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Abstract 

Salt-affected soils urgently need to be remediated to achieve the goals of carbon neutrality and food security. Limited 
reviews are available on biochar performance in remediating salt-affected soils in the context of carbon neutrality 
and climate change mitigation. This work summarized the two pathways to achieve carbon neutrality during remedi-
ating salt-affected soils using biochars, i.e., biochar production from sustainable feedstock using thermal technologies, 
application for promoting plant productivity and mitigating greenhouse gas (GHG) emission. Converting biomass 
wastes into biochars can reduce GHG emission and promote carbon dioxide removal (CDR), and collection of halo-
phyte biomass as biochar feedstocks, development of biochar poly-generation production systems with carbon 
neutrality or negativity could be promising strategies. Biochar can effectively improve plant growth in salt-affected 
soils, showing that the grand mean of plant productivity response was 29.3%, via improving physicochemical char-
acteristics, shifting microbial communities, and enhancing plant halotolerance. Moreover, biochar can mitigate GHG 
emission via inducing negative priming effect, improving soil properties, changing microbial communities associated 
with carbon and nitrogen cycle, direct adsorption of GHG. However, biochar also may pose negative effects on plant 
growth because of stress of toxic compounds and free radicals, and deterioration of soil properties. The promoted 
GHG emission is mainly ascribed to positive priming effect, and provision of labile carbon and inorganic nitrogen 
fractions as microbial substrates. Finally, this review pointed out the gaps in the current studies and the future per-
spectives. Particularly, the development of “carbon neutral” or “carbon negative” biochar production system, balanc-
ing the relationship of biochar effectiveness and functionality with its environmental risks and costs, and designing 
biochar-based GHG adsorbents would be important directions for remediating salt-affected soils to achieve carbon 
neutrality and abate climate change.

Highlights 

• Sustainable biochar production could be a promising strategy to achieve carbon neutrality.
• Biochar can significantly improve plant productivity in salt-affected soils by 29.3%.
• Biochar could reduce GHG emission and facilitate  CO2 removal in salt-affected soils.
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1 Introduction
The global climate change including temperature anoma-
lies and extreme rainfall patterns has brought severe chal-
lenges to the stability and health of natural ecosystems, 
as well as to human survival and development (Hoegh-
Guldberg et  al. 2019). Carbon neutrality, achieving the 
“net zero emission” of carbon dioxide  (CO2) by offset-
ting increasing amount of  CO2 released into atmosphere, 
has become one of the leading global environmental 
goals of the twenty-first century (Wang et  al. 2021; Wu 
et al. 2022). Effective strategies for climate change miti-
gation require both reduction of greenhouse gas (GHG) 
emission and enhancement of  CO2 removal (CDR) from 
atmosphere (Lehmann et al. 2021). Soil is the largest ter-
restrial organic carbon pool (~ 1500–2400 Pg carbon), 
which profoundly determines the achievement of carbon 
neutrality (Rumpel et al. 2020). Therefore, enhancing car-
bon sink function in soil ecosystems through reducing 
GHG release and increasing vegetation carbon seques-
tration has been recommended as a win–win strategy 
for mitigating climate change and sustaining food pro-
ductivity (Wang et al. 2021). However, about 29% of the 
global land area  is facing degradation such as desertifi-
cation, erosion, pollution, acidification, sodification, and 

salinization (Jia et al. 2019), leading to the irreversible loss 
of soil ability to sequester carbon (Ferreira et  al. 2022). 
The Intergovernmental Panel on Climate Change (IPCC) 
estimated that the loss of soil organic carbon (SOC) from 
soil degradation and land use change contributed to an 
emission of 0.9 Gt carbon per year on average between 
2002 and 2011 (Jia et  al. 2019). Salinization and sodi-
fication, the typical types of soil degradation resulted 
from the combined action of natural and human factors 
(Daliakopoulos et al. 2016; Hassani et al. 2021), have gen-
erated a large number of salt-affected soils worldwide 
(FAO 2015). As shown in Fig.  1, soil salinization is also 
driven by climate change, including rising earth surface 
temperature and sea-level, and changing in precipita-
tion rates, which in turn would further contribute to 
global climate change (Eswar et  al. 2021). Salt-affected 
soils occupy approximately 10.3 ×  108  ha in the world 
(FAO 2015). Approximately 3.69 ×  107 ha soil, accounting 
for 4.88% of total available land in China, has been sub-
jected to salinization and sodification (Li et al. 2014). The 
excessive concentrations of sodium  (Na+) in salt-affected 
soils lead to a large amount of SOC decomposition and 
 CO2 emission due to lack of physical protection of aggre-
gates (Setia et  al. 2011). For example, the SOC content 



Page 3 of 25Liu et al. Biochar            (2023) 5:45  

in surface coastal salt-affected soils is 6  g   kg−1, only 
accounting for 42% of those in agricultural soils (Lin et al. 
2015). In addition, an extreme example is the coastal blue 
carbon ecosystem that emits 0.15–1.02 Pg  CO2 annually 
due to soil degradation or altered use patterns, equivalent 
to 3–19% of those from deforestation globally (Pendle-
ton et al. 2012). Furthermore, the loss of SOC can cause 
deterioration of other soil physicochemical properties 
such as bulk density, water holding capacity, pH, cation 
exchange capacity (CEC), and nutrient availability, thus 
leading to low primary productivity and biodiversity of 
salt-affected soils (Haj-Amor et  al. 2022). Low primary 
productivity results in the low input and accumulation of 
SOC in salt-affected soils, which not only intensifies the 
loss of soil fertility, but also decreases the potential of soil 
carbon sequestration (Zheng et  al. 2018b). In addition, 
salt-affected soil is an important reserve land resource 
for implementing land-based climate change mitiga-
tion strategies because they can serve as potential lands 
for biochar and bioenergy feedstock production (Kumar 
et  al. 2022). Therefore, it is imperative to develop sus-
tainable strategies to reclaim salt-affected soils to expand 

arable land availability and enhance carbon sinks to con-
tribute the goal of carbon neutrality.

Although traditional techniques including physical, 
chemical, and biological methods, which are summa-
rized in Fig.  1, could improve salt-affected soil quality 
and mitigate salt stress for plants to a certain extent (Arif 
et  al. 2020; Qin et  al. 2016), the new viewpoints should 
be considered during remediation to achieve the goals 
of carbon neutrality or carbon negative and climate 
change mitigation. Biochar, a technology coupled with 
carbon sequestration and soil improvement, provides 
an option (Lehmann & Joseph 2015; Zheng et al. 2018a). 
Biochar is a solid and highly aromatized carbon rich 
material pyrolyzed from various biomass at a relatively 
low-temperature (≤ 700  °C) under oxygen-limited con-
ditions (Lehmann and Joseph 2015). So far, biochar 
has been widely used for multiple purposes, including 
carbon sequestration (Song et  al. 2022), soil improve-
ment and remediation (El-Naggar et  al. 2019), and bio-
energy resource utilization (Yang et  al. 2021a), because 
of its excellent characteristics such as high carbon stabil-
ity, rich pore structure, large specific surface area, and 

Fig. 1 Formation process of salt-affected soils and traditional approaches for remediating salt-affected soils. The light blue arrows show the primary 
salinization/sodification processes, including: (A) salt accumulation from rock weathering; (B) salt accumulation due to excessive water evaporation 
in arid and semiarid regions; (C) salt accumulation due to sea breeze; (D) salt accumulation from wet deposition of oceanic salts. The orange arrows 
show the secondary salinization/sodification by human activities, including (a) irrigation with saline water; (b) groundwater recession due to poor 
land and water management; (c) seawater incursion due to rising sea levels or over-exploitation of underground waters. Traditional approaches 
for reclaiming salt-affected soils include physical methods such as (i) leaching and (ii) draining off salt; chemical methods such as (iii) application 
of gypsum and (iv) application of compost, and biological methods such as (v) phytoremediation, (vi) microbial remediation, (vii) plant-microbial 
remediation
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abundant surface functional groups (Al-Wabel et al. 2018; 
Xiao et al. 2018). In particular, the aromatic structure of 
biochar is the primary reason for its strong persistence, 
as a result, biochar can be used as a carbon negative tool 
in promoting carbon sequestration and reducing GHG 
emission in soils (Wang et  al. 2015). A meta-analysis 
based on two documented databases (128 observations 
from 24 studies for biochar persistence and 116 obser-
vations from 21 studies for biochar effect on soil organic 
matter (SOM) mineralization) showed that the size of 
recalcitrant carbon pools in biochars was about 97%, and 
only reduced native SOM mineralization by 3.70%, con-
tributing to long-term soil carbon sequestration (Wang 
et  al. 2015). In addition, Liu et  al. (2019) reported that 
biochar could significantly decrease soil GHG emis-
sion intensity by 29.0% through a meta-analysis based 
on 81 observations from 28 studies. These studies and 
analyses show the promising potentials of biochar in 
long-term carbon sequestration and soil GHG emission 
reduction, contributing to soil carbon sink functions. 
Recently, Lehmann et  al. (2021) proposed that biochar 
systems, including the biomass production sub-system, 
thermal conversion sub-system, and soil sub-system, 
can be used as promising strategies to mitigate climate 
change by reducing GHG emission and facilitating CDR 
(Fig. 2). So far, increasing studies have demonstrated the 
positive effects regarding plant growth following biochar 
application in salt-affected soils (Cui et  al. 2022; Zheng 
et al. 2018a). This promotion effect on plant growth is an 
important way for biochar technology to facilitate CDR 
in soil sub-systems (Lehmann et al. 2021). However, not 
all biochars may bring positive effects on physicochemi-
cal characteristics and plant growth in salt-affected soils 
(Kazemi et  al. 2019; Zhang et  al. 2019b). Additionally, 
biochar also could mitigate or increase GHG emission 
from salt-affected soils (Zhang et  al. 2018). Obviously, 
the uncertainties on plant growth and GHG emission 
still exist following biochar application into salt-affected 
soils. To better understand the performance of biochar 
in improving salt-affected soils in terms of GHG emis-
sion reduction and CDR enhancement, a comprehen-
sive review to gauge research progress and identify the 
knowledge gaps for highlighting future research direc-
tions is a prerequisite.

