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Abstract 

Paddy fields are a major emission source of greenhouse gases (GHGs) [for instance, methane  (CH4), nitrous oxide 
 (N2O), and carbon dioxide  (CO2)] among agricultural fields. Biochar has been deemed a potential candidate for the 
reduction of GHGs in paddy fields. However, there is no consistent conclusion that biochar can simultaneously reduce 
emissions of  CH4,  N2O, and  CO2. Herein, we proposed the  FeN3‑doped biochar (FG) as an excellent material for GHGs 
restriction in paddy fields via the first‑principles calculation. The computation results indicated that the FG exhib‑
ited satisfactory adsorption ability for  CH4,  CO2, and  N2O, which improved the adsorption energies to −1.37 , −1.54, 
and −2.91 eV, respectively. Moreover, the density of state (DOS) analyses revealed that the factor responsible for 
 FeN3‑doped biochar to exhibit excellent adsorption ability was the occurrence of drastic energy up‑ or down‑shift of 
the electron for Fe d, C p, O p, or N p orbital upon adsorption of  CH4,  CO2, or  N2O. Our study suggested an advanced 
modified biochar material for reducing the GHGs emissions in paddy fields, in addition to exploring the adsorption 
properties and mechanisms of  FeN3‑doped biochar for GHGs mitigation, which provided a strategy to explore biochar 
modification and efficient emission reduction materials.

Article highlights 

•  FeN3‑doped biochar was first proposed for GHGs mitigation in paddy fields.

•  FeN3‑doped biochar exhibited excellent GHGs adsorption ability.

•  FeN3‑doped biochar improved physico‑chemical adsorption ability for GHGs.
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Graphical Abstract

1 Introduction
Ecosystem stability and human security are facing a seri-
ous threat due to global warming (Smith and Fang 2010; 
Han et  al. 2022). The global average temperature from 
2020 to 2021 has increased by 1.1℃ compared with 
1850–1900 and will continue to rise in the future (IPCC, 
2021). The major inducement of global warming is the 
sharp enhancement of atmospheric concentrations of 
greenhouse gases (GHGs) [for instance, methane  (CH4), 
nitrous oxide  (N2O), and carbon dioxide  (CO2)] (Wang 
et  al. 2019; Zhou et  al. 2022). According to statistics in 
2015, the accumulation concentrations of  CH4,  N2O, and 
 CO2 in the air increased by 150%, 20%, and 40%, respec-
tively (Stocker et al. 2014; Tian et al. 2015). Paddy fields 
have been deemed as the primary emission source of  CH4 
in agricultural fields, contributing 10% of the total  CH4 
emissions (Cao et al. 2021; Shin et al. 2021). Furthermore, 
agricultural fields contribute approximately 66.7% of the 
total  N2O emissions (Akiyama et al. 2005; Van Groenigen 
et al. 2011; Yang and Silver 2016). Superfluous addition of 
nitrogen (N) fertilization and agricultural intensification 
increases the conversion from carbon (C) and N in soils 
to GHGs and their release (Wu et  al. 2013; Pajares and 
Bohannan 2016). Multiple measures have been adopted 
for reducing the emission of GHGs in agricultural fields 
such as moisture management and the addition of 
amendment materials (Yan et al. 2005; Feng et al. 2013).

Biochar possesses substantial pores and abundant 
functional groups, which can conduce to the restriction 

