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Abstract 

Soil harbors a huge diversity of microorganisms and serves as the ecological and social foundation of human civi-
lization. Hence, soil health management is of utmost and consistent importance, aligning with the United Nations 
Sustainable Development Goals. One of the most hazardous contaminants in soil matrix is potentially toxic elements 
(PTEs), which can cause stress in soil indigenous microorganisms and severely jeopardize soil health. Biochar technol-
ogy has emerged as a promising means to alleviate PTE toxicity and benefit soil health management. Current litera-
ture has broadly integrated knowledge about the potential consequences of biochar-amended soil but has focused 
more on the physical and chemical responses of the soil system than microbiological attributes. In consideration 
of the indispensable roles of soil microbials, this paper first introduces PTE-induced stresses on soil microbials 
and then proposes the mechanisms of biochar’s effects on soil microbials. Finally, microbial responses including varia-
tions in abundance, interspecific relationships, community composition and biological functions in biochar-amended 
soil are critically reviewed. This review thus aims to provide a comprehensive scientific view on the effect of biochar 
on soil microbiological health and its management.
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•	 Sketched a mechanistic overview of PTE-induced stress towards soil microorganisms.
•	 Demonstrated a synopsis of biochar impacts on soil microbiota from both direct and indirect pathways.
•	 Discussed the development prospects of biochar technology aiming for a healthier agro-ecosystem.
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Graphical Abstract

1  Introduction
Soil quality is the historic origin of the current term 
“soil health”, whose scope extends beyond human 
health and highlights a broader sustainable goal on the 
planetary scale (Lehmann et al. 2020). Excessively accu-
mulated potentially toxic elements (PTE, metals/metal-
loids show toxic or ecotoxic properties such as Cd, Pb, 
As etc.) severely jeopardize the soil health by aggravat-
ing soil structure destruction (Lwin et  al. 2018), soil 
acidification (Dai et  al. 2017), and fertility loss (Man-
soor et  al. 2021). The indiscriminate use of chemical 
pesticides and fertilizers (Sharma et al. 2021) and sew-
age irrigation (Murtaza et  al. 2022)   result  in soil PTE 
pollution and menace the food security, thereby bring-
ing a burden to the human health and ecosystem. Soil 
microbiological health substantially contributes to the 
soil health because microbials participate  in various 
biogeochemical cycles and correlate with soil  nutri-
ent  transformations (Mann et  al. 2019). PTEs cause 
risks to soil microbials by altering their habitats and 
causing intracellular oxidative stress, resulting in a 

decrease in microbial population and diversity, com-
munity composition variation, and functional defi-
ciency (Tang et  al. 2019), ultimately impairing the soil 
system’s ecological functions and social benefits (Lin 
et al. 2019).

Currently, a certain amount of PTE-contaminated 
soils is still used for crop cultivation due to the dearth 
of arable land, especially in Asia (Wang et al. 2021a, b), 
and such situation would presumably continue for a 
long period. In 2014, a joint report issued by the Chi-
nese Ministry of Environmental Protection and the 
Ministry of Land and Resources showed that 15.6% of 
agricultural fields in China were contaminated by PTE 
(Zhao et  al. 2015). In 2018, the Chinese Ministry of 
Ecological Environment implemented the standard of 
risk control for soil contamination, aiming to achieve 
the safe use of farmland mainly through periodic appli-
cation of soil amendments (Wang et  al. 2022). Many 
researchers have investigated effects of soil amend-
ments on mobility and toxicity of soil PTEs (Mehmood 
et al. 2019), but broader understanding of the impacts 
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and consequences (e.g., microbial responses and soil 
enzymatic activities) in the amended soil is essential 
but still remains to be explored (Yu et al. 2022).

Biochar, referring to a carbon-rich product originating 
from pyrolyzed biowaste, is widely recognized as a sus-
tainable and potent soil amendment for PTE immobiliza-
tion and de-toxification (Zhang et al. 2019; Allende et al. 
2023). Biochar can ameliorate soil conditions (e.g., water 
and nutrient retention, pH, soil texture) (Razzaghi et al. 
2020) and revive soil microbial activity and soil functions 
(Palansooriya et  al. 2019). Meier et  al. (2017) demon-
strated that biochar reduces Cu mobility through increas-
ing soil pH, adsorption, and surface precipitation, which 
improved microbial abundance and soil basal respiration. 
Moreover, microbial metabolic activities and functions, 
including carbon use efficacy and fixation, were sub-
stantially rejuvenated due to the de-toxification of PTEs 
by biochar (Wang et al. 2020). Besides, biochar was evi-
denced to physically harbor soil microbials (Han et  al. 
2016), and simultaneously enhanced microbial resistance 
to combat PTE stress (Zhu et al. 2017), which was benefi-
cial to soil microbiological health (He et al. 2021).

However, the current scientific understanding on the 
interaction of biochar and soil microbiological health 
in presence of PTEs  is fragmented even non-consistent 
in some cases, which is neither systematic nor compre-
hensive. Lehmann et al. (2011) specifically reviewed the 
effect of biochar on soil biota, elucidating the potential 
interaction in the “soil-soil biota-biochar” system. Zhu 
et  al. (2017) linked the microbial-induced enzymatic 
activities with biochar-induced changes of soil proper-
ties and summarized the biochar-microbial interaction 
on soil improvement and PTE mitigation. Moreover, 
Palansooriya et al. (2019) discussed the potential role of 
biochar on microbial activities (e.g., soil carbon miner-
alization, nutrient and enzyme activities) and proposed 
the key factors (e.g., chemical properties especially pH 
and soil organic matter (SOM), and physical proper-
ties such as pore size, pore volume, and specific surface 
area) determining the efficacy of biochar on microbial 
performance. While their priorities and disciplines dif-
fer, there is still room to comprehensively revisiting the 
effects of biochar application on soil microbiota. Notably 
our review is based on the “soil-biochar-PTE-soil micro-
bials” system, summarizing the positive, negative, and 
controversial roles of biochar on soil microbials. We also 
underlined the direct, indirect, and potential effects and 
mechanisms by which biochar affects microbiological 
quality of the soil. Through a cross-sectional summary 
of the existed investigations, this review aims to promote 
follow-up studies to shed lights on potential mechanisms 
of biochar-induced microbial resilience in PTE-contami-
nated soils, especially from the perspective of soil health 

and sustainability after biochar application. Therefore, 
we discuss that: (1) the consequences and mechanisms 
of PTE-induced stress on soil microbials; (2) the effect 
of biochar on PTE toxicity mitigation and soil microbial 
restoration; and (3) microbial responses to biochar appli-
cation in PTE-contaminated soils. This work attempts 
to establish a theoretical basis and practical guidance to 
comprehensively understand how biochar acts on soil 
microbiological health management.