Many reviews have been published on production 
and characterization of biochars (Khosravi et  al. 2022; 
Xu et  al. 2021), and their applications as fertilizers (El-
Naggar et al. 2019), adsorbents (Ambika et al. 2022), and 
amendments for soil quality improvement and pollutant 
remediation (El-Naggar et al. 2019). To our best knowl-
edge, only three reviews simply summarized biochar 
application in salt-affected soils (Ali et  al. 2017; Amini 
et  al. 2015; Saifullah et  al. 2018). However, several gaps 

still exist in these reviews: (1) the understanding of bio-
char amelioration in salt-affected soils from the perspec-
tive of carbon neutrality and climate change mitigation is 
absent; (2) the carbon-negative production mode in salt-
affected soil improvement using biochar has not been 
fully discussed yet; (3) the potential mechanisms of bio-
chars on plant growth in salt-affected soils, especially the 
negative response mechanisms, still need to be critically 
assessed to avoid potential environmental risks; and (4) 
the effects and mechanisms of biochar on GHG emission 
in salt-affected soils have not been reviewed. Therefore, 
the aims of this review are to: (1) summarize the path-
ways to achieve carbon neutrality during remediating 
salt-affected soils using biochars; (2) explore the carbon-
negative production mode in salt-affected soil improve-
ment using biochar; (3) clarify the effects and potential 
mechanisms of biochars on plant growth in salt-affected 
soils; and (4) elucidate the effects and mechanisms of bio-
chars on GHG emission from salt-affected soils. Finally, 
this review points out the gaps in the current studies and 
the prospects that need to be addressed.

2  Biochar production and classification
In recent years, the mass production of waste biomass 
and adoption of inappropriate recycling technologies 
(e.g., landfilling, direct burning) significantly contrib-
ute to GHG emission (Yang et  al. 2021a). As shown 
in Fig.  2, converting biomass wastes into biochars fol-
lowed by soil applications can reduce soil GHG emission 
and promote CDR, which is conducive to abate climate 
change (Lehmann et al. 2021; Yang et al. 2021a). Due to 
its persistence, the carbon mineralization and non-CO2 
emissions from biochar in soils are one to two orders 
of magnitude lower than those of unpyrolysed biomass 
(Zhang et al. 2019a), and the GHG mitigation potential of 
biochar largely depends on the sustainability of biomass 
feedstock (Lehmann et al. 2021). In addition, bio-oil (also 
called pyroligneous acids, wood vinegar, liquid smoke) 
and syngas produced during biomass thermal conver-
sion can be used as an alternative to fossil fuels, combin-
ing with carbon capture and storage (CCS) technology to 
reduce GHG release (Tisserant and Cherubini 2019).

2.1  Biochar production
2.1.1  Feedstock
Parent feedstock is a critical factor for controlling bio-
char physiochemical characteristics and functionalities 
(Xiao et al. 2018). Compared with original biomass (scale 
of week to years), biochar itself has lower carbon min-
eralization and non-CO2 emissions due to its high per-
sistence of centennial to millennial time scales, which is 
discussed in the subsequent soil sub-systems (Fig. 2).
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Selection of parent feedstock would significantly 
affect the potential of biochar to mitigate climate 
change, depending on the sustainability of biomass and 
the allocation of land for biochar production (Fig.  2, 
Additional file 1: Fig. S1). Sustainably available biomass 
refers to the biomass that can be collected as biochar 
feedstock within a certain period and then can regrow 
without influencing the current productivity of the 
ecosystem (Lehmann et  al. 2021; Woolf et  al. 2010). 
In early period, Woolf et  al. (2010) evaluated that the 
sustainably available biomass of biochar such as crop 
residues, manures, crops, timber and forest residues, 

and green waste could decrease 1.8  Pg  CO2 equivalent 
 (CO2e) per year and 130 Pg  CO2e over the course of 
one century. Recently, Lehmann et  al. (2021) assessed 
the carbon sequestration potential of planting annual 
and perennial biomass and converting it into biochars 
on all the abandoned farmlands which have not been 
converted into cities, forests, or pastures using a bio-
char global response assessment model (BGRAM) algo-
rithm. They found that the emission reduction potential 
would reach 3.40–6.30 Pg  CO2e  year−1, with the CDR 
potential accounting for 44.0–49.0%. Similarly, most 
salt-affected soils are not suitable for crop production, 

Fig. 2 Biochar system on climate change mitigation. Biochar system can be divided into biomass sub-system (green gear), thermal conversion 
sub-system (yellow gear), and soil sub-system (blue gear) (Lehmann et al. 2021). The plus “ + ” indicates the processes that promote GHG emission, 
including collection and transportation of biomass feedstock or biochar and emissions associated with the thermochemical conversion such 
as the emissions about electricity, heat, and labor force. The minus “−” indicates the processes that reduce GHG emission, including replacing 
unreasonable biomass management, replacing fossil fuels with bioenergy (syngas or bio-oil), promoting carbon capture and storage (CCS), 
and enhancing plant growth and reducing GHG emission in soils. Reproduced and modified from Lehmann et al. (2021) after a permission 
of the publisher
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and the production of biochar feedstock (mainly refer-
ring to halophyte biomass waste) using these soils can 
relieve the direct competition with food production 
for high quality land. Halophytes, accounting for 1% of 
the global flora, grow in a wide range of salt-affected 
soils from arid regions to coastal wetlands (Debez 
et al. 2010), and the average dry biomass yield on salt-
affected soils was 3.1 t  ha−1   year−1 (Wicke et al. 2011). 
Therefore, converting the halophyte biomass wastes 
(e.g., Suaeda salsa, alfalfa, Phragmites australis) (Xiao 
et  al. 2022), or halophytic invasive plants (e.g., Spar-
tina alterniflora, Sorghum halepense) (Cui et al. 2021), 
or even algae in coastal wetlands (Zhao et al. 2021) to 
biochars and returning them as amendments to salt-
affected soils or other marginal lands may be a win–win 
strategy to strengthen rational use of waste resources 
and enhance soil carbon sequestration capacity (Al-
Marzooqi and Yousef 2017; Dong et al. 2022; Xiao et al. 
2022). For example, Al-Marzooqi and Yousef (2017) 
used Salicornia bigelovii to produce biochar at 550  °C 
and applied it to remediate a sandy salt-affected soil 
in Abu Dhabi. They observed that the biochar applica-
tion significantly increased SOC contents by 1.0–2.6% 
(Al-Marzooqi and Yousef 2017). More information 
regarding expansion of biochar feedstock types is pro-
vided in Additional file 1: Text S1. Notably, the selected 
halophyte biomass should first be targeted according to 
a specific soil (El-Naggar et  al. 2019). Considering the 
further application of halophyte-derived biochars for 
remediating salt-affected soils or other marginal lands 
(e.g., acidic soil and contaminated soil), the contents of 
nutrients, salts, and contaminants in these biomasses 
and corresponding biochars need to be carefully tested 
by proximate, ultimate, and thermogravimetric analyses 
to identify the best options for a particular application. 
Additional file 1: Table S1 summarizes the properties of 
typical halophytes and their derived biochars, as well as 
the targeted soils that the biochars were added to. The 
selection of halophyte biomass should also follow the 
principle of accessibility (Wang et  al. 2023). However, 
one potential concern is that halophytes are important 
components of salt-affected soil ecosystems, and the 
unreasonable harvest may disrupt ecosystem stabil-
ity and decrease biodiversity (Xie et  al. 2018). Hence, 
it is recommended to collect halophyte biomass in salt-
affected soils which produce abundant biomass waste 
and the biomass can be regenerated quickly, such as 
lands undergoing ecological restoration project using 
halophytes (Wang et  al. 2023). Also, future studies 
should specify the collection frequency and the maxi-
mum single harvest amount of halophyte biomass based 
on the growth rate of the specific halophyte species, the 
size and density of the local halophyte population, and 

soil conditions to ensure that the biomass harvesting is 
sustainable.

2.1.2  Thermal conversion
In the thermal conversion sub-system of biochar systems 
(Fig.  2), the processes associated with thermochemi-
cal conversion of biomass will result in GHG emissions 
(Rajabi Hamedani et  al. 2019; Yang et  al. 2021a), while 
the bioenergy can be used as alternatives to conventional 
fuels and combined with CCS technology to promote 
CDR (Chen et  al. 2022; Lund et  al. 2022; Woolf et  al. 
2021).

Biomass can be converted into char, bio-oil, and syngas 
by different thermal technologies, including slow pyroly-
sis, fast pyrolysis, flash pyrolysis, microwave pyrolysis, 
gasification, and hydrothermal carbonization (HTC) 
(Additional file 1: Fig. S1), which has been well-reviewed 
previously (Khosravi et  al. 2022; Liu et  al. 2017b). 
Throughout a life cycle of biochar systems, the processes 
associated with thermochemical conversion of biomass, 
including biomass transportation, pre-drying treatment, 
and consumption of building materials, energy, labor, and 
tap water, would result in a large amount of  CO2 emis-
sion (Additional file 1: Table S2). For example, according 
to an analysis carried out by Yang et al. (2021a), the car-
bon emission caused by collecting 1 t of crop residues in 
the field was equivalent to 76.5 kg  CO2e, and converting 
1 t of crop residue into biochar by slow pyrolysis released 
392 kg  CO2e, the largest contributor to the whole biochar 
system. Although bioenergy generated in the heat con-
version process can be recycled as a substitute for fossil 
fuel, and biochar has strong carbon sequestration poten-
tial when applied to soils (Lehmann et al. 2021; Yang et al. 
2021a), how to minimize the additional carbon footprint 
generated in the heat conversion process of biomass to 
enhance the negative carbon potential of an entire bio-
char system needs to be investigated. HTC is attractive 
because it can directly transfer wet biomass containing 
high moisture content (> 30%) (e.g., sewage sludge, pig 
manure, and algae) into char product without pre-dry-
ing treatment (Khosravi et  al. 2022). This is the great-
est advantage for HTC among all thermal technologies 
because it can largely decrease extra energy input and 
cost (Khosravi et al. 2022), thus potentially reducing  CO2 
emissions from thermal conversion process of wet bio-
mass (Medick et al. 2018). Medick et al. (2018) reported 
that the emission reduction potential of hydrochar could 
reach 7.1 ×  104 t  CO2e  year−1 if compost derived from 
green waste is converted to hydrochars in Berlin, Ger-
many. Comparing the emission reduction data of differ-
ent thermal technologies used for biochar and hydrochar 
production will provide insights into their potentials for 
reducing carbon emission and mitigating climate change, 
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enabling reasonable selection of appropriate thermal 
technologies. However, so far, little information is avail-
able on comparison of the emission reduction potentials 
of different thermal technologies used for biochar and 
hydrochar production. In addition, current biochar ther-
mal technologies also need to be further improved (e.g., 
development of solar heating and autothermal system, 
application of CCS technologies in thermal conversion 
process) to develop “carbon neutral” or “carbon negative” 
systems for biochar production.

