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Abstract 

Long-term consumption of tea with high fluoride (F) content has a potential threat to human health. The applica-
tion of different amounts of biochar to reduce F accumulation in tea leaves has been little studied. In this study, a pot 
experiment was conducted to investigate the effect of biochar amounts (0, 0.5%, 2.5%, 5.0%, 8.0%, and 10.0%, w/w) 
on tea F content during the tea plant growth. Changes in tea quality, soil F fraction, and soil properties caused by 
biochar and the relationship with tea F accumulation were also considered. The results showed that the application of 
biochar amendment significantly reduced water-soluble F contents in tea leaves compared to CK (without biochar), 
especially in the 8.0% treatment (72.55%). Overall, biochar contributed to improving tea polyphenols and caffeine, but 
had no significant impact on free amino acids and water leachate. Compared with CK, 5.0–10.0% biochar significantly 
increased soil water-soluble F content due to the substitution of  F− with  OH− under high pH. Additionally, biochar 
applied to tea garden soil was effective in decreasing the soil exchangeable aluminum (Ex-Al) content (46.37–91.90%) 
and increasing the soil exchangeable calcium  (Ca2+) content (12.02–129.74%) compared to CK, and correlation analy-
sis showed that this may help reduce F enrichment of tea leaves. In general, the application of 5.0–8.0% biochar can 
be suggested as an optimal application dose to decrease tea F contents while simultaneously improving tea quality.

Highlights 

• Biochar application significantly reduced tea F accumulation varied with amounts.
• Biochar improved nutrients uptake, which was beneficial for tea quality improvement.
• The change in  caused by biochar played an essential role in reducing tea F.
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Graphical Abstract

1 Introduction
Fluoride (F) is a widely reported pollutant that enters soil 
and water through mining, coal burning, smelting, fluori-
dated fertilizers and pesticides (Wang et al. 2019; Rizzu 
et al. 2021). Tea (Camellia sinensis), one of the most eco-
nomically important crops in China, is recognized as a 
hyperaccumulator of F (Luo et al. 2021; Peng et al. 2021). 
Most of the F absorbed by tea plants from the soil accu-
mulates in the leaves and can be as high as 2000 mg  g-1in 
mature or fallen leaves (Yi et al. 2017; Fung et al. 1999). 
Tea, obtained from the leaves of tea plants, is widely con-
sumed as a non-alcoholic beverage worldwide and is also 
a significant source of dietary F (Satou et  al. 2021; Lin 
et al. 2022). When brewing, approximately 18.0–99.0% of 
F in tea leaves is released into the tea broth (Koblar et al. 
2012; Lv et al. 2013; Das et al. 2017). Drinking tea with a 
normal concentration of F is considered somewhat to be 
safe and even beneficial to health (Guo et al. 2020). How-
ever, long-term high consumption of tea made from older 
leaves (e.g., dark tea) could lead to tea-drinking fluorosis, 
such as dental fluorosis and bone fluorosis, which has 
been identified as one of the endemic species of fluorosis 
in the western minority areas of China (Zhang et al. 2019; 
Kabir et al. 2020; Chu et al. 2021). Additionally, too much 
tea F content could affect the tea plant’s growth and the 
taste and aroma of tea leaves (Yang et al. 2015; Cai et al. 
2016). Therefore, it is very urgent to control tea F content 
strictly. However, the current efforts to reduce F in tea 
mainly depend on tea processing, and an effective means 

to prevent the accumulation of F during the growth of tea 
plants is lacking. Thus, F control and reduction is neces-
sary for tea gardens. Exploring effective measures to pre-
vent the F accumulation in tea raw materials is of great 
importance for reducing the potential human health 
risks.