2 � PTE‑induced stress on soil microbials
The bioavailability and toxicity of   PTEs are species-
dependent (Lemire et  al. 2013). Generally, organisms    
absorbing PTEs is a three-stage stepwise process, includ-
ing (1) bio-accessibility, referring to the amount of PTEs 
that may be mobilized in soil matrix, (2) environmental 
bioavailability, denoting the amount of PTEs that may be 
accessible by soil organisms, and (3) toxic bioavailabil-
ity, representing the amount of PTEs that cause adverse 
effects to targeted organs. Due to their non-degradable 
property, PTE contamination would take decades to have 
an effect. This sentence is confusing.

PTE contamination can lead to changes in soil physi-
cal and chemical conditions, in the dynamically irrevers-
ible and/or chronic manner. PTE-induced stress on soil 
microbials includes the deterioration of microbial habitat 
as well as intracellular oxidative stress. Table  1 summa-
rizes the target sites, toxic mechanisms, consequences, 
and microbial resistance mechanisms towards PTEs. In 
this section, we focus on the inhibiting and lethal mecha-
nisms of PTEs towards soil microbials.

2.1 � Habitat deterioration
Due to the high sensitivity of soil microbials towards 
ambient habitat, effects of PTEs on soil microbials may 
be magnified. PTEs, such as Cr, Cu, Cd, and Pb, with 
strong hydrolysis capacity and high ionic charge, may 
cause soil acidification, especially in soil with limited 
buffering capacity (Bakshi et  al. 2018; Liu et  al. 2022a, 
b). PTE-induced inhibition of SOM mineralization and 
nutrient cycling may further cause substrate depletion 
and detrimental substance accumulation (Aponte et  al. 
2020). Nevertheless, the bioavailability of some plant 
essential elements (e.g., Fe, Zn, Ca, Mg) may decrease in 
PTE-contaminated soils (Kasowska et al. 2018).

Microbial habitats and environmental changes are 
closely associated with indigenous microbial charac-
teristics, such as morphology, colonization, metabo-
lism, activity, community composition and structure 
(Gourmelon et al. 2016). Jiang et al. (2019) analyzed the 
microbial characteristics of an e-waste site severely con-
taminated by Cu, Pb and Zn. The multivariate regression 
tree (MRT, 63%) results revealed that, rather than metals, 
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soil texture (31%) and organic carbon (OC,14%) were the 
main variables influencing bacterial taxonomic composi-
tion; however, soil pH (23%) and soil texture (14%) were 
the main variables influencing microbial diversity (Jiang 
et  al. 2019). Variations in soil properties in turn would 
influence PTE mobility and speciation transformation, 
as previous researches have suggested (Tang et al. 2019). 
The substitution of predominant microbial species, 
and evolution of microbial community driven by PTE-
induced changes in nutrient availability have been used 
to explain the adverse effects of PTEs on microbials (Wu 
et al. 2018).

2.2 � Cell injury
Bioavailable PTEs can penetrate the cytoplasm and 
access intracellular target sites such as DNA and proteins, 
causing molecular toxicity including membrane integrity 
damage, intracellular enzyme abolishment, antioxidant 
substance depletion, and intracellular component (e.g., 
lipid, DNA) oxidation and destruction (Abdu et al. 2017; 
Robins et  al. 2022) (Fig.  1). Generally, the above effect 
can be interpreted as the intense affinity between cer-
tain metal species and biological macromolecules such as 
mercapto protein, nucleic acid bases and phosphate (Chu 
2018).

Literature has demonstrated that PTEs such as Fe 
and Cu may promote electron transfer, which favors the 
formation of reactive oxygen species (e.g., ROS, includ-
ing ·OH, H2O2, O2

2−) via Fenton and Fenton-like reac-
tions (Huang et al. 2020). Wu et al. (2020) reported that 
the bio-oxidation activity of acidophilic bacteria was 
inhibited by high levels of Co2+, resulting in intracellu-
lar antioxidant substance depletion, homeostasis imbal-
ance and dysfunction. PTEs may substitute or react with 
surface functional groups of enzymes. For example, As 
can severely inhibit the P-dependent process. As(III) can 
substitute for phosphate due to their structural similari-
ties, while As(V) can react with sulfhydryl groups (Huang 
et  al. 2020). Combination of PTEs  and signal receptors 
on cell membrane can disrupt intracellular informa-
tion transmission (Abdu et  al. 2017). In addition, PTEs, 
especially Ag, can damage the bacterial electron transfer 
chain and pose genotoxicity towards microbial cells by 
the metal-mediated Fenton chemistry, resulting in DNA 
damage and mutation (Chu 2018). Moreover, oxidation 
of the amino acid chains may trigger protein degrada-
tion and enzyme defunction, hampering the intracellular 
homeostasis (Li et  al. 2021). PTE-induced intracellular 
toxicity can sometimes be acute. Sumner et  al. (2005) 
proposed that the protein carbonyl levels of S. cerevisiae 

Fig. 1  PTE induced stress towards soil microorganisms. Bioavailable PTEs can induce intracellular oxidative stress mainly through (1) generating 
ROS, (2) destructing enzymes and cell membrane, and (3) oxidating DNA, lipids, causing individual cell injury, which lead to metabolic inhibition. 
From the temporal perspective, PTE-induced stress may further drive the evolution of primary community and lead to biological dysfunction
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were sharply increased within several minutes when 
exposed to 0.5 mM Cr(VI) liquid. PTE-induced cell 
injury may worsen cell apoptosis and reduce microbial 
biomass, jeopardizing soil microbiota.

