1, entries 12–15). When catalyst loading 
was reduced to 5 mg, only 72% of the desired prod-
uct was obtained (entry 16). Further, no improvement 
was observed when the model reaction was carried 
out with 15 mg of CB600 (entry 17). After sufficient 
screening, the optimal condition eventually emerged 

Fig. 6  a FT-IR spectra and (b) XRD patterns of fresh (blue) and six-times reused CB600 (red); (c) SEM and (d) HRTEM images of fresh (left) and reused 
(right) CB600
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as malonitrile 2 (1.1 mmol), benzaldehyde 3a (1 mmol), 
ethyl acetoacetate 5 (1 mmol), and hydrazine hydrate 
6 (1 mmol) in the presence of a catalytic amount of 
CB600 (10 mg) at room temperature in ethanol (2 mL) 
for 12 h. By following the optimized conditions, a broad 
scope of aldehydes bearing different substituents (nitro, 
halogen, methoxy, hydroxyl, and methyl) was examined 
and gratifyingly all worked well and delivered expected 
pyranopyrazole products. Noting that aldehydes pos-
sessing an electron-deficient group on the aromatic 
ring exhibited a higher yield compared to those con-
taining an electron-donating group on the aromatic 
ring. For example, the aromatic aldehydes with an elec-
tron-withdrawing groups on para and meta-position, 
such as NO2 or halogens, reacted with malonitrile 2, 
ethylacetoacetate 5 and hydrazine hydrate 6 to afford 
the corresponding products 7b–g in almost quantita-
tive yields (Table 6, entries 2–7). The yields of products 
7h and 7i were low due to steric hindrance when Cl was 
positioned at the ortho-position of the phenyl rings, as 

indicated in entries 8 and 9. In contrast, the reactions 
with aldehydes bearing electron-donating groups fur-
nished products 7j–o in low to moderate yields (68–
77%, Table 6, entries 10–15).

Interestingly, heterocyclic aldehydes such as pyridine-
3-carbaldehyde could also be used in this MCR reaction 
to yield the final product 7p in excellent yield (entry 16). 
Further experiments were performed to reinforce the 
benefit of this heterogeneous catalytic system using the 
model reaction. The results shown in Fig. 7 indicated that 
the recovered CB600 can be successfully reused in the 
subsequent five cycles with nearly unchanged catalytic 
activity, giving the desired product 7a in good yields.

The CB600-catalyzed formation of pyrano[2,3-c]pyra-
zoles 7a was characterized by turnover numbers (TONs), 
e.g., in the reaction between malonitrile, benzaldehyde, 
ethylacetoacetate, and hydrazine hydrate, it    amounted 
to 12.5. Under these conditions, TOF was 5.0. The E-fac-
tor and atom economy of the catalytic system (Table  4, 
entry 1) were 1.3 kg kg−1, and 75%, respectively. To check 

Table 5  Optimization of reaction conditions for 7a 

Experimental conditions: malonitrile 2 (1.1 mmol), and benzaldehyde (1 mmol), ethylacetoacetate 5 (1 mmol), hydrazine hydrate 6 (1 mmol) Biochar (type indicated), 
and solvent (2.0 mL).
a Yield of pure isolated product
b Bold value signifies the best reaction conditions

Entry Catalyst (mg) Solvent T (°C) Time (h) Yield (%)a

1 – – 80 24 –

2 – EtOH Reflux 24 –

3 SB300 (10) EtOH Reflux 18 24

4 SB600 (10) EtOH Reflux 18 36

5 LB300 (10) EtOH Reflux 15 52

6 LB600 (10) EtOH Reflux 15 59

7 MB300 (10) EtOH Reflux 12 65

8 MB600 (10) EtOH Reflux 12 73

9 CB300 (10) EtOH Reflux 12 68

10 CB600 (10) EtOH Reflux 12 89

11b CB600 (10) EtOH r.t 12 85
12 CB600 (10) H2O r.t 12 68

13 CB600 (10) CH3CN r.t 12 75

14 CB600 (10) THF r.t 12 57

15 CB600 (10) CHCl3 r.t 12 55

16 CB600 (5) EtOH r.t 12 72

17 CB600 (15) EtOH r.t 12 88
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the merit of the present work, we compared the catalytic 
performance of CB600 with some other reported basic 
catalytic systems in the literature used in the synthesis 
of 4H-benzo[h]chromenes 4a (Table 7). These compara-
tive results demonstrate the distinct advantage of utiliz-
ing heterogeneous BC600 over the currently employed 

methods (based on yield, reaction time, and reaction 
condition).