So far, limited studies have reported that typical halo-
phyte biomass (e.g., Spartina alterniflora, S. alterniflora 
powder, and Suaeda salsa) could produce biochar, bio-
oil, and syngas with a yield of 9.80–94.3%, 1.67–76.4%, 
and 13.2–45.2%, respectively (Additional file 1: Table S3). 
Both bio-oil and syngas with calorific values of 19.7–
24.7  MJ   kg−1 and 30.0–79.0  MJ   kg−1 (Additional file  1: 
Table S3) can be directly used as biofuel or industrial raw 
materials (Wang et al. 2023). However, large scale utiliza-
tion of bio-oil or syngas as biofuels may show great chal-
lenges such as low energy density and instability (Duarah 
et  al. 2022), which need to be upgraded or pre-treated 
(e.g., emulsification, steam reforming, catalytic cracking, 
and zeolite cracking) to meet the quality and specification 
requirements for their intended applications (Ahamed 
et al. 2021). In addition, bioenergy can be combined with 
CCS technologies to capture the extra  CO2 produced 
during bioenergy combustion by carbon sequestration in 
underground, referred to as bioenergy with carbon cap-
ture and storage (BECCS) (Tanzer et al. 2021). BECCS is 
one of CDR techniques endorsed by the IPCC (Tanzer 
et al. 2021). A typical case is the BECCS pilot project of 
Drax power station in the UK, which can capture up to 1 
t of  CO2 per day from flue gas (Affan and Maaroof 2016). 
Similarly, bioenergy from halophyte-derived biomass 
may also be combined with CCS to enhance the nega-
tive carbon potential of biochar systems, unfortunately, 
which has not been reported yet. Hence, future studies 
are needed to optimize the process of converting halo-
phyte biomass into biochar and bioenergy to develop effi-
cient BECCS technologies. In addition, the pilot projects 
should be initiated to test the feasibility and scalability of 
combining halophyte-derived bioenergy with CCS tech-
nologies in different regions or specific application sce-
narios. Recently, Yang et  al. (2021b) first evaluated the 
contribution of biomass intermediate pyrolysis poly-gen-
eration (BIPP) to carbon emission reduction in China. 
BIPP, a multi-product production mode including a pyro-
lytic reaction system and a heat recovery system, not only 
can produce biochar with comparatively high stability 
for soil improvement and carbon sequestration, but also 
can provide considerable heat and opportunities for gen-
eration of electricity via production of syngas and bio-oil 

(Chen et al. 2016). They found that the BIPP system can 
be profitable without governmental subsidies, and can 
cumulatively reduce 8.62 Gt  CO2e GHG emission by 
2050, contributing to 13–31% of the global GHG emis-
sion reduction goal for BECCS. While there are no engi-
neering case studies for deploying BIPP in salt-affected 
soils, several laboratory-scale researchers have prelimi-
narily demonstrated the feasibility of this multi-product 
production mode (Iaccarino et al. 2021; Irfan et al. 2016; 
Makkawi et al. 2021). For example, Makkawi et al. (2021) 
used Salicornia bigelovii seed and the seedless-plant as 
feedstock to produce biofuel and biochar through pyroly-
sis in an auger reactor at 550  °C. They showed that the 
pyrolysis of seeds had a high bio-oil yield (80%), and 
the biochar had a high potential for soil carbon seques-
tration. In the future, with the further technological 
development and policy support, this multi-product pro-
duction mode is expected to be more widely applied in 
salt-affected soils, while providing additional bioenergy.

2.2  Biochar standards and classification
The standards and classification of biochars, regulat-
ing feedstock selection and thermal conversion process 
(Camps-Arbestain et  al. 2015; Meyer et  al. 2017), are 
basics for developing negative biochar technology to 
reduce global GHG emission (Wang et al. 2021). Several 
voluntary biochar standards or guidelines have been pro-
posed by different biochar organizations, including Inter-
national Biochar Initiative (IBI) (Camps-Arbestain et  al. 
2015), European Biochar Community (EBC) (Schmidt 
et al. 2016), and Biochar Quality Mandate (BQM) (Shack-
ley et  al. 2014). Meanwhile, several countries including 
China, Germany, Austria, Switzerland, and Italy, also 
fitted biochar into the existing national legislation of 
fertilizers, soil amendments and composts (Meyer et  al. 
2017). Figure 3 and Additional file 1: Table S4 document 
the biochar different standards from voluntary organiza-
tions and different national policies in detail. These dif-
ferent biochar standards include quality requirements for 
biochar, environmental thresholds for organic pollutants 
and heavy metals, and other requirements of feedstock 
type, transportation distance, and production technol-
ogy (see more details in Additional file 1: Text S2). Based 
on IBI guidelines (IB1 2015), the pyrolytic product con-
taining organic C (Corg) less than 10% (w%) or the molar 
H/Corg ratio higher than 0.7 cannot be classified as a bio-
char. According to the EBC requirements (Schmidt et al. 
2016), the Corg content of a biochar must be higher than 
50% (w%), or the molar H/Corg and O/Corg ratio must be 
lower than 0.7 and 0.4, respectively. A product with a 
Corg content lower than 50% or H/Corg ratio lower than 
0.7 can be classified as a pyrogenic carbonaceous mate-
rial (PCM), but cannot be classified as a biochar (Schmidt 
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et  al. 2016). The BQM defined that stable Corg content 
of a biochar should at least be 10% (w%), and the H/Corg 
ratio must be lower than 0.7 (Shackley et al. 2014).

Based on the standards proposed by IBC and EBC, 
Camps-Arbestain et al. (2015) classified biochars accord-
ing to the potential benefits of their application in soils 
into five categories, including (i) carbon storage, (ii) ferti-
lizer value, (iii) liming potential, (iv) particle‐size classes, 
and (v) use in potting mixes and soilless agriculture 
(Fig.  3). Although the current standards and guidelines 
do not stipulate the application rules of biochar in spe-
cific types of soils, biochar applied in salt-affected soils 
still needs to comply with the requirements for feedstock, 
production methods, and quality control established 
by IBI, EBC, BQM, or national laws and regulations. In 
addition, the requirements of biochar quality and sta-
bility should address the specific challenges associated 
with poor soil structure, low carbon content, high salt 
content, and low nutrient availability in diffident salt-
affected soils. Saline soils contain excess salts to endow 
their electrical conductivity (EC) values greater than 4 dS 
 m−1, which generally cause osmotic stress to plants and 

microorganisms (Kotula et al. 2020). Therefore, it is rec-
ommended to select biochar with high nutrient value and 
low liming value  (CaCO3-eq < 1%) to minimize additional 
salt input during improving soil primary productivity. For 
saline-sodic soil or sodic soil with exchangeable sodium 
percentage (ESP) higher than 15 or sodium adsorption 
ratio (SAR) greater than 13, high  Na+ and low salt levels 
may cause serious clay dispersion, degradation of aggre-
gate structure, and loss of macroporosity (Rengasamy 
and Olsson 1991). Hence, when applying biochar to these 
two types of soils, the selection of biochar with high 
carbon storage value  (sBC+100 ≥ 600  g   kg−1) and large 
particle size (50% biochar fraction > 16  mm) should be 
emphasized (Fig. 3).

It is worth noting that the current biochar standards 
and guidelines face much limitations and challenges. 
The complexity and diversity of biochar feedstocks, 
characteristics, and applications pose great challenges 
in establishing standardized classification. Variability 
in production methods adds another layer of complex-
ity for establishing the standards. Overall, the selection 
and application of biochar need to be optimized based 

Fig. 3 Standards and classification systems of biochars. Voluntary biochar standards or guidelines have been proposed by several biochar 
organizations, including International Biochar Initiative (IBI), European Biochar Community (EBC), and Biochar Quality Mandate (BQM). Several 
countries including China, Germany, Austria, Switzerland, and Italy, attempted to fit biochar production and application into their national 
legislations for fertilizers, composts, and soil amendments. A classification system based on IBI and EBC classified biochar into five categories 
according to its potential benefits in soils, which was proposed by Camps-Arbestain et al. (2015).  sBC+100, representing the C storage value 
of biochar, is calculated by the estimated fraction of biochar organic carbon (Corg) that has remained stable in soil for more than 100 years. Liming 
value of biochar is expressed as  CaCO3 equivalent  (CaCO3-eq)
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on the specific problems for a given salt-affected soil. In 
addition, universal adoption of a single set of standards 
is lacking, leading to inconsistencies and hindrances in 
international trade and cooperation, which needs to be 
addressed in future.

3  Effect of biochar amendments on plant growth 
in salt‑affected soils

Promoting plant growth and restoring primary pro-
ductivity are the primary goals of remediating salt-
affected soils (Mukhopadhyay et  al. 2021). Biochar 
promoting plant growth for CDR is an effective strat-
egy for climate change mitigation (Lehmann et  al. 
2021). Biochar enhancing plant photosynthesis and soil 
primary productivity would remove additional  CO2 
from the atmosphere (Horton et al. 2021), and greater 
crop yields may provide an incentive for adoption of 
the technology (Guo et  al. 2022). However, although 
great advances have been made in understanding bio-
char positive effects on plant growth (Additional file 1: 
Table S5), there are still many uncertainties (e.g., nega-
tive and no effect) in salt-affected soils (Additional 
file 1: Table S6).