At present, many technologies such as biosorption, 
chemical stabilization, soil washing, and electrokinetic 
remediation have been used to remove F from the envi-
ronment (Zhou et al. 2014; Moon et al. 2015; Natarajan 
and Al Qasmi 2018; Wang et  al. 2022a). Several stud-
ies have reported that adding exogenous substances e.g. 
CaO, dolomite, lime, peat, KCl, and humate to tea garden 
soil seems to be a more sustainable and effective immo-
bilisation strategy to reduce F uptake by tea plants (Ruan 
et al. 2004; Yi et al. 2017; Huang et al. 2020). Biochar, as a 
carbon-rich amendment material produced by pyrolysis 
of agricultural wastes under limited oxygen conditions, is 
widely used in soil pollution remediation, promoting car-
bon sequestration, and enhancing crop yield because of 
its high carbon content, large specific surface area, and 
rich functional groups (Hossain et  al. 2020; Wang et  al. 
2022c; Yan et  al. 2022b; Yao et  al. 2022). Kumar et  al. 
(2022) reviewed the promising potential of biochar mate-
rials for the treatment of fluoride-contaminated ground-
water and industrial wastewater. Fan et  al. (2022) and 
Zhu et al. (2016) found that biochar reduced the mobil-
ity of F in soil and had a significant fixation effect. Ghas-
semi-Golezani and Farhangi-Abriz (2019) reported that 
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biochar helps to reduce the F solubility in fluoride-con-
taminated soil thereby reducing the F content in safflower 
tissues. However, to date, only one study has examined 
biochar as a soil amendment to reduce F content in tea 
leaves (Gao et  al. 2012). In addition, biochar is increas-
ingly being used to improve tea garden soil properties to 
meet the growth needs of tea plants, thus improving tea 
quality (Wang et al. 2014; Yan et al. 2021; Yi et al. 2022). 
All these aspects suggest that a better knowledge on the 
effects of biochar on tea F accumulation and tea quality 
is critical for the sustainable development of tea garden 
ecosystems.

The remediation performance of biochar in soil and 
plants is not only influenced by the feedstock and pre-
paring conditions, but also depends to a large extent on 
the application rates (Lv et  al. 2021; Nobaharan et  al. 
2022; Yan et  al. 2022b). However, there are contradic-
tory reports on the fixation of soil available F (water-
soluble state F, Ws-F) at different biochar amounts. Sun 
et al. (2017) found that the adsorption amount and rate 
of Ws-F in tea garden soil decreased gradually with the 
increase of biochar addition (0.25–2.0%, w/w). However, 
other studies have shown that biochar amendment dos-
age from 4.0% to 12.0% gradually enhanced the adsorp-
tion of Ws-F in F-contaminated soil (Fan et al. 2022). It is 
well known that tea plant F mainly depends on soil F bio-
availability (Sun et al. 2022). Unfortunately, none of these 
studies above examined whether biochar would affect the 
accumulation of F in tea leaves. This means that the effect 
of biochar amounts on F uptake and accumulation in the 
soil-tea system is a complex process that lacks compre-
hensive understanding. Gao et  al. (2012) only explored 
the effect of 2.5% and 5.0% biochar on the accumula-
tion of F in tea leaves, and the effect of higher amount is 
unknown. Therefore, it is necessary to expand the dose 
range of biochar application to verify its reduction effect 
on tea F and explore the potential mechanism. The phys-
icochemical properties of biochar are the main deter-
minant of their ability to change the physicochemical 
properties of soil (Shi et al. 2020). Previous studies have 
shown that biochar mainly influences soil pH, exchangea-
ble aluminum (Ex-Al), and the presence of soil exchange-
able base cations, all of which affect soil F enrichment by 
tea leaves (Fung et al. 1999; Ruan et al. 2004; Wang et al. 
2021). Based on the above analysis, we hypothesized that 
the more the amount of biochar applied, the better the 
effect of tea F reduction.