of GHGs, and has been considered as a potential candi-
date for the reduction of GHGs in agricultural fields (Wu 
et  al. 2013; Godlewska et  al. 2017; Cui et  al. 2021; Sha-
koor et  al. 2021; Shin et  al. 2021). The main restriction 
mechanisms of biochar for GHGs include: (1) biochar 
with abundant porosity could reduce the oxygen defi-
cit in soils, which is helpful to retard the production of 
methanogens and inhibit the conversion of  CH4 (Karhu 
et  al. 2011; Nan et  al. 2021); (2) biochar can enhance 
the abundance of methanotrophic proteobacterial and 
reduce the  CH4 emission (Feng et  al. 2012); (3) biochar 
may anchor the inorganic N in soils and avoid the con-
version of inorganic N to  N2O (Cayuela et al. 2014; Dong 
et al. 2020); (4) biochar can lower soil acidity and control 
the process of nitrification and denitrification (Sohi et al. 
2010; Cayuela et al. 2013); and (5) biochar is an ‘electron 
shuttle’ for electron  transfer of denitrification in soils 
which can lead the reduction of  N2O to  N2 (Cayuela et al. 
2013; Yuan et  al. 2022). However, unlike for the  N2O 
and  CO2, researchers have different standpoints on the 
mitigation effect of biochar for  CH4. (Karhu et al. 2011; 
Wu et  al. 2013; Bruun et  al. 2016). For example, Jeffery 
et al. found that biochar could reduce the  CH4 emissions 
from soils (Jeffery et  al. 2016), but Zhang et  al. consid-
ered that biochar could improve the total  CH4 emissions 
from soils (Zhang et  al. 2010). Thus, it is necessary to 
develop biochar-based modification materials for miti-
gating the emissions of GHGs in paddy fields. Recently, 
single atomic catalyst (SAC) doped carbon materials 
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have gathered widespread interest in the environmental 
field due to their low cost, excellent chemical charac-
teristics, superior atom utilization efficiency, and abun-
dant specific surface area (Qiao et al. 2011; Yuan and Shi 
2013; Wang et al. 2015; Zhou et al. 2019). Among them, 
 FeN3-doped carbon materials have shown excellent per-
formance in previous studies, which will be beneficial to 
improve the current issues (such as heavy metal pollution 
and GHG emission) in agricultural fields. For example, 
Gao et al. proved that  FeN3-embedded carbon possesses 
a good mercury adsorption ability via the first-princi-
ples calculation (Gao et  al. 2019); Xie et  al. found that 
 FeN3-doped graphene could adsorb the gas molecules 
 (C2H2,  H2S,  SO2,  SO3, and  O2) (Xie et  al. 2022). Thus, 
it is an efficient method to use the  FeN3-doped biochar 
as the sorbent in paddy fields which are the main emis-
sion source for GHGs. However, the adsorption effect 
and mechanism of  FeN3-doped biochar for mitigation of 
GHG emissions in paddy fields are unclear.

In this study, due to the various components in bio-
char,   FeN3 may possess diverse sites on biochar. Herein, 
according to previous studies (Okamoto 2009; Gao et al. 
2019; Li et al. 2021), the first-principles calculations were 
carried out using graphene (G) as a simplified model to 
explore the inhibition effect and mechanism of G and its 
 FeN3-doped for GHGs. At first, the electron character-
istics of G and the  FeN3-doped G (FG) were evaluated. 
The adsorption ability and stability between the different 
substrates and  CH4,  N2O, or  CO2 were then compared. 
Finally, the electronic properties of adsorption systems 
were investigated and the inhibition mechanism of  CH4, 
 N2O, and  CO2 adsorption on  FeN3-C were revealed. 
These results can provide insights that will aid in a bet-
ter understanding of the effect and mechanism of SAC-
doped carbon materials for GHGs mitigation in paddy 
fields, and the effective selection of materials for GHG 
mitigation.

2  Computational methodology
All the calculations were based on the first principles and 
carried out by the Vienna Ab Simulation Package (VASP). 
The exchange-correlation function has been described by 
the Perdew-Burke-Ernzerhof (PBE) type and the interac-
tion between electrons and ions was considered through 
the projector augmented wave (PAW) method (Hohen-
berg and Kohn 1964; Kresse and Furthmüller 1996a, b). 
The construction of FG model referred to the previous 
study. In brief, four carbon sites were replaced by three 
nitrogen (N) atoms and a Fe atom site. Among them, Fe 
was confined in the central of three N atoms (Gao et al. 

2019). The DFT-D3 was set to describe the van der Waals 
interaction in all the calculations for adsorption systems 
(Perdew et  al. 1996; Zhang et  al. 2020). The localized d 
electrons of the Fe element have been described via the 
DFT + U method, with the U value set to 4  eV (Zhou 
and Sun 2011; Wang et  al. 2022a). The cutoff energy, 
convergence standard of energy, and force were set to 
500  eV,  10− 5  eV, and 0.02  eV Å−1, respectively (Zhou 
et al. 2022). The k mesh of the structure optimization and 
density of state (DOS) calculations were set to 3 × 3 × 1 
and 11 × 11 × 1 with the Gamma-centered grids (Froyen 
1989; Liu et al. 2021). To avoid the interplay of the adja-
cent unit cells, the 15 Å vacuum layer was instituted. The 
formulas of adsorption energy  (Ea) and differential charge 
density (Δρ) are as follows:

where  Egas−substrate,  Egas, and  Esubstrate represent the total 
energy after the gas molecule adsorbed on the substrate, 
single energy of the different gases, and different sub-
strates, respectively (Luo et al. 2019).

where ρgas−substrate, ρgas, and ρsubstrate  represent repre-
sentthe charge density of the adsorption configuration 
of the gas molecule and substrate, charge density of the 
different gas molecules, and different substrates, respec-
tively. The differential charge density and electron locali-
zation function (ELF) images were drawn by VESTA 
(Momma and Izumi 2011).