3.1  Positive effects of biochar amendments on plant 
growth in salt‑affected soils

3.1.1  Positive response of plant growth
Increasing studies have demonstrated that biochar appli-
cation into salt-affected soils can effectively improve 
plant growth (Fig.  4,  Additional file  1: Table  S5). This 
study was based on a meta-analysis of 254 comparisons 
of biochar on salt-affected soils published in 35 articles 
(Additional file  1: Text S3, Tables S7, S8, and S9). The 
grand mean of plant productivity response (PPR, the 
change of plant yield in the biochar-amended soils com-
pared with the un-amended soils) was estimated to be 
29.3%, in any case of biochar properties or soil condi-
tions (Fig. 4). The results of heterogeneity test, showing 
significant Qb values existed in most of the cases except 
the groups of BC-HTT and soil-pH (Additional file  1: 
Table S10), suggested that most of the examined biochar 
properties and soil conditions significantly influenced 
the PPR. The results of the publication bias test (Addi-
tional file 1: Table S11) showed that all the groups passed 
the publication bias test, indicating that the publication 
biases in the literature had little effect on the reliability 
and robustness of the output results. Notably, the PPR 
resulting from biochar addition in salt-affected soils 

Fig. 4 Effect of biochar on plant productivity categorized by biochar (BC) properties (a) and salt-affected soil properties (b). Symbols indicate 
the grand mean change (%) of plant productivity relative to control with 95% confidence intervals. The y-axis shows the groups categorized 
by biochar and soil properties correspondingly. The numbers after the group names indicate the amount of pairwise comparison. The red dotted 
line shows the grand mean change (%) of plant productivity responding to biochar application, regardless of the biochar properties and soil 
conditions
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is higher than estimates from previous studies includ-
ing all soil types (16.0–25.3%) (Bai et al. 2022; Dai et al. 
2020). Thus, biochar amendments could show better 
performance in promoting plant growth in salt-affected 
soils more than the all-soil types. For example, Liu et al. 
(2013) found that biochar averagely increased crop pro-
ductivity by 11.0% using a meta-analysis based on 880 
paired comparisons from 103 published studies. Dai et al. 
(2020) reported that biochar significantly improved PPR 
by 16.0% regardless of biochar and soil properties using 
a meta-analysis based on 1254 paired comparisons from 
153 published studies. The differences in the grand plant 
response to biochar addition in these meta-analyses may 
be attributed to the size of dataset based on different 
amounts of published studies regarding the correspond-
ing topics, on which limited studies are available for the 
salt-affected soils (Additional file 1: Table S7).

A better promoting effect on plant productivity in BC-
application rate groups was recorded in the case of bio-
char application rate less than 5% (w%) or 40 t/ha (15.0%, 
Fig. 3a), emphasizing that the balance of application rate, 
plant productivity, and economy should be considered to 
ensure the sustainable development of biochar technol-
ogy. Compared with the biochar prepared above 350  °C 
(23.7–25.1%), the biochar prepared below 350 °C (28.6%) 
showed a better promoting effect (Fig.  4a), which may 
be due to the higher nutrient availability and retention 
(Al-Wabel et  al. 2018). It is noted that the best positive 
effects of PPR were not observed in biochar groups with 
lower pH (≤ 7, 20.6%) and higher CEC (> 30 cmol  kg−1, 
33.9%), but in the biochar with medium pH (8.0–10.0, 
41.5%) and low CEC (≤ 10 cmol  kg−1, 49.9%) (Fig.  4a). 
Biochar with higher pH is accompanied by higher ash 
content (Al-Wabel et  al. 2018), and the direct input of 
multivalent cations (e.g.,  Ca2+ and  Mg2+) may be condu-
cive to the formation of soil aggregates though electro-
static adsorption and cation exchange, thus improving 
soil structure and promoting plant growth (Zheng et al. 
2018b). Biochar prepared at a high temperature is associ-
ated with lower CEC due to its fewer oxygen-containing 
functional groups (Al-Wabel et al. 2018), but this type of 
biochar tends to have higher pore volume and surface 
area, which will improve soil aeration and permeabil-
ity (Ge et al. 2023). Similarly, the best positive effects of 
PPR were observed in the biochar groups with medium 
TC (30.0–50.0%, 42.7%) and TN (10.0–15.0 g  kg−1, 39.7%) 
(Fig. 4a). This was mainly ascribed to the higher nutrient 
availability of these biochars produced at low or moder-
ate heating temperatures, although the total nutrient 
contents were not the highest (Zheng et al. 2018a, 2018b). 
Considering soil properties, the higher increase in PPR 
was found in the groups of soil-pH (>  9 (42.4%), soil-
CEC  > 10 (27.3%), soil-SOM ≤ 20 (52.6%), soil-TN ≤ 1.0 

(44.6%), and soil-AP of 50–150 (53.6%) (Fig.  4b). Fur-
thermore, the results of regression analysis (Additional 
file 1: Text S3) demonstrated that biochar characteristics 
including pH (R2 = 0.0242, P < 0.05) and TN (R2 = 0.0183, 
P < 0.05) (Additional file 1: Fig. S2a, b), and soil properties 
including pH (R2 = 0.0326, P < 0.05), SOM (R2 = 0.0112, 
P < 0.05), and TN (R2 = 0.1720, P < 0.05) (Additional file 1: 
Fig. S2c–e) significantly influenced the results of PPR, 
while biochar TC and CEC (Additional file 1: Fig. S2f, g), 
and soil CEC had little effect (Additional file 1: Fig. S2h). 
According to these data, the promoting effect of biochar 
on plant growth should be the interactive results of dif-
ferent biochar properties and soil conditions. However, 
due to the limited available data, the effects of biochar 
characteristics such as EC, ESP, SAR, surface area, and 
porosity on plant growth cannot further be analyzed. In 
the future, more studies regarding different biochar prop-
erties on different plant growth in different salt-affected 
soils should be conducted.

3.1.2  Potential mechanisms underlying the improved 
plant growth in salt‑affected soils following biochar 
amendments

Although the studies regarding plant productivities in 
salt-affected soils following biochar input are limited, 
several important potential mechanisms have been pro-
posed. These mechanisms mainly include (Fig.  5a): (1) 
improving physicochemical properties of salt-affected 
soils, (2) shifting microbial community to beneficial taxa, 
and (3) regulating plant metabolism and enhancing salt-
tolerance of plants.

A few studies have proved that biochar application 
could enhance plant growth through improving the phys-
icochemical characteristics of salt-affected soils (Luo 
et al. 2017, 2016b; Zheng et al. 2018a). Biochar with mul-
tivalent cations and developed pore structure could facil-
itate formation of biochar-organic-mineral complexes 
with native SOM and minerals through electrostatic 
adsorption and cation exchange, and thus reduce the 
damage of soil structure caused by  Na+ (Jing et al. 2022; 
Zheng et al. 2018b). These interactions could enhance the 
formation and stability of soil aggregates, resulting in the 
decreased bulk density and increased soil porosity (Kim 
et  al. 2016). Accordingly, the presence of oxygen-con-
taining functional groups (e.g., carboxyl and hydroxyl) 
and multivalent cations (e.g.,  Ca2+ and  Mg2+) on bio-
char surfaces is the key factor determining the aggregate 
structure of salt-affected soils (Zheng et al. 2018b). Bio-
char prepared from low-temperature (< 500 °C) pyrolysis 
of manure contains high amounts of oxygen-containing 
functional groups and multivalent cations, which would 
easily form biochar-organic matter-mineral complexes 
(Han et al. 2020). In addition, pore structure, particle size, 
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and shape of biochar can influence the water hydraulic 
conditions (e.g., saturated hydraulic conductivity, water 
field capacity) of salt-affected soils, thus contributing to 
the positive response of plant growth (Xiao et al. 2020). 
Compared with the biochar with larger particle size 
(2–16 mm), the fine powdered biochar (< 2 mm) is easily 
able to block the pores of sandy soil and reduce its water 
infiltration capacity (Esmaeelnejad et  al. 2017; Liu et  al. 
2017c). Clay coastal salt-affected soils are tightly com-
pacted, and biochar can easily enhance the connectivity 
and quantity of soil pores, thus significantly increasing 
water infiltration capacity (Omondi et al. 2016). Biochar 
also may improve chemical characteristics of salt-affected 
soils, such as decreasing pH and EC (Singh et al. 2019), 
increasing CEC (Kim et  al. 2016; Zheng et  al. 2018a). 
This was further confirmed by the significant negative 
correlations between the PPR and pH values of biochars 
or the amended salt-affected soils (Additional file 1: Fig. 
S2a, c). Increasing studies also evidenced that biochar 
could mitigate salt-stress by decreasing exchange sodium 

percentage (ESP) or sodium adsorption ratio (SAR) (Zhu 
et al. 2020) through the exchange of  Ca2+ and  Mg2+ with 
 Na+, and/or adsorption of  Na+ on biochars. In addition, 
the improvement of soil structure by biochar increased 
soil aeration and water permeability, thus promot-
ing the leaching of  Na+ to the subsoil (Luo et al. 2019). 
The pore structure, surface area, and multivalent cati-
ons of biochar are the key factors determining its abil-
ity to alleviate salt stress. For example, Cui et  al. (2022) 
observed that a wheat straw derived biochar significantly 
decreased the total soluble salt by 11.7–42.2% in the 
coastal salt-affected soils located in Yancheng, China, and 
thus increased the wheat and corn yields. Biochar can 
significantly increase nutrient availability of salt-affected 
soils due to its nutrient supply (Zhang et al. 2021a; Zheng 
et al. 2013) and enhance soil nutrient retention by elec-
trostatic attraction or cation bridges (Zhang et al. 2021a), 
confirmed by the positively correlation between TN con-
tents of biochars and PPR (Additional file 1: Fig. S2b). On 
the one hand, biochar rich in nutrients such as nitrogen, 