Tea is a typical acid-loving crop, which can absorb and 
accumulate large amounts of soil Al (Jiang et  al. 2022; 
Yang et  al. 2022). Previous studies have shown that soil 
Ws-F will chelate with soil  Al3+ to form F-Al complexes, 
which will be absorbed by the roots of tea plants and 
then transported to the leaves (Ruan et  al. 2003; Zhang 

et al. 2012, 2015). Increasing the supply of exogenous Al 
can promote the accumulation of F in tea leaves (Zhang 
et al. 2015). Long et al. (2021) showed that urea causes an 
increase in the dissolved F and Al content in tea garden 
soil and migrates to tea as F-Al complexes, and the key 
to reducing F content in tea is to reduce the F–Al com-
plex content in the soil. Furthermore, it has also been 
reported that F and Al are present in tea in the form of 
ligand compounds (e.g.,  AlF2+,  AlF2

+, and  AlFx
(3−x)−), 

which may help to weaken the toxicity of F (Ruan et al. 
2003; Xie et al. 2007; Cai et al. 2014). Based on the above 
studies, it can be inferred that the presence of Al in the 
soil plays a key role in the enrichment of F in tea leaves. 
In recent years, excessive applications of nitrogen (N) fer-
tilizers and large tea harvests have increased the acidifi-
cation rate of tea garden soil (Li et  al. 2016; Yang et  al. 
2018). As soil pH decreases significantly, soil exchange-
able Al (Ex-Al) becomes more soluble and effective, and 
high levels of Al enrichment adversely affect the growth 
and quality of tea plants (Yan et  al. 2018, 2020). Many 
studies have reported that biochar can increase soil pH to 
effectively alleviate soil Al toxicity (especially Ex-Al) and 
is an effective way to avoid soil acidification in tea  gar-
dens (Wang et  al. 2018; Shi et  al. 2020; Li et  al. 2021; 
Dong et  al. 2022). In conclusion, although the presence 
of Al in soil has been reported to affect the transport and 
enrichment of tea F, this aspect has not been sufficiently 
studied so far, let alone under biochar application condi-
tions. Whether the effect of biochar on Ex-Al in tea gar-
den soil will reduce the formation of F-Al complexes to 
reduce tea F accumulation has not been investigated and 
still largely unknown.

The aims of the present work were: (i) to study the 
effects of different biochar treatments on tea F accumula-
tion, as well as on tea quality; (ii) to explore the effects on 
soil properties, e.g., pH, exchangeable base cations, and 
soil Ex-Al; and (iii) to investigate the potential mecha-
nism of biochar treatments to reduce F accumulation in 
tea leaves. The obtained information helps to understand 
the usage of biochar in the tea gardens, which is of good 
application to realize the healthy and sustainable devel-
opment of the tea garden ecosystem in southern China.

2  Materials and methods
2.1  Soil and biochar characteristics
Acid yellow soil samples (0–20 cm) were collected in a 
tea garden (111°53′E, 28°51′N) in Yiyang city, Hunan 
Province, China. After air-drying and removing plant 
debris and stones, the soil samples were passed through 
a 2.0  mm sieve for pot experiments. Soil pH was 5.30, 
organic carbon was 13.48  g   kg−1, total nitrogen (TN) 
was 1.46 g   kg−1, total phosphorus (TP) was 0.48 g   kg−1, 
total potassium (TK) was 16.36  g   kg−1, soil total F 
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(T-F) content was 553.74  mg   kg−1, and soil Ws-F was 
2.90  mg   kg−1. Biochar  was produced by slow pyroly-
sis of miscellaneous wood materials at 500 ℃ under 
anoxic conditions for 2–3  h and provided by Henan 
Lize Environmental Protection Technology Co., Ltd 
(Zhengzhou, China) (Yan et  al. 2022a). Biochar charac-
terization    included pH in  H2O (8.86), specific surface 
area of 26.03  m2  g−1, particle size of 35.46 um, total pore 
volume  of 0.019  cm3  g−1, T-F content  of 229.96 mg  kg−1, 
and Ws-F  of 2.67 mg  kg−1. Other basic properties of the 
studied soil and biochar are listed in Additional file  1: 
Table S1.