2.3 � Metabolic inhibition
Intracellular dysfunction as well as gene expression 
abnormities may possibly suppress microbial activ-
ity of PTE-contaminated soils at a relatively low level 
(Al-Wabel et  al. 2019). Microorganisms may distribute 
more energy to basic function maintenance rather than 
cell proliferation under oxidative stress, resulting in 
starvation-caused growth retardation (Zhao et al. 2022). 
The inferior microbial activity may lead to the loss of C 
storage of topsoil, and hence increase soil C emission 
(Zahorec et  al. 2022). Some researchers believed that 
microbial growth would occur only when bioavailable 
PTEs were reduced to a threshold concentration (Yao 
et  al. 2020). Microbial enzyme deletion may affect soil 
fertility due to the repression of SOM turnover. A meta-
analysis indicated that  PTEs  led to changes of soil total 
nitrogen (TN) and OC by −17.9% and −4.95% (Zhou 
et al. 2016). Meanwhile, the newly formed SOM in PTE-
contaminated soil could be allocated to the labile fraction 
due to the absence of soil microorganisms (Zahorec et al. 
2022).

However, soil microorganisms have developed a variety 
of resistance mechanisms towards PTEs due to the long-
term exposure. Microbial resistance towards PTEs  may 
be discrepantly subject to biochemical and morphologi-
cal characteristics of specific microbial species, distri-
bution of metals in cellular fractions (e.g., membrane, 
cytoplasm, nucleus and nucleoid), and stress reactions of 
soil microorganisms (Prabhakaran et al. 2016). Some soil 
microorganisms could temporarily evade PTE-induced 
stress through dormancy, whereas metal-tolerant species 
increase their population when exposed to PTEs (Mann 
et al. 2019).

3 � Benefits of biochar application for soil 
microbials

Biochar (1) immobilizes, and hence reduces toxicity 
of PTEs (O’Connor et al. 2018), (2) modifies soil microhab-
itat, (3) maintains overall soil nutrient level and availabil-
ity, and (4) potentially serves as shelter for soil microbials 
by ameliorating PTE-induced stress and conserving soil 
microbials (Blanco-Canqui 2021; Hagemann et  al. 2017). 
The effect of biochar on soil microbial in PTE-contami-
nated soils is summarized in Fig. 2.

3.1 � Minimizing PTE toxicity
3.1.1 � Immobilization
PTE immobilization refers to the redistribution of 
metal speciation, namely transformation from bio-
available forms into non-bioavailable forms (Guo et al. 
2017). Generally, biochar can immobilize PTEs through 
electrostatic attraction, cation exchange, complexa-
tion, and precipitation. Specific immobilization mech-
anism varies with variables such as biochar properties 
(e.g., micropores proportion and distribution, surface 
chemistry), metal species, and soil conditions (e.g., pH, 
SOM, minerals) (Wang et al. 2021a, b).

Biochar interacts with PTEs through (1) complexa-
tion (e.g., Hg2+), (2) surface precipitation (e.g., Cu2+) 
or reduction-precipitation (e.g., Cr6+), (3) pore filling, 
(4) ion exchange (e.g., Cd2+, Pb2+) and (5) electrostatic 
attraction (e.g., As3+) (Bandara et al. 2020). The diffuse 
outer-sphere of biochar-PTE compound is mainly com-
posed of hydrated metal ions, which is highly leachable 
(Chauhan et  al. 2023; Lian and Xing 2017). However, 
biochar’s electronegative surface to some extent facili-
tates the formation of the inner-sphere bound (Liang 
et  al. 2021). Dehydrated PTEs can react with surface 
functional groups of biochar (e.g., hydroxyl, carboxyl, 
phosphoryl), physically adsorbed through ion exchange 
or pore filling, or chemically adsorbed through com-
plexation (Qiu et  al. 2022). The generation of binary, 
ternary, or annular chelates through poly-coordination 
reduces environmental bioavailability of PTEs, due to 
the abundant coordinating groups and three-dimen-
sional porous structure of biochar. PTEs may react with 
inorganic minerals (e.g., carbonate, sulphate, phosphate 
and hydroxide) and thus precipitate on biochar surfaces 
(Wu et  al. 2021). Furthermore, as PTEs enter surface 
micropores, biochar matrix swells to accommodate 
more sorbates, enlarging pore volumes and potentially 
causing biochar matrix collapse (Lian and Xing 2017). 
This explains the desorption hysteresis and low durabil-
ity when immobilizes PTEs.

Soil As is primarily found in the form of arsenite 
and arsenate, which may escape from biochar immo-
bilization and be mobilized due to pH rise (Huang 
et  al. 2020). Several modification methods, such as 
surface modification and composites with other func-
tional materials, have alleviated the dilemma and 
exhibited superior performance in As decontamina-
tion (Vithanage et  al. 2017). In general, total immobi-
lization capacity of biochar is predominantly driven by 
surface chemistry rather than non-specific adsorption 
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(Arabyarmohammadi et al. 2017). Given the significant 
role of biochar’s surface functionalities (El-Naggar et al. 
2021), we need to recognize the effects of micropore 
porosity and distribution on PTE immobilization, 
and more investigations should be carried out in the 

field of micro-precise regulation of biochar surface 
functionalities.