3  Results and discussion
We first studied the structural stability of the graphene 
substrate doped with FeN3 molecules (Fig. 1). As shown 
in Fig.  1a, b, the structure of FG was not planar. This 
phenomenon is attributed to the larger size of Fe atoms 
compared to the C atom, which renders Fe non-planar; 
further, this property may aid in providing efficient 
adsorption sites (Miao et al. 2021). The electronic prop-
erties of G and FG were then explained by the electron 
localization function (ELF) and band calculation. As 
the ELF plots shown, there were conspicuous electron 
transformations in FG, which could change the adsorp-
tion performance of G (Fig.  1c, d and Additional file  1: 
Fig. S1). Furthermore, band calculation was carried 
out to study the electron transfer ability and electronic 
characters. The computed results of the band showed 
that G and FG exhibited metallic properties and  facili-
tated electron exchange for GHG adsorption (Fig. 1e, f ). 

Ea = Egas−substrate − Egas + Esubstrate ,

�ρ = ρgas−substrate − ρgas − ρsubstrate,
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Contrastingly, a distinct orbital spin in FG was observed, 
which is attributed to the introduction of Fe atoms, ren-
dering can render electron transfer easy for the adsorp-
tion of GHGs (Légaré et al. 2018).

Next, the bond angle and length were used to com-
pare the adsorption difference of G and FG for GHGs 
(Fig.  2a–f). Compared with the GHGs-G adsorption 
systems, the bond angles (H-C-H, O-C-O, N-O-N) of 
the GHGs-FG adsorption systems were 104.75°, 148.89°, 
and 99.34°, respectively, which were all lower than those 
of GHGs-G adsorption systems (109.26°, 179.76°, and 
179.31°). These results imply the excellent anchoring abil-
ity of FG for GHGs, which can aid in reduction of GHG 
emissions from soil to air(Wang et al. 2022a). Besides, the 
 CO2 and  N2O on FG exhibit a longer bond length (1.19 Å 
and 1.39 Å) than those adsorbed on G (1.18 Å and 1.20 
Å), which is attributed to the strong adsorption ability of 

FG for GHGs. However, there was no noticeable differ-
ence in bond length (1.10 Å) for  CH4 on G and FG, which 
may be due to the weaker electron exchangeability for FG 
adsorbing  CH4 than adsorbing  CO2 and  N2O. The calcu-
lations of adsorption energy were further used to ana-
lyze the anchoring performance of G and FG for GHGs. 
As the previous  studies proposed, the small adsorption 
energy means the weak anchoring ability (Hou et  al. 
2016; Wang et al. 2022b). In contrast with the adsorption 
energies of  CH4,  CO2, and  N2O adsorbed on G (–0.95, 
−0.99, and −1.00 eV), the adsorption energies of FG 
for  CH4,  CO2, and  N2O all improved (–1.37, −1.54, and 
−2.91 eV), demonstrating the greater anchoring ability of 
FG for GHGs (Fig. 2g).

To comprehend the adsorption reaction mechanism, 
the electronic performances of the adsorption systems 
were computed. At the outset, the differences in the 

Fig. 1 Schematics of G (a) and FG (b), ELF diagrams of G (c) and FG (d), band structures of G (e) and FG (f)
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electronic charge density of GHGs adsorbed on differ-
ent substrates are displayed in Fig.  3 and Additional 
file 1: Fig. S2, to explain the status of charge transfer and 
redistribution. As shown in Fig.  3d–f, there were dis-
tinct existing accumulation and depletion regions of the 
charge in GHGs-FG adsorption systems. It is worth not-
ing that the inferior performance of charge redistribution 
was observed in GHGs-G adsorption systems, despite 
their larger isosurface value (Fig. 3a–c). The main reason 
for the above differences is that the adsorption of GHGs 
by FG was physical chemisorption, while G only exhib-
ited physical adsorption behavior.

The ELF plots further prove the behavior of elec-
tron charge transfer of GHGs-G or -FG adsorption 
systems. As shown in Fig.  4a–c, there were apparent 
improvements in both GHG molecules and substrates 
upon adsorption of GHGs on FG, with more noticeable 
changes displayed in neighboring atoms, especially at 
the direct adsorption sites. However, these performances 
were difficult to find in GHGs-G adsorption systems 
(Additional file  1: Fig. S3). The results of the electron 
charge density difference and ELF plots proved that the 
distribution of the charges changed while the GHGs 
adsorbed on FG. The Bader charge analysis was com-
puted to further evaluate the charge transfer ability of 

GHGs-G or -FG adsorption systems. As the previous 
study confirmed, the greater the charge transformation, 
the stronger the ability of molecule restriction (Wang 
et  al. 2022b). Combined with the low electron trans-
fer numbers of G for  CH4,  CO2, and  N2O (0.00, 0.01, 
and 0.02 e), the FG showed satisfactory results for GHG 
adsorption, wherein the number of electron transfers 
for  CH4,  CO2, and  N2O increased to 0.03, 0.42, and 0.83 
e, respectively. Additionally, as shown in Additional 
file  1: Table  S1, the number of electron changes mainly 
occurred in Fe atoms and GHG molecules, with a small 
difference in the number of electron changes in C atoms, 
which is consistent with the implications of Figs. 3 and 4.