Fig. 5 Positive (a) or negative (b) effects of biochars on plant growth in salt-affected soils. The positive effects mainly include enhancing 
seed germination, improving root development, increasing biomass and crop yield, which are mainly attributed to (1) improving soil physical 
and chemical properties, (2) changing microbial community associated with nutrient cycling, and (3) enhancing salt tolerance of plants. Biochar 
properties associated with promoting plant growth include developed porous structure, large surface area, abundant oxygen-containing 
functional groups and multivalent cations (e.g.,  Ca2+ and  Mg2+), strong stability and high carbon content, and abundant nutrients (e.g., nitrogen, 
phosphorus, and potassium). The negative effects mainly include inhibiting seed germination, damaging plant morphology, decreasing root 
development, and reducing biomass and crop yield, which are mainly attributed to (1) stress of inherent toxic compounds released from biochars 
to plants, (2) damages of plant roots by persistent free radicals (PFRs) on biochar surfaces, and (3) deterioration of soil physicochemical properties 
following biochar application. Biochar properties associated with inhibiting plant growth include high ash content and salinity, harmful 
compounds, and surface PFRs
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phosphorus, potassium, and calcium can directly provide 
essential nutrients for plant growth in salt-affected soils 
(Luo et al. 2017; Xu et al. 2017; Zheng et al. 2018a). On 
the other hand, biochar with abundant surface oxygen-
containing functional groups and pore structure can also 
hold these nutrients in salt-affected soils through electro-
static adsorption and/or cation bridging and exchange 
(Luo et  al. 2016a). These results showed that the posi-
tive influences of biochar on plant growth are combined 
outcome of soil properties and biochar characteristics, 
i.e., one biochar cannot solve all the problems of a soil. 
Therefore, biochar should be modified according to the 
specific problems of the target salt-affected soils, and the 
characteristics of biochars such as pH, CEC, and nutri-
ent content particularly nitrogen and phosphorus should 
be carefully designed and adjusted. Acid modification 
endows alkaline biochar with the desired properties such 
as acidic and highly porous by directly introducing  H+, 
and removing alkaline minerals concentrated in bio-
char (Wang et al. 2022b; Zhang et al. 2022). Particularly, 
 H3PO4 and  HNO3 are highly recommended to pretreat 
biochar before applying it to salt-affected soils (Wang 
et al. 2022b).

In recent years, a growing body of studies have revealed 
that biochar could enhance plant growth through 
increasing microbial abundance, diversity, and activity in 
salt-affected soils (Azadi and Raiesi 2021; Yao et al. 2021). 
Biochar may improve the activity of soil enzymes such 
as urease, invertase, phosphatase, β-glucosidase, and 
leucine aminopeptidase, which benefit to plant physi-
ological activity via promoting soil microbial abundance 
and metabolic activity (Qin et al. 2016; Song et al. 2020). 
For example, Zheng et al. (2018a) concluded that a pea-
nut shell biochar significantly increased the richness and 
diversity of bacteria in the rhizosphere soils grown with 
halophyte Sesbania (Sesbania cannabina) and Seashore 
mallow (Kosteletzkya virginica), and the biochar also 
strengthened the bacterial taxon with carbon sequestra-
tion (e.g., Alphaproteobacteria, Cytophagia) and phos-
phorus solubilization (e.g., Pseudomonas, Bacillus). The 
abundant pore structure of biochar can provide habitats 
for soil microorganisms to be protected from predators 
(Zhu et al. 2017). Also, biochar can directly provide sub-
strates for microorganisms such as carbon and nitrogen, 
thus increasing microbial activity and abundance (Zheng 
et al. 2018a). The pore structure, unstable carbon content, 
surface functional groups and hydrophilicity of biochar 
are the key factors that regulate the structure and func-
tion of microbial community in salt-affected soils (Liu 
et al. 2017a). However, it is still difficult to distinguish the 
direct and indirect effects of biochars on soil microbial 
community associated with plant growth. Also, the rela-
tionships between biochar properties and salt tolerance 

of halophytes are unclear. Notably, a small number 
of studies reported that biochar may negatively affect 
microorganisms in salt-affected soils (Nguyen et al. 2020; 
Xu et al. 2018). Harmful substances (e.g., PAHs and heavy 
metals) in biochars are important reasons for the nega-
tive response of microorganism (Godlewska et al. 2021). 
However, the response of specific microorganisms in salt-
affected soils to certain substances in biochar requires 
further investigations. Recently, increasing evidence has 
proved that “core microbiome” in rhizosphere, the small-
est subset of the natural microbiome in soil that can sta-
bly, efficiently and continuously maintain the function 
of the natural microbiome (Toju et al. 2018), is essential 
for promoting plant adaptation to drought and salt stress 
(Qin et al. 2016). Although a few studies have made great 
efforts in the identification, isolation, and assembling of 
salt-resistant rhizosphere core microbiome (Rath et  al. 
2019; Zhang et  al. 2020), technical challenges such as 
functional species recruitment and multiple core micro-
biomes combination still need to be overcome in future. 
Meanwhile, how to effectively regulate the structure and 
function of microbial community to achieve efficient salt-
affected soil carbon sequestration is also an important 
research direction in the future. The emerging molecular 
biology techniques such as metagenomic analysis, sin-
gle cell culturing, and microfluidic technology should be 
used to evaluate the succession and contribution of core 
microbial community to the enhanced plant growth fol-
lowing biochar application in salt-affected soils.

Regulating plant metabolism and enhancing halo-
tolerance of plants in salt-affected soils amended with 
biochars is another important reason for the pro-
moted plant growth (Fig.  5a). Several studies reported 
that biochar amendments may enhance plant growth 
in salt-affected soils by enhancing salt tolerance 
through improving  Na+ exclusion and  K+ uptake (He 
et  al. 2020), reducing stress of endogenous hormones 
(Hafez et al. 2021), increasing growth hormones secre-
tion,   and alleviating oxidative stress of cellular mem-
branes by  Na+ stress (Parveen et  al. 2021; Torabian 
et  al. 2018). However, the specific mechanisms under-
lying these biochar effects remain unclear, and the 
relationship between biochar properties and plant 
salt tolerance needs to be further studied. Moreover, 
a recent study reported that a low rate (0.5%, w%) of 
graphene application into a simulated salt-affected soil 
alleviates salinity and alkalinity stress in alfalfa (Med-
icago sativa L.) through enhancing photosynthesis and 
antioxidative defense system by regulating gene expres-
sion (Chen et al. 2021b). Biochar, particularly nano-bio-
char, containing graphene-like structure (e.g., graphene 
sheets and wrinkled edges) (Liu et al. 2018), could also 
improve plant halotolerance in salt-affected soils, which 
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needs further research to distinguish the relationships 
between biochar characteristics and physiological pro-
cess related to plant halotolerance. Recently, the devel-
opment of nanotechnology has led to the increasing 
application of many nanomaterials (e.g.,  TiO2, ZnO, and 
 CeO2) in salt-affected soils to enhance salt tolerance of 
plants (Gomez et al. 2021; Liu et al. 2021b; Wang et al. 
2022a). It is reasonable to speculate that the surface 
modification of biochar using nanomaterials (e.g.,  TiO2, 
ZnO, and  CeO2) is an effective strategy to improve the 
halotolerance of plants in salt-affected soils (Liu et  al. 
2020a). Synthesizing biochar-based nanocomposites 
can combine the advantages of biochars and these 
nanomaterials, which may be a promising strategy to 
develop functional biochars for enhancing plant halo-
tolerance, carbon sequestration efficiency of plant pho-
tosynthesis, and rhizosphere carbon deposition.

3.2  Negative effects of biochar amendments on plant 
growth in salt‑affected soils

3.2.1  Negative response of plant growth
Unfortunately, several studies also reported the nega-
tive effects of biochars on plant growth in salt-affected 
soils (Fig.  5b, Additional file  1: Table  S6), such as 
decreasing seed germination, inhibiting root develop-
ment (Bu et  al. 2020), and decreasing plant biomass 
and even crop yield (Xiao et  al. 2020). For example, 
Luo et  al. (2017) reported that a biochar-based com-
post applied at 1.5–5% significantly increased the total 
biomass, root length, surface area and tips of Sesbania 
(Sesbania cannabina) by 71.4–129%, 127–165%,  143–
176%, and 200–265%, respectively, while the high 
rate of 10% application decreased the shoot biomass, 
length, surface area and tips of Sesbania by 9.60%, 
23.7%, 67.1%, 58.6%, and 37.0%. These negative effects 
highlight the uncertainties and potential environmen-
tal risks of biochars used in remediating salt-affected 
soils. As an important component of the global car-
bon cycle, plants absorb  CO2 from the atmosphere and 
convert it into organic matter through photosynthesis 
(Tkemaladze and Makhashvili 2016). Meanwhile, plant 
growth is crucial for maintaining ecological services 
such as soil retention, hydrological cycling, and climate 
regulation (Gouda et  al. 2018). In the event of limited 
plant growth, the ability of plant to absorb  CO2 and 
the input of plant-derived organic carbon into the soil 
would decrease, resulting in the reduced soil carbon 
sequestration (Dusenge et  al. 2019). Therefore, bio-
char application may weaken CDR potential associated 
with plant growth, but the impact on climate change 
still needs to be further evaluated. Thus, future stud-
ies are warranted to examine the negative effects of 

more types of both biochars and plants in different salt-
affected soils, especially to evaluate the negative effects 
of biochar on CDR associated with plant growth.

3.2.2  Potential mechanisms underlying the inhibited plant 
growth in salt‑affected soils

Although limited studies are available (Additional file 1: 
Table  S6), several potential mechanisms underlying 
the negative effects of biochars on plant growth in salt-
affected soils are proposed or can be extrapolated from 
the findings regarding the non-salt-affected soils (Fig. 5b). 
These potential mechanisms mainly include: (1) stress of 
inherent toxic compounds to plants released from bio-
chars (Benavente et al. 2018; Intani et al. 2018); (2) dam-
ages of plant roots by  biochar-derived nanoparticles or 
persistent free radicals (PFRs) (Zhang et al. 2019c; Zheng 
et al. 2019), and (3) deterioration of soil physicochemical 
properties following biochar application (Kazemi et  al. 
2019).