3.1.2 � Sequestration
The term “immobilization” emphasizes the effect of 
soil amendment, whereas “soil sequestration” refers to 

Fig. 2  Amelioration of PTE-induced stress by biochar in agricultural soil. Biochar application can alleviate PTE-induced stress through macroscopic 
mechanisms such as (1) PTE immobilization and (2) habitat modification, and microscopic mechanisms comprising shelter provision and nutrient 
supply. The rejuvenated soil microbiota because of biochar application can be of immense agricultural values
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combination of diffusion limitation, adsorption, and 
partitioning of PTEs in soil matrix (Shuai et al. 2021). 
Except for surface functionalities and chemistry, bio-
char-induced changes in the abundance of soil critical 
ingredients involving minerals, SOM and microbial 
secretions are closely associated with the fractiona-
tion, distribution, mobility of PTEs (El-Naggar et  al. 
2021). Biochar application can affect a series of soil 
physical, chemical, and biochemical processes, result-
ing in changes in soil properties, and accelerating the 
transformation of  PTEs to non-bioavailable phases. 
Four main mechanisms are discussed as follow.

Firstly, the alkaline nature of biochar expedites the 
transformation of metals from soluble, exchangeable, 
non-specific adsorbed forms into hydroxyl-complexed 
phases ascribed to the liming effect (Wang et al. 2019a, 
b). The formed metal hydroxyl complexes further 
facilitate surface adsorption of soil particles due to the 
decreased ion-solvation interaction. In a 7-year field 
experiment, Wang et al. (2021a, b) found that bioavail-
able Cd, Pb, Zn, and Mn were significantly reduced by 
increased soil pH by biochar. Secondly, soil aggregates, 
which refer to the complex compound of soil minerals, 
SOM, microorganisms, and their extracellular poly-
meric substances, are considered as natural adsorbents 
for PTEs. Therefore, biochar-induced co-fluctuation 
of soil colloids (e.g., microaggregates, SOM), which 
primarily occur in the saturated zone, can restrain 
the toxicity of water-soluble metals (Liu et  al. 2022a, 
b). Variables such as the frequency of turnover and 
soil leaching, are directly associated with soil aggre-
gate  stability and PTE bioavailability. Thirdly, biochar 
increases soil OC that such fraction contains amounts 
of low molecular weight organics with strong affinity 
towards PTEs  and thus indirectly influences mobility 
of PTE (Andreas et  al. 2016). However, biochar itself 
may also serve as a source of PTEs due to its feedstock 
and pyrogenic conditions (Hameed et  al. 2019). The 
endogenous release of PTE from biochar is an intricate 
process, which is associated with the volatile matter 
content and acid functional group density of biochar, 
pH and ionic strength of soil solution (Hameed et  al. 
2019). Finally, biochar-induced changes in soil trace 
elements involving S, Al, Fe and Mn may relate to PTE 
immobilization. El-Naggar et  al. (2021) demonstrated 
the positive correlation between soil V and both S and 
Al, which was explained as the S chemistry and degra-
dation of Al-containing complexes.

3.2 � Promoting the microhabitat
The term ‘biochar’ was proposed by the inspiration 
of Terra Preta, a highly fertile anthropogenic soil in 

the pre-Columbian Amazon (Bezerra et  al. 2019). In 
the context of ecological modernization, biochar is 
thought to offer various improvements to agricultural 
soil (Yuan et al. 2019). Consequently, the modified soil 
conditions may in turn serve as a favorable microhabi-
tat for indigenous microorganisms.

3.2.1 � Soil environment quality
Application of biochar induced changes in soil pH, 
electrical conductivity (EC), texture, and moisture con-
tent that may conjointly modify soil environment qual-
ity, which is critical for the diversity and abundance 
of soil bacteria (Nguyen et  al. 2018). The presence of 
negatively charged functional groups in biochar sur-
face (e.g., hydroxyl, carboxyl, and phenolic groups), 
and minerals (e.g., carbonates, bicarbonates, silicates) 
can bind with H+ in soil solutions, contributing princi-
pally e to the increase of soil pH to the increase of soil 
pH (Gul et al. 2015). The elevated soil pH may lead to 
increase of microbial biomass due to the stimulatory 
effect. Chen et  al. (2017) investigated the short-term 
microbial responses to fine particle biochar addition. 
They found that the concentrations of total microbial 
phospholipid fatty acids (PLFAs, indicator of micro-
bial biomass) were increased due to the modified soil 
texture, increase of soil pH and EC. Liu et  al. (2017) 
illustrated enhanced N2 emissions when biochar 
increased  soil moisture to 70% of full capacity, which 
was explained as the reactivation of anaerobic denitri-
fying bacteria. Domene et al. (2014) certified the strong 
positive correlation between soil moisture and micro-
bial biomass in biochar-amended soils. Accordingly, 
beneficial effect of biochar is more obvious in drought 
regions (Paetsch et al. 2018). Biochar-induced benefits 
in soil microbiota can mainly be ascribed to component 
composition and physicochemical structures. Influenc-
ing factors are comprehensively summarized in Fig. 3.

Current investigations indicated soil bacteria and 
fungi played a critical role in determining soil stability 
and resistance towards PTE contamination (Khan et al. 
2019; Njoku et al. 2020). Soil bacteria and fungi activity 
is highly sensitive to environmental changes; therefore, 
increases in soil pH and mineral elements, inorganic 
and organic compounds may benefit soil fungi (Nie 
et  al. 2018). As for the arbuscular mycorrhizal fungal 
(AMF)-plant symbiont, addition of biochar could result 
in a higher colonization rate of the host plant roots due 
to the modification of soil texture (Rummel et al. 2017). 
Meanwhile, enhanced soil resistance against PTEs leads 
to augmented dehydrogenase and urease activities and 
improved microorganism colonization (Ji et  al. 2022). 
The porous structure of biochar improved both air 
permeability and water retention, therefore boosting 
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physiological activity and benefiting hyphal growth. In 
addition, the augmentation of soil bacteria in biochar-
amended soil is beneficial for reducing  the PTE bioa-
vailability by accelerating extracellular electron transfer 
(Zheng et al. 2021).

3.2.2 � Physical isolation
Biochar can serve as a potential habitat for soil micro-
organisms mainly due to its large surface area, porous 
structure and adsorption capacity, physically isolat-
ing the colonizing microorganisms from PTEs and 
predators (Ennis et  al. 2012). In addition, water mol-
ecules and essential substrates (e.g., alcohols, alde-
hydes, ketone and carbon sources) may be preserved in 
mesopores and micropores (Johannes et al. 2015), pro-
viding essential substrates for soil microorganisms.