In terms of the experimental results and previous 
reports, the proposed mechanisms for the production 
of 4H-benzo[h]chromenes (Gangu et  al. 2017; Khurana 
et  al. 2010; Rahmatpour et  al. 2022; Ren and Cai 2008) 

Table 6  Substrate scope for pyrano[2,3-c]pyrazoles synthesis catalyzed by CB600

Experimental conditions: malonitrile 2 (1.1 mmol), aldehydes 3 (1 mmol), ethylacetoacetate 5 (1 mmol), and hydrazine hydrate 6 (1 mmol) CB600 (10 mg), and ethanol 
(2.0 mL) at room temperature. b isolated yield
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and pyranopyrazoles (Kargar et  al. 2020; Saravana 
Ganesan and Suresh 2020; Shaabani et  al. 2019) utiliz-
ing CB600  were  depicted in Fig.  8. The mechanism of 
chromene synthesis can be conceptualized as a series of 
sequential reactions, involving Knoevenagel reaction, 
Michael addition and an intramolecular cyclization  that 
may contribute to the generation of the final product. 
The reaction proceeds through the initial formation of 
α-cyanocinnamonitrile (I). Next, the Michael-type addi-
tion of α-naphthol to α-cyanocinnamonitrile results in 
the in-situ formation of the Michael addition product 
(II), which subsequently undergoes intramolecular nucle-
ophilic cyclization to afford the desired 4H-benzo[h]
chromenes.

Supporting evidence for the proposed mechanism 
was provided by independent reaction of α-cyano-4-
chlorocinnamonitrile with α-naphthol in the presence 
of CB600, which gave the desired product 4H-benzo[h]
chromenes 4e in 91% yield (Khurana et  al. 2010). 

α-Cyano-4-chlorocinnamonitrile was synthesized 
through Knoevenagel condensation of malononitrile 
and 4-chlorobenzaldehyde employing CB600 in water. 
In this reaction, a white precipitate was isolated which 
tentatively identified as 4-chlorobenzylidenemalo-
nodinitrile. The 1H and 13C NMR spectra of this pre-
cipitate in DMSO-d6 confirmed its structure (SI). A 
plausible mechanism for pyranopyrazoles is outlined 
in Fig. 8b. Initially, the cyclocondensation of hydrazine 
with ethyl acetoacetate affords pyrazolone which is fur-
ther rearranged into tautomer (III) via keto-enol tau-
tomerization in the presence of CB600. Meanwhile, a 
Knoevenagel condensation of aldehyde with malononi-
trile promoted by CB600 gives α-cyanocinnamonitrile 
(I). Subsequently,    the activation of pyra-
zolone by CB600 leads to the Michael addition to 
α-cyanocinnamonitrile (I) and subsequent cyclization 
and tautomerization (1,3-H shift) gives the desired 
pyranopyrazole. To investigate the role of CB600 in 
the reaction, a two-component reaction between ethyl 
acetoacetate and hydrazine was carried out in the 
presence and absence of CB600. It was observed that 
pyrazolone formation was instantaneous in the pres-
ence of CB600, whilst the same reaction occurred 
slowly without CB600. To establish the mechanism of 
the reaction, two involving intermediates, pyrazolone 
and the Knoevenagel adduct α-cyanocinnamonitrile 
(I) were prepared separately and characterized by 
the 1H and 13C NMR spectral analysis (SI). Control 
experiment involving the reaction of pyrazolone with 
α-cyanocinnamonitrile (I) under the optimized condi-
tions afforded the desired pyranopyrazole 7a in 89% 

Fig. 7  Recycling of CB600. Experimental conditions: malonitrile 2 (3.3 
mmol), benzaldehyde 3a (3 mmol), ethylacetoacetate 5 (3 mmol), 
and hydrazine hydrate 6 (3 mmol) CB600 (30 mg), and Ethanol (5.0 
mL) at room temperature

Fig. 8  Plausible mechanism for the synthesis of (a) 4H-benzo[h]chromenes and (b) pyranopyrazoles in the presence of CB600
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yield. The obtained result confirms that the interme-
diates pyrazolone and α-cyanocinnamonitrile (I) are 
formed during the course of the present reaction. This 
observation is in accordance with those reported for 
the base-catalyzed pyrano[2,3-c]pyrazoles formation 
via one-pot four-component reactions (Azzam and 
Pasha 2012) (Table 7).

4 � Conclusion
In summary, we have synthesized and characterized vari-
ous nanobiochars through the pyrolysis-carbonization 
of different manures and organic wastes. The activity 
of these biochars was demonstrated through their use 
in two base-catalyzed reactions: multicomponent syn-
thesis of 4H-benzo[h]chromene and pyranopyrazoles. 
Among the examined nanobiochars, cow manure bio-
char formed at 600 °C (CB600) was found to be the best 
solid-base heterogeneous catalyst for the tandem synthe-
sis of 4H-benzo[h]chromenes and pyranopyrazoles under 
metal-free, mild and green condition. The outcomes of 
this research present new possibilities for the develop-
ment of basic carbocatalysts from bio-wastes for multi-
component synthesis of structurally diverse heterocycles.
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