Biochar degradation can also affect plant growth in 
salt-affected soils. On the one hand, during the degrada-
tion of biochar in soils, the release of harmful substances 
(e.g., heavy metals, polycyclic aromatic hydrocarbons, 
volatile organic compounds, and dioxins) from the bio-
char may result in toxicity to seeds, roots, and soil micro-
bial communities (Godlewska et al. 2021). On the other 
hand, biochar applied to salt-affected soils may be bro-
ken into fine particles or even nano-sized biochar with 
weathering, tillage, and biological activities, thus impair-
ing plant root development and growth (Liu et al. 2018; 
Ma et  al. 2023). Liu et  al. (2022) found that hot pep-
per stalk-derived nano-biochar decreased cucumber 
seed germination  and inhibited root development and 
seedling growth due to oxidative stress and root injury. 
Moreover, studies have shown that PFRs in biochars 
posed adverse effects on organisms including plants (Liao 
et  al. 2014), soil animals (Lieke et  al. 2018), and micro-
organisms via inducing oxidative stress and destabiliz-
ing the cellular membranes (Baltrėnaitė-Gedienė et  al. 
2022). However, environmental behaviors and ecological 
effects of biochar-derived nanoparticles and PFRs in salt-
affected soils are unknown, which could be much com-
plicated due to the special soil conditions such as high 
pH and anions (e.g.,  Cl−,  CO3

2−, and  HCO3
−) (Odinga 

et  al. 2020). Therefore, strategies should be considered 
to quench PFRs in biochars before their application into 
salt-affected soils via different pretreatments such as pre-
paring biochar at relatively high heating temperatures 
(e.g., > 500  °C) and composting with other amendments 
(e.g., sludge, livestock, and green manure). However, 
PFRs in biochars also have positive effects in degrading 
organic and inorganic contaminants (e.g., diethyl phtha-
late, 2-chlorobiphenyl) in soils, as they generate reactive 
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oxygen species (ROS) (Odinga et al. 2020). Consequently, 
optimizing pyrolytic conditions and pretreating biochars 
(e.g., modification, composting) to avoid the environ-
mental risk should be conducted before the large-scale 
application in salt-affected soils, but the balance between 
the functionality and risk of PFRs in  biochar should be 
carefully considered, particularly for the salt-affected 
soils contaminated with organic pollutants.

The negative impacts of biochars on plant growth in 
salt-affected soils are also related to the unexpected dete-
rioration of soil physicochemical characteristics (Fig. 5b, 
Additional file  1: Fig. S2). Biochar with high contents 
of alkaline components (e.g., carbonates, alkaline earth 
metals) may inevitably increase soil pH and EC (Wang 
et  al. 2019), thus showing salt-stress to plant growth. 
This was directly confirmed by the negative correlation 
between pH values of biochar and the PPR (Additional 
file  1: Fig. S2a, c). Thus, for mitigating soil salinity and 
alkalinity, the biochars with high ash contents derived 
from sewage sludge and manure would not be suitable 
for ameliorating salt-affected soils (Al-Wabel et al. 2018). 
However, biochars with high contents of  Ca2+ and  Mg2+ 
often have higher CEC and are more likely to exchange 
with excess  Na+ in soil colloids (Farhangi-Abriz and 
Torabian 2018). Hence, balancing biochar salinity and 
its contents of  Ca2+ or  Mg2+ for achieving simultane-
ous salt reduction and soil CEC promotion still needs to 
be further verified and practical application (Chen et al. 
2022). In addition, the increase in pH and salinity caused 
by biochars is also related to the experimental conditions 
at lab-scale. At present, most studies adopted pot experi-
ments grown with or without plants in greenhouse, and 
the soil moisture contents were generally maintained at 
60–80% of WHC (Luo et al. 2017; Sun et al. 2016). Due 
to the absence of water leaching in the whole cultivation 
periods, even though biochar removes  Na+ via cation 
exchange and adsorption,  Na+ are still kept in soils and 
cannot be leached from the experimental soils. In order 
to alleviate the negative effects of biochar salinity on salt-
affected soils, the combination of biochar and modern 
irrigation technologies such as drip irrigation, surface 
or subsurface drainage may be an important direction. 
In addition, preparation of high water retaining biochars 
with high porosity and surface hydrophilic functional 
groups (e.g., carboxyl and hydroxyl) may be an important 
supplement to the combined salt reduction technology 
of biochar and engineering irrigation (Gray et  al. 2014). 
Alternatively, hydrochars, nutrient-rich carbonaceous 
materials with low ash contents of 27.2–37.5% and acidic 
pHs of 3.3–6.2 (Benedetti et  al. 2022; Saha et  al. 2019), 
could be combined application with biochars to over-
come the limitation of biochar alkalinity in remedaiting 
salt-affected soils. Moreover, the combined application of 

biochars with other soil amendments such as pyroligne-
ous acids (Yuan et al. 2022), manure composts (Liu et al. 
2021a), and microbial agents (Cui et  al. 2021), could be 
an effective strategy to overcome the above-mentioned 
negative effects on plant growth and thus enhance CDR 
because of their potential synergistic effects.

4  Effects of biochars on GHG emission 
in salt‑affected soils

Effective climate change mitigation requires reductions 
of GHG emissions to achieve the net zero emissions to 
meet the Paris Agreement goal (Schleussner et al. 2016). 
Reducing GHG emission from soils is one of the most 
effective strategies for mitigating global climate change 
(Wang et al. 2021). Biochar can mitigate climate change 
in the soil sub-systems of biochar system by reducing 
SOC mineralization and mitigating non-CO2 GHG emis-
sion (Fig. 2, Additional file 1: Table S12).

4.1  Biochar effects on  CO2 emission from salt‑affected soils
4.1.1  Responses of  CO2 emission from salt‑affected soils 

amended with biochars
Generally, a large amount of  CO2 emission from salt-
affected soils is caused by the lack of physical protec-
tion of SOC due to dispersion and poor aggregation of 
soil aggregates (Setia et  al. 2011). In a meta-analysis of 
163 studies, Chagas et al. (2022) found that biochar sig-
nificantly increased soil total carbon and organic carbon 
by 64.3% and 84.3%, respectively, regardless of soil types. 
However, the studies regarding  CO2 emission from salt-
affected soils following biochar application are just tenta-
tive (Additional file 1: Table S12). Most of these limited 
studies reported that biochars can effectively decrease 
 CO2 emissions from salt-affected soils (Akanji et al. 2021; 
Zhao et  al. 2020). However, a small number of studies 
also reported that biochar application stimulated  CO2 
emission from salt-affected soils (Sial et al. 2019; Zhang 
et al. 2016). These inconsistent results are mainly related 
with biochar physicochemical properties, soil character-
istics, experimental conditions, plant types, and biochar 
application rate. However, the relationships between 
these factors are still not well recognized and linked, 
which need further research.

4.1.2  Potential mechanisms underlying changes 
of  CO2 emission from salt‑affected soils amended 
with biochars

The potential mechanisms underlying the variation of 
 CO2  release in salt-affected soils amended with biochar 
can be speculated from these limited studies (Additional 
file  1: Table  S12) in parallel with those in the non-salt-
affected soils (Shakoor et al. 2021a; Zhang et al. 2019a). 
These mechanisms mainly include the following aspects 
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(Fig.  6a). (1) Negative priming effect: the high pH and 
salt content of salt-affected soils generally lead to the 
disintegration of soil aggregates and thus decomposi-
tion of SOM without physical protection (Feng et  al. 
2021a), evidenced by the positive correlation between 
effect size of  CO2 emissions and biochar pH or EC val-
ues in salt-affected soils (Fig. 7a, b). Biochar application 
may induce negative priming effect on native SOC min-
eralization through promoting physical protection of soil 
aggregates weakened by excess  Na+ in salt-affected soils 
(Bhaduri et al. 2016; Zheng et al. 2018b), enhancing the 
adsorption and encapsulation of organic carbon (OC) 
molecules by biochars (Feng et  al. 2021b; Zheng et  al. 
2018b), and shifting the microbial communities to low 
carbon turnover microorganism groups (Ni et  al. 2021; 
Zheng et al. 2018a). (2) Enhanced formation of soil inor-
ganic carbon (SIC) fractions: SIC is one of the important 
carbon sources and sinks in terrestrial and marine eco-
systems (Ferdush and Paul 2021; Srivastava et  al. 2017). 
The alkaline environment caused by biochar or the origi-
nal alkalinity of salt-affected soil (e.g.,  CO3

2− and  HCO3
−) 

is prone to formation of stable carbonate (e.g.,  CaCO3, 
 MgCO3) from  CO2 via precipitation (Luo et  al. 2016b; 
Zhang et  al. 2016). Hence, enhancing SIC accumula-
tion by adding biochars (Luo et  al. 2016b), particularly 
animal waste or algae derived biochars, may be one of 
the effective strategies to capture  CO2 in alkaline salt-
affected soils in arid or semi-arid regions. (3) Accumula-
tion of microbial necromass carbon: increasing studies 
evidenced that microbial necromass carbon plays more 
important roles (e.g., 32.6–61.8%) in SOC accumula-
tion than plant litter components due to its stability and 
“entombing effect”, known as the novel concept of “micro-
bial carbon pump” (Liang et al. 2019). A previous study 
reported that a maize straw-derived biochar increased 
the contribution of microbial necromass carbon to SOC 
by enhancing the biomass of living microorganisms in 
a maize field trial in north-eastern China (Zhang et  al. 
2021b). However, the effect of biochar on the accumula-
tion and transformation of microbial necromass carbon 
in salt-affected soils is unknown. (4) Adsorption of  CO2 
by biochars: biochar has great potential to capture  CO2 