Pietikäinen et  al. (2000) creatively prepared a ‘micro-
cosms’ to evaluate the effect of biochar on the capture of 
organic compounds and metabolic activity of microor-
ganisms. The result showed that biochar harbored a small 
fraction of microbial biomass but nearly possessed more 
than an order of magnitude in reproduction rate when 

compared to the control experiment. Micropore distribu-
tion, size, and the surface roughness, topography, surface 
charge and hydrophobicity of biochar conjointly influ-
ence microbial attachment and colonization (Rummel 
et al. 2017). Recently, the possibility of long-term micro-
bial colonization has been researched. Several strains 
colonized in poplar wood biochar were observed to form 
biofilms on plants roots (Bertola et  al. 2019). Further-
more, biochar could serve as proper carrier for engineer-
ing strains for alleviating their sensibility against the PTE 
stresses (Siddeeg et al. 2019; Ma et al. 2020). It remains 
to be seen whether biochar can serve as ecological niches 
for soil microbials, which is primarily dependent on the 
growing conditions of microbial species and habitats.

3.2.3 � Nutrient supply
Domene et  al. (2014) proposed that most impacts of 
biochar on soil microorganisms were attributed to the 
changes of nutrient availability. As an organic amend-
ment, biochar improves soil nutrient availability and 
retention by supplementing the soil with P, K, S, and 
other trace minerals. Soil microorganisms can utilize 
the soluble nutrients contained in biochar, and liable 

Fig. 3  Factors associated with biochar-induced microbial responses. In PTE-contaminated soils, microbial responses are conjointly influenced 
by biochar characters (e.g., PTE immobilization, colonization, nutrient supply) and biochar-induced changes in soil (e.g., habitat modification, 
enzyme activity restoration)
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fraction through bio-fragmentation, bio-assimilation and 
bio-mineralization based on co-metabolism (Karim et al. 
2020).

Biochar can alter elemental composition of the micro-
habitat and influence microbial metabolic activity (Song 
et al. 2018). The improved proportion of C substrate may 
promote microbial catabolism and thus accelerate SOM 
mineralization (Wei et  al. 2020). The following varia-
tions in SOC cycling may result in changes in bioavail-
ability and transformation of other nutrients, which were 
considered as the priming effect of biochar (Karimi et al. 
2020). Besides, content and bioavailability of the biochar-
released C, N, P and K may be distinct due to the het-
erogeneity of various biochar products (Al-Wabel et  al. 
2019). In calcareous soils with low nutrient availability, 
Karimi et al. (2020) reported that application of corn resi-
due biochar enhanced the bioavailability of soil inorganic 
N and some trace elements (e.g., Fe, Zn, Cu), therefore 
promoting the microbiological processes. Notably, this 
may be a long-term effect because of the slow-release 
property of biochar product, which maintained nutrient 
availability on long-time scale (Jiang et  al. 2019). Addi-
tionally, the fungal colonization rate was significantly 
increased due to the biochar-induced increase on soil 
N/P ratio.

Biochar may also immobilize exogenous bioavailable 
nutrients in some cases. Taghizadeh et al. (2012) claimed 
that biochar-immobilized ammonia was relatively bio-
available in soil through isotopic analysis. Moreover, bio-
char exhibited better microbiological value rather than 
certain nutrients for bio-stimulation. Xu et  al. (2018) 
pointed out that total microbial metabolic activity in bio-
char-amended soil was as 1.25 times as glucose-amended 
groups. This showed the potential of biochar on the 
improvement of microbial activity in nutrient-limited soil 
matrix.

Biochar-induced changes in element and nutrient 
availability were considered as a dynamic equilibrium 
between adsorption and release, which was feedstock 
dependent and thus remains controversial. Biochar 
induced reduction in element and nutrient availability 
was also reported (Muhammad et  al. 2016). Previous 
studies focused on the links between biochar character-
istics and adsorption capacities, and  investigating the 
specific sorption capacity of biochar is conductive for 
diminishing the uncertainty of biochar application.

4 � Microbial responses in biochar‑amended soil
Periodic biochar application, as the impulsive influence 
towards soil microbials, may change both the rate and 
direction of microbial evolution during a long period. 
Rather than the short-lived abiotic changes, biochar-
initiated changes to soil microbiota may be amplified 

over time (Hol et al. 2017). Based on the highly sensitive 
nature of soil microbiota, the responses primarily com-
prise changes in microbial abundance, interspecific rela-
tionships, community composition and structure, and 
biological functions. Table  2  summarizes  the microbial 
responses towards biochar application in PTE-contami-
nated soils.

4.1 � Microbial abundance
Generally, biochar addition stimulates microbial activity 
and thus increases microbial abundance in PTE-contam-
inated soils. Alleviation of PTE toxicity, modification of 
microbial habitat, sheltering effect, and the improvement 
of soil nutrient availability (Fig.  3) collectively contrib-
ute to the changes in microbial reproduction rate and 
abundance. With respect to the ignorable interspecific 
difference (e.g., optimum growth conditions, resistance, 
and resilience towards environmental changes), any of 
the biochar-induced changes may differ and even lead to 
controversial consequences.

Reduction of PTE toxicity is of vital significance to sus-
tain soil microbiological health. Moore et al. (2018) dem-
onstrated that adding chicken manure biochar (5% w/w) 
enhanced microbial abundance and soil basial respira-
tion due to the reduction of exchangeable Cu. Besides, 
physically isolated by biochar, the colonized microorgan-
isms were endowed with superior metabolic and repro-
duction rate. Moreover, the positive effect of biochar on 
early growth stage of soil microorganisms has been often 
found. For instance, biochar derived from beet root chips 
significantly improved spore germination of AMF with 
10 vol% addition (Rillig et al. 2010). It further facilitated 
the root colonization and fungal inoculum formation, 
and hence enhanced nutrient delivery of AMF to plant, 
which in turn stimulated the activity of the plant-AMF 
symbiosis. Recently, Xu et al. (2021) conducted a global 
meta-analysis using structural equation modeling and 
found that the fungal abundance was an important fac-
tor influencing bacterial abundance in biochar-amended 
soils, indicating the limiting effect of interspecific 
relationships.