2.2  Pot experiment
In general soil amendment processes, although biochar at 
rates within 5.0% is often used to stabilize contaminants 
in contaminated soils, high application rates (5.0% or 
above) are usually required to attain significant effect (Ali 
et al. 2020; Jun et al. 2020; Azeem et al. 2021). In particu-
lar, 10.0% biochar is also frequently used to reduce the 
mobility of contaminants in the soil, as shown in Addi-
tional file  1: Table  S2. Therefore, in this study, biochar 
was repeatedly mixed with 7.0 kg dry soil in plastic pots 
(25.0  cm high, 18.0  cm in bottom diameter, 23.0  cm in 
top diameter) to prepare 6 treatments at doses of 0, 0.5%, 
2.5%, 5.0%, 8.0%, and 10.0% (mass ratio of biochar/soil, 
w/w), labelled as CK, B1, B2, B3, B4 and B5, respectively. 
Three 1-year-old tea seedlings (Fudingdabai, 35.0  cm 
high) from the Tea Research Institute of Hunan Prov-
ince, Changsha, China were transplanted into each pot. 
Each of the six treatments was replicated three times, 
with each replicate consisting of 3 pots to ensure sam-
pling volume, and the experiment had a total of 54 pots. 
The tea plants were cultivated in a solar greenhouse and 
watered regularly to maintain soil moisture at 75.0% of 
field capacity during the growth period. There was no 
topdressing and manual weeding, and insect removal 
during the experiment.

2.3  Plant sample analysis
Tea seedlings were transplanted on January 18, 2021, and 
tea leaves were picked on October 24, 2021 to ensure 
that tea leaves have enough growing period. The 4–6th 
mature leaves were picked from each treatment (9 pots), 
and mixed randomly in every 3 pots with a total weight of 
not less than 300.0 g per treatment. Tea samples collected 
would be put into polyethene plastic bags and recorded 
with label paper. After picking, the tea seedlings were 
carefully uprooted and treated with deionized water. 
The roots, stems, and leaves were separated and put into 
clean envelopes for green processing. The tea was dried 
at 60 ℃ to constant weight, and the tea Ws-F test method 
is in line with national standards (GB 19965-2005, China 

standard). The T-F in tea plant tissues was referred to the 
method of Gan et al. (2021) by the alkali fusion method. 
The contents of Ws-F and T-F were determined by the F 
electrode method (PF-202-L, Leici, China). The water-
soluble Al (Ws-Al) contents in tea plant tissues were 
extracted using the above-described Ws-F method, and 
determined using ICP-OES (ICPE-9000, Shimadzu, 
Japan). The tea polyphenols (TPP) were determined by 
(GB/T 8313-2018), free amino acids (FAA) by (GB/T 
8314-2013), caffeine (CAF) by (GB/T 8312-2013), and tea 
water leachate (WLS) by (GB/T 8305-2013).

2.4  Soil samples analysis
After tea harvest, pot topsoil (0-15  cm) was collected 
for air drying and grinding. The soil F fractions can be 
classified as water-soluble F (WS-F), exchange F (Ex-F), 
organically bound F (OM-F), Fe/Mn oxides-bound F (Fe/
Mn-F), and residue (Res-F). The soil F  fraction sequential 
extraction procedure was    referred to Gao et al. (2012) 
and Gan et al. (2021), and the content was determined by 
the F electrode method. Briefly, soil  Ftotal was extracted 
by the alkali fusion method, Ws-F was extracted with 
70 ℃ hot water; Ex-F was extracted with 1  M  MgCl2; 
OM-F was extracted with 0.04 M  NH2OH·HCl in 20.0% 
 CH3COOH; Fe/Mn-F was extracted with 0.02 M  HNO3, 
30.0%  H2O2, 3.2 M  NH4AC,  and Res-Fwas extracted by 
 Ftotal minus other F fractions, with GBW07939 as the 
standard control. Soil exchangeable Al (Ex-Al), extracted 
with 1 M KCl, was measured using ICP-OES (Ruan et al. 
2006). Soil pH was measured at a 1:2.5 ratio of solid-to-
liquid. Soil exchangeable base cations were analyzed 
according to NY/T 295–1995.