The density of state (DOS) and partial density of state 
(PDOS) analyses were further used for an in-depth 
evaluation of the mechanism of electron transfer and 
orbital contribution for adsorption systems. As shown in 
Fig. 5a–c, the energy shift could be seen after  CH4,  CO2, 
or  N2O was adsorbed on FG. These results illustrate that 
the electron state has been transformed in GHGs-FG 
adsorption systems and prove that the FG can inhibit 
GHGs via physico-chemical adsorption. However, there 
is no evidence that the energy shift occurred during the 
 CH4,  CO2, or  N2O adsorbing on G, implying the pres-
ence of only physical adsorption behavior in GHGs-G 

Fig. 2 Schematics of  CH4 on G (a) and FG (d), the  CO2 on G (b) and FG (e),  N2O on G (c) and FG (f), Adsorption energies of GHGs on G and FG (g)
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adsorption systems. In addition, the PDOS analyses of 
GHGs-FG were used to study the orbital contribution. As 
shown in Fig. 5d–f and Additional file 1: Fig. S4, there was 
a clear exhibition that a drastic energy up- or down-shift 
of the electron of FG (Fe d and N p orbital) and GHGs 
(C p, O p, and N p orbital) occured when  CH4,  CO2, or 
 N2O adsorbed on FG, which may be the major induction 
for the electron energy shift in GHGs-FG adsorption sys-
tems. However, there was no noticeable electron energy 
shift electron in GHGs-G adsorption systems, which pro-
vided evidence that G could restrict  CH4,  CO2, or  N2O by 
physical adsorption alone (Additional file 1: Fig. S5).

4  Conclusions
In summary, we have proposed an effectively modi-
fied biochar material,  FeN3-doped biochar, to reduce 
the emissions of GHGs in paddy fields and revealed the 
adsorption effect and mechanism via first principles cal-
culations. Comparing with pure biochar, the  FeN3-doped 
biochar exhibited satisfactory adsorption ability for vari-
ous GHGs in paddy fields  (CH4,  CO2, and  N2O), which 
not only changed the structure of GHG molecules, but 
also  improved the adsorption energies to −1.37, −1.54, 
and −2.91  eV, respectively. The electron charge density 

Fig. 3 Charge density difference of the front views of  CH4 on G (a) and FG (d),  CO2 on G (b) and FG (e),  N2O on G (c) and FG (f) The isosurface 
is set to 6 ×  10− 5 e Å‑3 in GHGs‑G and set to 4 ×  10− 4 e Å‑3 in GHGs‑FG. Note that red and yellow correspond to charge depletion and charge 
accumulation
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difference, ELF, and Bader charge analyses further con-
firmed that the  FeN3-doped biochar displayed physico-
chemical adsorption ability, which was different from that 
of pure biochar. In addition, the DOS and PDOS analyses 
revealed that the factor responsible for  FeN3-doped bio-
char to exhibit excellent adsorption ability is occurrence 
of the drastic energy up- or down-shift of the electron for 
Fe d, C p, O p, or N p orbitals upon adsorption of  CH4, 
 CO2, or  N2O.

Consequently, our study suggested an advanced modi-
fied biochar material for reducing the GHG emissions in 
paddy fields and investigated the adsorption property and 
mechanism of  FeN3-doped biochar for GHG mitigations, 
which provided a strategy for the exploration of biochar 
modification and efficient emission reduction materials.

Fig. 4 ELF diagrams of  CH4 (a),  CO2 (b) and  N2O (c) on FG. d The number of charge transfer of the GHGs on G and FG
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Additional file 1: Fig. S1 ELF diagram of thetop view of Fe@G. Fig.S2 
Charge density difference of the top views  ofCH4 on G (a) and FG (d), the 
 CO2 on G (b) and FG (e), the  N2O on G (c)and FG (f), The isosurface is set 
to6×10‑5 e Å‑3 in GHGs‑G and set to 4×10‑4 e Å‑3in GHGs‑FG. Note that 
red and yellow correspond to charge depletion and chargeaccumula‑
tion. Fig.S3 ELF diagram of  CH4 (a),  CO2 (b) and  N2O (c) on G. Fig. S4 The 
partial density of states of N p orbital of  CH4 (d),  CO2 (e) and  N2O(f) on 
FG. Fig. S5 The partial density of states of  CH4(d),  CO2 (e) and  N2O(f) on 
G. Table S1. The number of charge transfers of the GHGs on FG.
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