However, biochar may pose hazards to soil microbiota. 
Biochar itself may be a source of organic and inorganic 
contaminants, such as PTEs, polycyclic aromatic hydro-
carbons (PAHs), volatile organic compounds (VOCs) and 
dioxins (Godlewska et al. 2021). This is highly feedstock 
dependent, and may also results from improper pyrolysis 
(Hilber et  al. 2017). Both anthropogenic and manipula-
tive factors are organized in Fig.  4. As seen, the misuse 
of biochar would cause negative consequences for soil 
microbials. A comprehensive consideration is essential 
before the practical application of biochar. However, Hol 
et al. (2017) hypothesized biochar addition may suppress 
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specific species or increase the abundance of pathogens, 
leading to microbial abundance and species loss.

4.2 � Interspecific microbial relationships
Stimulation and activation effect of biochar can drive 
the substitution of dominant species and evolution 
of indigenous soil microbial community, which can 
influence intrinsic interspecific relationships of soil 
microbials. Besides, sorption of signal molecules and 
extracellular metabolites may disrupt interspecific 
behaviors.

Masiello et al. (2013) investigated the impact of bio-
char on interspecific communication of soil microbials. 
The inhibition on microbial gene expression due to the 
biochar-induced adsorption of N-3-oxo-dodecanoyl-
l-homoserine lactone (intercellular signaling molecule 
of AHL expression) between sender and receiver cells 
was quantified via the difference in green fluorescence 
protein (GFP) expression level. In the biochar-mixed 
agar, GFP detected within the receiver cells was only 
24.1 ± 2.1% of control. Notably, the negative correla-
tion between GFP expression level and content of sur-
face functional groups suggested the inhibiting effect of 
biochar adsorption. Most recently, an electrochemical 
test observed that woody biochar can directly transfer 
electrons through carbon matrix in a relatively slow 
manner (e.g., charging and discharging circles of sur-
face functional groups) (Sun et al. 2017). Therefore, the 
presence of additional electron acceptor or donor may 
disrupt interspecific metabolic cooperation (Masiello 
et al. 2013).

Since soil microorganisms live by interacting with 
each other (e.g., syntrophic co-metabolism, competition, 
production of inhibitors or activators, and predation), 
biochar-induced changes in microbial interspecific rela-
tionships could be basis in various microbial responses 
(Haruta et  al. 2009). However, it remains unclear about 
the effect of biochar towards microbial communication 
(e.g., communication mode, microbial signaling, gene 
expression) on both short and long-time scale.

4.3 � Microbial community composition and structure
Microbial community is one of the most important 
indexes for soil microbiological health (e.g., structural 
and functional diversity), where the composition is sub-
ject to soil temperature, moisture, texture, nutrient avail-
ability, pH, and seasonality (Haruta et al. 2009). Microbial 
diversity indicates microbial resilience and adaptability 
towards environmental changes to some extent. The soil 
microbial community is highly sensitive, and from this 
perspective, biochar-induced microbial community evo-
lution can be sorted as activation, expansion, substitution 
and adaption of several indigenous microbial species.

O’Neill et  al. (2009) stated that k-strategists such as 
actinomycetes were presented as chief proportions of 
microbial community in biochar-rich soils. Similar result 
was observed in a biochar-amended paddy soil for the 
fact that actinomycetes and fungi increased by 38.5% and 
930% owing to soil pH variation, respectively (Cui et al. 
2013; Xu et al. 2021). Besides, microbial community com-
position in the “soil-PTE-biochar” system was synchro-
nously subject to biochar properties, application rate and 

Fig. 4  Triggers for negative/uncertain consequences after biochar application to soil. Negative effects are mainly ascribed to the release 
of detrimental substances and proliferation of pathogens. The uncertainty could be caused by the differences in microbial growth conditions, 
and hence a heterogeneous stimulation of various microbial species
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mixing process. Ahmad et al. (2016) stated that feedstock 
of biochar plays a chief role in determining its outcomes 
of bacterial community and diversity, whereas pyrolysis 
temperature is considered as the second most important. 
Xu et al. (2017) revealed that wine-lees biochar improved 
microbial diversity while reduced the overall abundance 
in a multi metal-contaminated paddy soil, especially in 
the maturity stage.

Biochar-induced changes in the microbial community 
were uncertain, however, factors such as feedstock type, 
production parameters and application time can be deci-
sive. The term “disturbance” referred to a biotic or abi-
otic cause which resulted in either a “perturbation” or 
a “stress”. Therefore, a series of changes induced by bio-
char application   (discussed in 3.1 and 3.2) can result in 
changes of specific species, which triggered the subse-
quent microbial evolution and hence changes in ecologi-
cal functions (discussed in 4.4). Moreover, according to 
the theory of “critical slowing down” (i.e., weaker resil-
ience occurred at the tipping point between one stable 
state to another), the uncertainty in biochar-induced 
microbial community changes can be interpreted by the 
application time. For example, soil microorganisms may 
undergo the transitional stage in adaption of soils con-
taminated by PTEs. However, the survived or recovered 
species ultimately adapted to the new habitat with stable 
growth rates (Griffiths and Philippot 2013), which can be 
traced in genomic testing reports.

4.4 � Microbial ecological functions
Enzymatic activity is considered as measurement of soil 
health (Acosta-Martinez et  al. 2018), which is closely 
associated with microbial ecological functions. In gen-
eral, biochar-mediated soil microbiological processes are 
mainly associated with soil nutrient turnover, agronomic 
values, as well as climate change mitigation (Tian et  al. 
2016).