2.5  Data and statistical analysis
Data were processed in SPSS package (version 25.0) and 
expressed as means ± standard deviation (SD) or means 
of three replicates. Statistical differences between control 
and treatment groups were performed using the ANOVA 
method, followed by the LSD tests (p < 0.05). Pearson’s 
correlation analysis was conducted to determine the tea 
F content associations with soil-tea system parameters. 
The figures in this study were drawn by Origin 2020b.

3  Results
3.1  Effects of biochar on tea F accumulation
This study measured two types of tea plant F contents 
based on the laboratory conditions, including Ws-F and 
T-F. As shown in Fig. 1a, the Ws-F content of tea leaves 
in the biochar treatment group was significantly lower 
compared with CK during the tea plant growth period, 
and the inhibition ability of different amounts of biochar 
on Ws-F accumulation was different. The WS-F of tea 
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leaves in the control group was 715.92 mg  kg−1, occupy-
ing 48.8% of tea T-F (Additional file 1: Fig. S1). Notably, 
the biochar-treated tea also exhibited low T-F accumu-
lation and decreased significantly with increasing doses 
( p < 0.05), which was consistent with the trend of Ws-F 
in tea leaves. The accumulated Ws-F was mainly concen-
trated in tea leaves, which accounted for 94.60% of the 
total accumulated Ws-F in the whole tea plants (Fig. 1a). 
Compared with CK, biochar reduced the tea WS-F by 
27.74%, 48.93%, 69.60%, 72.55%, and 51.47%, respec-
tively. From this result, it can be inferred that the greater 
the amount of biochar, the smaller the change in WS-F 
content of tea leaves: B1 (27.74%) > B2 (21.19%) > B3 
(20.67%) > B4 (2.95%) > B5 (-21.08%). In addition, the 
decrease in tea Ws-F was not proportional to the increase 
in the amount of biochar, and the 8.0% treatment had the 
lowest  , 196.54 mg   kg−1. However, there was no signifi-
cant difference  in WS-F accumulated between 2.5% and 
10.0% biochar application rates (p < 0.05) by continuing 
to increase the amount of biochar. It can be seen that our 
initial hypothesis was only partially met, indicating that 
there  was a limit to the F reduction by biochar, and 8.0% 
reached the abundance value.

In this study, adding biochar to tested soil did not show 
a significant effect on the Ws-F content of tea roots com-
pared with the control (Fig.  1a). We observed that bio-
char treatments in pot soils significantly decreased the 

Ws-F uptake  by tea stems. The T-F contents in tea stems 
significantly decreased, and the changes in roots were 
not significant (p < 0.05) at different biochar applica-
tion rates compared to CK (Additional file 1: Fig. S1). It 
is worth mentioning that 5.0% biochar showed a better 
inhibition effect on Ws-F enrichment of tea stems, but 
the migration of Ws-F from roots to stems increased with 
the further increase of biochar content. The 8.0% biochar 
treatment had the lowest T-F   content in stems, and that 
in root was the lowest at 0.5%, which were 39.4% and 
15.6% lower than CK, respectively.