Fig. 6 The potential mechanisms underlying the decreased (light green) and increased (saffron yellow) GHG emission from salt-affected soils 
amended with biochars. Reduced  CO2 emission is mainly ascribed to: (1) negative priming effect, (2) enhanced formation of SIC, (3) accumulation 
of microbial necromass carbon, (4) adsorption of  CO2. Promoted  CO2 emission is mainly attributed to: (1) positive priming effect, (2) mineralization 
of labile carbon fractions released from biochars, (3) co-metabolism of labile biochar C fractions and native SOM. Decreased  CH4 emission is mainly 
ascribed to: (1) improvement of soil aeration, (2) adsorption of  CH4, and (3) changes in methanotrophs and methanogens community. Promoted 
 CH4 emission is mainly ascribed to: (1) provision of exogenous substrate for methanogens and (2) reduction of  Na+ bioavailability. Reduced  N2O 
emission is mainly ascribed to: (1) enhanced soil aeration, (2) elevated soil pH, (3) adsorption of nitrification and denitrification substrate, enzyme, 
and  N2O, and (4) shifted microbial community associated with nitrogen biogeochemical cycle. Promoted  N2O emission is mainly attributed to: (1) 
provision of exogenous substrate (e.g.,  NH4

+,  NO3
−) from biochars for nitrifiers and denitrifiers, (2) increased soil anaerobic microzones by biochar 

and soil moisture
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(10.0–82.0 mg   g−1) via van der Waals force, pore-filling, 
and precipitation due to its developed pore structure, 
large specific surface area, alkaline matter like N-contain-
ing functional groups (Creamer and Gao 2016; Dissanay-
ake et al. 2020). It is worth noting that no direct evidence 
on the adsorption process and mechanism of GHG by 
biochar in soil is available so far due to the complexity 
of soil systems. However, the good correlation between 
biochar surface area and the effect size of  CO2 emissions 
implied that  CO2 adsorption by biochar might also occur 
in salt-affected soils (Fig. 7c). 

Biochars generally result in short-term positive prim-
ing effects on SOC mineralization and increased  CO2 
release in salt-affected soils, which may be ascribed to 
the following reasons (Fig. 6a). (1) Positive priming effect: 
the rich porous structures of biochars provide excellent 

microhabitats for soil microorganisms, thus promoting 
their growth and activity and directly enhancing native 
SOC mineralization (Chen et al. 2021a; Luo et al. 2020). 
(2) Mineralization of labile carbon fractions released 
from biochars: the dissolved organic carbon (DOC) in 
biochars released into soils can be directly mineralized 
into  CO2 (Han et al. 2020; Virk et al. 2021). This is con-
sistent with the positive correlation between biochar 
OC contents and the effect size of  CO2 release in salt-
affected soils (Fig. 7d). (3) Co-metabolism: the labile car-
bon fractions in biochars could provide growth substrate 
for soil microorganisms, and simultaneously stimulate 
these microorganisms to secrete non-specific enzymes 
to mineralize the native SOC (Jiang et  al. 2019; Singh 
and  Cowie 2014) (Fig.  7d). In addition, extensive stud-
ies demonstrated that biochars can reduce rhizosphere 
priming effect, an important cause responsible for SOC 
pool loss (Zhou et al. 2020a), by adsorbing root exudates 
and enhancing rhizosphere carbon deposition (Keith 
et  al. 2015; Pei et  al. 2020). However, the rhizosphere 
priming effect of biochar on salt-affected soils remains 
unknown, which needs to be further examined using 
advanced technologies such as nanoscale secondary 
ion mass spectrometry (NanoSIMS) and biological chip 
technology to distinguish the mineralization intensity of 
rhizodeposition and native soil carbon and quantify the 
contribution of rhizosphere deposition in soil carbon 
storage. The GHG emission from soil will alter the veg-
etation and ecosystem stability, thus exacerbating climate 
change (Rumpel et al. 2020). However, it is noted that the 
promotion effect of GHG release from salt-affected soils 
amended with biochar has not been quantitatively evalu-
ated due to the limited studies, and the negative impact 
on GHG changes still needs further examination.

4.2  Biochar effects on  CH4 emission from the salt‑affected 
soils

4.2.1  Response of  CH4 emission from salt‑affected soils 
amended with biochars

CH4 is the second critical GHG after  CO2 which shows 
25 times higher global-warming potential than  CO2 and 
accounts for 20% of the anthropogenic warming effect 
(Tan et al. 2021). In a meta-analysis of 61 studies, Ji et al. 
(2018) found that biochar significantly decreased  CH4 
release rates by 12% for paddy soil and 72% for upland 
soil, and decreased  CH4 uptake rate by 84% for upland 
soil. These results indicated the inconsistent effects of 
biochar on  CH4 release from different soil ecosystems. 
High salinity and sulfate in salt-affected soils can reduce 
 CH4 emissions due to inhibition of methanogen activities 
(Zhao et al. 2020). So far, a few studies showed inconsist-
ent effects of biochar on  CH4 emissions from salt-affected 
soils (Additional file  1: Table  S12), including increased 

Fig. 7 Regression analysis between biochar (BC) properties and soil 
properties with GHG emission response. a–d  CO2 emission response, 
e–g  CH4 emission response, h–j  N2O emission response. The linear 
regression analysis was conducted using Origin Pro 2021. Pearson test 
was performed using SPSS 26.0
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(Lin et  al. 2015), decreased (Zhang et  al. 2016), and no 
effects (Maucieri et  al. 2017). These inconsistent results 
reflect the uncertainties of biochars on regulating  CH4 
emission from salt-affected soils, which should be further 
examined using more different biochars and different 
salt-affected soils, for example, coastal wetland soils with 
alternate wetting and drying and salinity evolution, and 
inland salt-affected soils with prolonged drought.

4.2.2  Potential mechanisms underlying changes 
of CH4 emission from salt‑affected soils amended 
with biochars

Several potential mechanisms responsible for  CH4 emis-
sion can be deduced from the published studies related 
with biochars, regardless of the salt-affected soil and 
non-salt-affected soils (Shakoor et al. 2021a; Zhang et al. 
2019a). These potential mechanisms include (Fig. 6b): (1) 
changes in methanotrophs and methanogens commu-
nity; (2) improvement of soil aeration, (3) adsorption of 
 CH4. The relatively high C/N ratios of biochars (116–269) 
could limit the utilization of SOM by methanogens (e.g., 
Desulfobacca and Clostridium), and thus inhibit their 
abundances and activities for  CH4 production (Nguyen 
et  al. 2020). In addition, the increased soil pH and EC 
following biochar addition may increase abundance and 
activities of methanotrophs (e.g., Gamma-proteobacteria 
and Alpha-proteobacteria) and thus reduce  CH4 emis-
sions, consistent with the negative correlation between 
biochar pH values and the effect size of  CH4 release in 
salt-affected soils (Fig.  7e). Biochar can improve soil 
porosity due to the high surface area, and thus improve 
salt-affected soil aeration and increase oxygen  (O2) dif-
fusion, thus would stimulate  CH4 oxidation and/or sup-
press  CH4  production by inhibiting methanogens (Sial 
et  al. 2019; Zhang et  al. 2016). Notably, although the 
improvement of soil aeration conditions may reduce  CH4 
release,  CO2 release could increase due to the oxidization 
of  CH4. Hence, future studies should design engineered 
biochar by regulating its SA, pore structure and surface 
basic functional groups to achieve GHG storage through 
reducing  CH4 release and promoting  CO2 adsorption. 
Moreover, biochars with rich pore structure and large 
surface area may favor  CH4 adsorption on them and/or 
soil particles (Chiu and Huang 2020; La et al. 2019), sup-
ported by the negative correlation between biochar sur-
face area and the effect size of  CH4 release (Fig. 7f ).

The potential mechanisms underlying the promoted 
 CH4 emissions from salt-affected soils following biochar 
application were not well studied,  and limited studies 
were mainly explained by the input of labile carbon frac-
tions released from biochars and reducing  Na+ bioavail-
ability (Fig. 6b). The increase of OC contents in biochar 
maintained a trend consistent with the increase of the 

effect of  CH4 release (Fig.  7g), indicating that the labile 
carbon components of biochars can be used as substrates 
for methanogens in anoxic environments, thus promot-
ing  CH4  production (Zhang et  al. 2016). In addition, 
studies showed that low salinity conditions are favorable 
for methanogenic activity (Lu et al. 2019), because appro-
priate salinity conditions may provide necessary  Na+ for 
amino acid transport and internal pH regulation of meth-
anogens (Theint et  al. 2016). Hence, biochar applied to 
salt-affected soils with high ESP or SAR, which generally 
inhibits the activity of methanogens, especially in sodic 
soils, may increase  CH4 release by reducing  Na+ bio-
availability via biochar adsorption. Moreover, the effect 
of biochar on the activity of methanogens and ultimately 
 CH4 production and emission under different types and 
salinity conditions remains unclear, which needs to be 
confirmed in future study.

4.3  Biochar effects on  N2O emission from salt‑affected 
soils

4.3.1  Response of  N2O emission from salt‑affected soils 
amended with biochars

N2O has a global warming potential 298 times as high 
as that of  CO2, and the main source of global anthropo-
genic  N2O emissions is owing to the extensive utilization 
of nitrogen fertilizers (Shi et  al. 2017). Increasing salin-
ity in soils may promote  N2O emission because high soil 
salinity can directly inhibit the transformation of  N2O 
to  N2 in denitrification (Zhou et  al. 2017). In a meta-
analysis of 186 studies, Shakoor et al. (2021b) found that 
biochar can decrease global agricultural soil  N2O emis-
sion by 19.7%. However, only several studies reported 
that biochar amendments effectively reduced  N2O emis-
sion from salt-affected soils (Additional file 1: Table S12). 
For example, Liu et al. (2020b) demonstrated that a rice 
straw-derived biochar applied in a alkaline sandy loamy 
soil at 2.25, 6.75, and 11.25 t  ha−1 decreased the cumu-
lative  N2O emission by 28.6–38.4% during ten consecu-
tive crop growing seasons. The complex environmental 
conditions of salt-affected soils (such as pH, salinity, and 
drought), greatly altering mineralization, ammonia-
tion, nitrification and denitrification (Zhou et  al. 2017), 
may further complicate  N2O emission from salt-affected 
soils amended with biochars, which should be carefully 
considered in the context of serious disturbance soil bio-
geochemical nitrogen cycle caused by intensified human 
activities (e.g., excessive application of chemical nitrogen 
fertilizers, fossil fuel burning).