Jain et al. (2016) found that biochar addition enhanced 
the resilience of soil enzymes associated with the nutri-
ent cycle (e.g., acid/alkaline phosphatase, urease, aryl-
sulphatase, dehydrogenase, phenol oxidases, cellulase 
and β-glucosidase), emphasizing the significant role of 
biochar-Fe complex due to its strong binding affinity. It 
was reported that 1% addition of wine-lees biochar dra-
matically stimulated the activity of urease in multi metal-
contaminated paddy soil (Xu et al. 2017), which boosted 
the soil C cycle. Notably, moderate application of biochar 
may be cardinal to enzymatic activity maintenance due 
to their vulnerability and sensitivity (Jain et al. 2016; Tian 
et  al. 2016). Mierzwa-Hersztek et  al. (2016) proposed 
biochar-reinforced enzymatic activity may arise from the 
improvement of both substrates and moisture content, 
and besides, microbial activity and easily metabolizable 

root exudates were also essential. Yet paradoxically, SOM 
stabilization was observed due to the limited microbial 
biomass and weak microbial metabolic quotient of soil 
microorganisms enclosed within biochar-induced aggre-
gates (Wu et al. 2016).

With respect to agronomic benefits, biochar may 
enhance cohesion of soil particles and maintain the sta-
bility of soil aggregates and hence modify soil texture 
(Zheng et al. 2018). Furthermore, Matsubara et al. (2002) 
demonstrated when coconut biochar was incorporated 
in soil, both the incidence and severity of fusarium infec-
tion in asparagus plants were significantly reduced, 
which benefited AMF-asparagus symbiont colonization. 
Similarly, biochar-induced limitation on Fe accessibility, 
especially towards phytopathogenic fungi, contributed to 
corresponding disease control to a large degree (Gorovt-
sov et  al. 2020). This effect would be further promoted 
when assisted with siderophores synthesis (Harindintwali 
et al. 2020). In PTE-contaminated fields, the presence of 
biochar presumably mediated expression of metal-immo-
bilization related genes (Chen et  al. 2018). Wang et  al. 
(2019a, b) testified that microorganisms can alter surface 
structure of biochar, serving as the permeable coating 
which absorbed PTEs, where the PTEs pumped out from 
the cytoplasm can be feasibly immobilized by biochar.

PTE-induced inhibition of microbial metabolism may 
further consume SOM and result in greenhouse gas 
emission (discussed in 2.2.1). Therefore, the benefited 
soil microbiota may contribute to carbon sequestration. 
Firstly, biochar was widely acknowledged as a “carbon 
neutrality” approach. The condensed and amorphous 
polymeric carbon endow biochar with the recalcitrant 
nature, which favors soil carbon sequestration. Liu et al. 
(2020) verified the preferable carbon sequestration 
potential of biochar than traditional agronomic measures 
in upland soil and paddy soil (Liu et  al. 2020). Moreo-
ver, biochar may affect native SOM mineralization rates 
through priming effects (Rasul et al. 2022). Masiello et al. 
(2013) insisted that biochar-resulted influence on soil 
carbon storage was subject to the sorption of cellular sig-
nals. Based on the origin of the released CO2, priming 
effects can be divided into apparent (e.g., originated from 
microbial compound turnover) and real (e.g., originated 
from SOM decomposition) types, and both positive and 
negative priming effects may occur in the two phases 
(Rasul et  al. 2022). Biochar-induced positive prim-
ing effects can be translated as different responses, and 
hence equilibrium of both r-strategist (i.e., microbes that 
rapidly response towards carbon substrate and re-min-
eralize SOM through co-metabolism) and K-strategist 
microbes (i.e., microbes that continually consume SOM) 
(Aponte et al. 2020), ascribed to the release of liable OC. 
As for the negative priming effects, mechanisms such as 
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the accumulation of recalcitrant carbon (Pei et al. 2020), 
improvement of organo-mineral interactions (Van Zwi-
eten et  al. 2017), and aggregate formation are involved. 
Moreover, the deleterious substances released from bio-
char may severely abolish microbial activities (Ghidotti 
et al. 2017). From the temporal perspective (Fig. 5), bio-
char addition may enhance SOC mineralization for a 
short period, while shows the negative priming effects 
due to the lack of SOC for long terms (Zhao et al. 2014). 
Besides, outcomes of priming effects are associated with 
incubation properties, soil conditions, biochar properties 
(e.g., C/O ratio, surface functional groups), and domi-
nant microbial species (Budai et al. 2016).

However, most of the biological effects of biochar on 
soil carbon sequestration remain unknown. Current 
studies have focused more on the links between biochar-
induced changes of microbial community and soil car-
bon dynamics (Bi et al. 2020). Many studies have verified 
the beneficial role of biochar-microbes interaction in 
soil carbon sequestration (Khadem et  al. 2021). Biochar 
may enhance carbon utilization capacity of soil fungi 
that serve as a special substrate and thus promote com-
munity evolution, leading to increased carbon utilization 
efficiency along with attenuated SOM mineralization 
rates in upland soil and paddy soil, respectively. Besides, 
biochar can intensify nitrogen fixation ascribed to the 
release of B and Mo (Lehmann et al. 2011). Moogi et al. 
(2021) demonstrated that biological nitrogen fixation was 
increased by 1.44 times in biochar-modified soils with 

30% atmosphere-derived N. They found that biochar has 
the potential to increase N input into agroecosystems as 
well as reduce NOx emissions. In a four-year field study, 
biochar addition decreased the ratios of abundance of 
methanogens to methanotrophs by 11–31% and thus 
decreased CH4 emission by 20–51% annually (Wang et al. 
2019a, b). However, the soil carbon sequestration poten-
tial may be reduced. In acid soils, biochar addition may 
increase the proportion of gram-positive bacteria that are 
responsible for the decomposition of biochar and SOC 
through co-metabolism and simultaneously lower the 
substrate limitation, causing more CO2 release (Sheng 
et al. 2016). Overall, there is an urgent need for investiga-
tions on the potential mechanisms of biochar-microbes 
interaction to accurately evaluate the soil carbon seques-
tration potential of biochar.