4.3.2  Potential mechanisms of biochar on  N2O emission 
from salt‑affected soils

The potential mechanisms underlying the mitigated  N2O 
emissions from salt-affected soils mainly include: (1) 
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enhancing soil aeration; (2) promoting the reduction of 
 N2O; (3) adsorption of nitrification and denitrification 
substrate, enzyme, and  N2O; and (4) shifting microbial 
community associated with nitrification and denitrifica-
tion (Fig.  6c). (1) Enhancing soil aeration: biochar may 
enhance salt-affected soil aeration and promote  O2 dif-
fusion, thereby reducing the anaerobic microzones of the 
soil in which denitrification takes place (Romero et  al. 
2021). (2) Promoting the reduction of  N2O: biochar may 
elevate pH and electron-transfer ability of salt-affected 
soils due to its inherent alkalinity and abundant func-
tional groups on biochar surfaces, which could enhance 
 N2O reductase (the enzyme reducing  N2O to  N2) activity 
(Zhang et al. 2021c), thus promoting reduction of  N2O to 
 N2 (Dong et al. 2020; Wang et al. 2012). This view can be 
supported by the opposite trend of biochar pH values and 
the effect size of  N2O emission (Fig. 7h). (3) Adsorption 
of nitrification and denitrification substrate, enzyme, and 
 N2O: the results of correlation analysis showed negative 
correlation between biochar SA and the effect size of  N2O 
emissions (Fig.  7i). The adsorption of substrate  by bio-
chars, or the increased adsorption of  NO3

− and  NH4
+ by 

biochar-amended soils (Duan et  al. 2020; Zheng et  al. 
2013), may decrease the substrate availability to nitrifying 
and denitrifying bacteria (Lin et al. 2015). Moreover, bio-
char can directly adsorb  N2O (5 ×  104–1.3 ×  105  μg   g−1) 
(Cornelissen et  al. 2013). Particularly, the adsorption 
and desorption of  N2O by biochar in actual salt-affected 
soils for long-term scale is still difficult to be evaluated. 
(4) Shifted microbial community associated with nitrifi-
cation and denitrification: biochar may inhibit the abun-
dance and activity of denitrifying bacteria, and promote 
the expression of the  N2O reductase genes (NosZ) of den-
itrifiers, thus promoting a complete reduction of  NO3

− to 
 N2 instead of  N2O (Xiao et al. 2019; Zhang et al. 2016). 
Besides, biochar may directly supply inorganic nitrogen 
and labile carbon fractions as substrates for microorgan-
ism growth, thereby triggering nitrification and denitrifi-
cation for  N2O production (Zhou et al. 2020b). This can 
be directly confirmed by the positive correlation between 
biochar TN contents and the effect size of  N2O release in 
salt-affected soils (Fig. 7j). In addition, due to the excel-
lent water retention ability of biochars (Adhikari et  al. 
2022), the anaerobic microzones formed by biochar and 
soil particles conducive to denitrification in soils may 
be hotspots for  N2O production (Lyu et al. 2022), which 
should be verified in future.

5  Concluding remarks and perspectives
From the perspective of mitigating climate change and 
achieving carbon neutrality, this review comprehensively 
summarized the production and classification systems of 
biochars, and clarified the potential positive and negative 

effects and underlying mechanisms of biochars on plant 
growth and GHG emission in salt-affected soils. Sustain-
able biochar production is facilitated by utilization of 
salt-affected soils for biomass production, expansion of 
feedstock types (e.g., halophytes and marine algae), and 
development of biochar poly-generation production sys-
tems with carbon neutrality or negativity. Biochar can 
effectively improve plant growth (the grand mean of PPR 
was estimated to be 29.3%) and mitigate GHG emission 
in salt-affected soils, while negative effects of biochars on 
plant growth and GHG emission should not be ignored. 
This review concluded that biochar is one of the promis-
ing candidates to achieve carbon neutrality during reme-
diating salt-affected soils by reducing GHG emission and 
facilitating CDR. As summarized in Fig.  8, the current 
knowledge gaps and research areas are as follows:

(1) Expanding accessibility of biomass feedstock is 
a prerequisite strategy for maintaining sustain-
able biochar production, which requires evalua-
tion of the economic feasibility and carbon emis-
sion potentials of feedstock transportation and 
storage, as well as the sustainability of the biomass 
feedstock supplying. Moreover, in order to advance 
the usability of biochars prepared from extended 
feedstocks (e.g., marine algae wastes and invasive 
plants) for salt-affected soils, it is necessary to con-
duct further studies to establish the relationships of 
biochar structure-properties-application. In addi-
tion, upgrading thermal technologies for biochar 
production to meet the “carbon neutral” or “carbon 
negative” requirements should be further consid-
ered. Particularly, replacing the heat supply for the 
thermal reactor using clean or low-carbon energy 
such as solar energy, hydrogen energy, and auto-
thermal pathway to replace fossil fuels or electricity 
is strongly recommended. Finally, unified standards 
and certifications for biochars at global and regional 
levels are still lacking, and it is imperative to estab-
lish unified standards and classification systems to 
facilitate biochar commercialization and marketiza-
tion.

(2) Effectively enhancing the positive effects of biochars 
on promoting plant growth is an effective way for 
biochar to mitigate climate change through CDR. 
Development of functional biochars such as bio-
char-based nanocomposites, biochar loaded with 
nutrients and acidic agents (e.g.,  H3PO4 and  HNO3) 
to enhance plant halotolerance and biochar water 
holding capacity or nutrient supply capacity may 
provide new options for remediating salt-affected 
soils. Moreover, the coupling application of biochar 
amendments with other salt-affected soil improve-
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ment technologies (e.g., modern irrigation tech-
niques, phytoremediation, microbial remediation, 
and plant-microbial remediation) is an important 
research and application direction in future. How-
ever, it should be noted that a balanced approach 
(e.g., effectiveness and stability, desired functions 
and risks, effectiveness, and cost) to designing the 
functional biochar should be taken to ensure both 
the practicability and the effectiveness of this tech-
nology. In addition, biochar modification may 
increase the application cost and carbon emissions, 
which need to further evaluate the carbon emis-
sion potential using life cycle analysis. Finally, the 
succession process, diversity, and stability of plant 
communities in salt-affected soils amended with 
biochars need further to be explored, particularly 
the halophyte and invasive plant communities.

(3) Biochar has shown a great potential as a GHG 
adsorbent, but its adsorption capacity and mech-
anism in a real complex soil environment still 
need comprehensive studies. Additionally, more 
advanced technologies such as NanoSIMS, 13C-
NMR spectrometry, biological chip technology, 
and proteomic analysis should be used to reveal the 
potential mechanisms underlying biochar effects on 
soil carbon cycling in salt-affected soils, particularly 
rhizosphere priming effect, SIC and microbial nec-

romass carbon transformation and accumulation 
under specific salt-affected soil conditions such as 
dry–wet cycle or long-term drought. Finally, the 
development of GHG accounting protocols for bio-
char applications based on data from biochar or 
target soils in order to guide GHG reduction of bio-
char at regional, national, or global scale is encour-
aged.

(4) The inherent toxic substances also pose major chal-
lenges for biochar application in improving salt-
affected soils. Current assessment of environmental 
risks of biochars mainly focuses on only a narrow 
range of toxic substances including heavy metals, 
polycyclic aromatic hydrocarbons, volatile organic 
compounds, and dioxins, while the emerging con-
taminants in biochars such as surface PFRs and 
perfluorochemicals (PFCs) are relatively rarely con-
sidered. Thus, future studies should consider more 
compounds formed in biochars with potential tox-
icity in salt-affected soil ecosystems. Furthermore, 
prior to biochar application, appropriate methods, 
such as water washing or composting should be 
used to reduce the contents of harmful substances 
in biochars. Moreover, a systematic database 
including the hazardous substance contents of bio-
chars and the conditions of salt-affected soils needs 
to be developed based on current biochar standards 

Fig. 8 Research directions of biochar application in remediating salt-affected soils for abating climate change. Biochar application in salt-affected 
soils can provide alternative strategies for remediating salt-affected soils, and thus can be conducive to carbon neutrality and climate change 
mitigation. Five key research fields are listed in the middle of the figure, including biochar production, plant growth promotion, GHG emission 
reduction, environmental risk assessment and mitigation, and biochar commercialization and marketization
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to guide precise and reasonable biochar application 
patterns. Finally, the effects of pollutants remaining 
in biochars on emission reduction potential in salt-
affected soils still needs to be answered in future.

(5) For the practical application of biochars, one criti-
cal question is how to reduce the production and 
application costs. To better promote the commer-
cialization and marketization of biochars, appro-
priate measures should be taken to enhance the 
participation from different industries. Developing 
poly-generation instruments for biochars and by-
products like biochar-gas-oil poly-generation sys-
tem and selling biochar by-products such as bio-oil 
or syngas may be incentive for biochar manufactur-
ers to gain additional profits. In addition, although 
the carbon value of biochar is still being explored, 
carbon sequestration value of biochar is undoubt-
edly attractive in the context of carbon neutrality. 
The combined carbon emission reduction potential 
of soil improvement, carbon sequestration, GHG 
reduction, and CDR provided by biochar should be 
comprehensively evaluated, and incorporated into 
the global, regional, or national carbon emission 
trading systems, and relevant enterprises or coun-
tries can obtain corresponding carbon credits from 
biochar application in salt-affected soils to offset 
carbon emissions. It is worth noting that if the car-
bon sequestration and emission reduction value of 
biochar is to be included in the global carbon trad-
ing system, more extensive emission reduction data 
for different application strategies will be needed, as 
well as the assessment of biochar production and its 
stability.
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