5 � Current challenges and perspectives
This paper reviewed the PTE-induced stress on soil 
microbials and the benefits of biochar application 
towards microbials. The complex mechanisms of interac-
tion of biochar and soil microbials in presence of PTEs 
has been systematically summarized. Different micro-
bial responses (e.g. positive, negative, and controversial) 
towards biochar application in PTE contaminated soil 
have been comprehensively discussed. Here, challenges 
and perspectives for future research development are 
also provided.

Fig. 5  Priming effect of biochar in soil at various time scales. Biochar addition influences the initial equilibrium of K- and r-strategist 
microorganisms, and hence SOM mineralization. In the short period, abundance of soil microorganisms, especially r-strategist microorganisms may 
rapidly increase and boost SOM mineralization through co-metabolism. As for long term scale, due to the lack of available substrates, a negative 
priming effect can occur
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5.1 � Challenges
Microcosm system, which is considered to be the clos-
est system to a natural ecosystem, has been proposed to 
reflect the interactions between species and their habitats 
in recent years (Xu et  al. 2021). It allows for deepening 
the mechanisms among interrelationships of “soil-bio-
char-PTE-soil microbiota” system, and hence links soil 
ecologic and social functions with microbial diversity and 
the expression of functional genes (Harter et  al. 2014). 
Based on this, adopting the high-resolution technology 
such as PCR, DGGE, TGGE on the long-term in  situ 
experiments may visualize overall microbial evolution by 
monitoring the changes in genera and even species lev-
els. Regarding to changes in specific species or functional 
genes, cutting-edge analytical technologies such as the 
fluorescence in  situ hybridization (FISH), DNA finger-
printing techniques and gene chips are urgently needed.

Except for state-of-the-art analytical technologies, 
advancing data analysis methods are also of pivotal 
importance. Traditional kinetic models can portray the 
dynamics of specific microbial indicators/character-
istics over the experimental cycle. Nevertheless, it is a 
non-quantitative method due to the test intervals, which 
probably result in suspectable and ambiguous results. 
Mechanisms embedded in high-dimensional, redun-
dant, and sequential in  situ experimental data could be 
revealed using more appropriate approaches in the con-
text of revising existing domain knowledge and theo-
ries. Advances in computational and system biology 
approaches such as metagenomics, metproteomics, and 
metabonomics provide comprehensive insights into the 
evaluation of microbial communities and biological func-
tions. Recently, structural equation modeling analysis 
has exhibited superior performance for discriminating 
the effect of biochar properties and dose, soil properties 
on the microbial community (Xu et  al. 2021). Besides, 
machine learning (ML) approaches can capture the com-
plex nonlinear patterns in high-throughput data and 
hence extract the potential quantitative relationships 
between features (e.g., biochar-induced changes) and tar-
gets (e.g., microbial responses). However, the efficacy of 
ML approaches is highly dependent on the validity and 
volume of data, and trade-off between empirical utility 
and theoretical interpretability should also be taken into 
consideration.

Biochar application inevitably impacts soil microbi-
als in PTE-contaminated soils, variably stimulates or 
inhibits microspecies, and thus drives the evolution of 
microbial community. Therefore, the degree and direc-
tion of microbial evolution could be determined from the 
equilibrium of microbial species in PTE-contaminated 
soils. The development of genomic techniques shifted 
the research hotspot on biochar-soil interactions into the 

relationship between biochar-induced changes with spe-
cies-level variations.

5.2 � Perspectives
Understanding on factors that cause above species-level 
variations is still lacking, and hence more efforts should 
be made to deepen the understanding of biochar’s effects 
on soil microbials in the presence of PTEs . For this pur-
pose, three general issues in the perspective of funda-
mental research are needed to be given.

Fit-for-purpose biochar Only qualitative and semi-
quantitative recognition between biochar properties 
and manufacturing parameters (e.g., feedstock type, 
pyrolysis temperature, resistance time, heating rate) 
was established in existing research works (He et  al  . 
2021). However, fit-for-purpose biochar production 
is critical for harnessing the commercial and environ-
mental benefits of biochar. Advances in ML increased 
the possibility of accurate prediction of biochar proper-
ties, and minimized the experimental workload, dem-
onstrating a bright future in the field. Relationships 
among biochar feedstock type and production condi-
tions, biochar properties, biochar-induced changes in 
soils under different conditions and microbial composi-
tion, and microbial responses may be clarified and even 
regulated artificially. Undoubtedly, this is the founda-
tion of the targeted application of biochar towards 
various agrotypes to manage soil microbiological 
health and promote sustainable agriculture and climate 
change.

Total analysis and statistics Current knowledge on 
the effect of biochar on soil microbials in PTE-con-
taminated soils is mostly empirical (Palansooriya et al. 
2019). Given the intertwined nexus among soil param-
eters, we should strive to take various factors (e.g., 
constituent, and subsystem etc.) into consideration 
simultaneously. Based on this, we need to investigate 
the response of soil matrix (e.g., metagenomics, ion 
omics) during experiments at different scales. Besides, 
appropriate statistical methods should be introduced 
to explain the consequences in biochar-amended soils, 
and potential mechanisms. Furthermore, mechanisms 
concluded from total analysis and statistics may be 
combined with results from ML/DL models for fur-
ther improvement of model performance and practical 
guidance.

One health approach The imperative goals of modern 
agriculture are to improve crop quality and reduce mal-
nutrition. Albeit fertilization has supported the agro-
nomic system worldwide, and appropriate alternatives 
are still required with respect to cost-effective and green 
chemistry in the future. Biochar is considered as a satis-
fying alternative for attaining environmental, ecological, 
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and economic sustainability (Jia et  al. 2022). Therefore, 
governments should vigorously promote the sustainable 
land utilization awareness of farmers, as well as establish 
a sound system for biochar application through corre-
sponding knowledge popularization, standards, preferen-
tial policies, and laws. For this goal, more efforts should 
be made with the cooperation among politicians, scien-
tists, engineers, technicians, and agronomists.
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