Tea plant can take in both F and Al, and the decrease 
of F content in tea by biochar was closely related to the 
effect of biochar on Al in tea (Ruan and Wong 2001; Gao 
et  al. 2014). The distribution of Ws-Al contents in tea 
leaves, stems, and roots under different biochar treat-
ments is listed in Fig.  1b. The Ws-Al contents of tea 
leaves, stems, and roots in the control soil  were signifi-
cantly higher than the Ws-F contents of the same parts 
(p < 0.05). The accumulation of Ws-Al contents in tea 
plant tissues in all treatments was leaves > roots > stems. 
In general, high biochar amounts (8.0–10.0%) were sig-
nificantly more effective in inhibiting Ws-Al in tea stems 
and roots than low amounts (0.5–2.5%). Except for the 
10.0% biochar treatment, the Ws-Al of tea leaves, stems, 
and roots significantly decreased with increasing applica-
tion rates (p < 0.05). Ws-Al of tea roots and stems reached 
the lowest value at 8.0% addition, while tea leaves at 5.0% 
addition, with 47.43%, 45.14%, and 88.12% reduction 
compared to CK. Additionally, the highest application 
rate (10.0%) of biochar again increased tea Ws-Al content 
compared with 8.0% treatment, which was also observed 
in tea Ws-F.

3.2  Effects of biochar on tea quality
Biochar treatments had significant effects on tea qual-
ity (p < 0.05) (Fig.  2). The results of the study revealed 
that the contents of TPP fluctuated between 14.24% 
and 18.31% in all treatments. Compared with untreated 
soil,   2.5–10.0% biochar significantly increased the con-
tents of TPP by 17.6%, 19.0%, 18.0%, and 9.1% (p < 0.05), 
respectively (Fig. 2a). Moreover, adding 0.5% biochar sig-
nificantly increased the FAA content compared to CK, 
and a higher biochar content caused the decrease of FAA 
content, although there was no significant difference 
(p < 0.05) (Fig. 2b). Compared to untreated soil, the high-
est FAA content was observed in the 0.5% biochar treat-
ment (2.76%), followed by 2.5% biochar (2.41%).

The results showed that the WLS and TPP con-
tents showed a similar trend as influenced by the bio-
char amount, e.g., 0.5% treatment exhibited the lowest 
value and maximum content in 5.0% biochar-treated 
soil (Fig.  2c). Interestingly, the WLS content of the 

Fig. 1 Effects of biochar treatments on water-soluble fluorine (a) and 
water-soluble aluminum (b) in tea plants. Different lowercase letters 
represent significant differences between different treatments at 
p < 0.05
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control treatment was the lowest,  and none of the bio-
char treatments differed from CK to a significant level. 
Compared with the control, the application of biochar 
increased the content of CAF in tea (Fig.  2d). There 
was no significant difference in the effect of 0.5% and 
2.5% biochar (p < 0.05). The highest content of CAF 
was 1.77% in 5.0% biochar treatment soil, which was 
twice as much as that of CK, but the CAF content in 
the leaves decreased as the amount of biochar applied 
in the soil increased. In general, in this study, we found 
that 5.0–8.0% biochar has a greater advantage for TPP, 

WLS, and CAF enhancement than lower amounts of 
biochar (0.5–2.5%).

3.3  Effects of biochar on soil F fractions and soil properties
In this current study, soil F was classified into five frac-
tions using a sequential chemical extraction method 
(Table  1). The changes in F fraction contents varied 
among different amounts of biochar treatments. No sig-
nificant differences in soil  Ftotal and Res-F among the 
six treatments were observed on the basis of ANOVA 
(p < 0.05). The soil Ws-F content decreased and then 

Fig. 2 Effects of biochar treatments on the quality of tea leaves. a–d: tea polyphenol (TPP), free amino acid (FAA), water leachate (WLS), and 
caffeine (CAF). Different lowercase  letters represent significant differences between different treatments at p < 0.05

Table 1 Effects of biochar treatments on contents of different soil F fractions

The values in the table are presented as mean ± SE (n = 3), the same letter in a column indicates no significant difference at p < 0.05 according to the least-significant 
difference (LSD).  FTotal: soil total fluorine;  Ws-F: soil water-soluble fluorine; Ex-F: soil exchange fluorine; OM-F: soil organically bound fluorine; Fe/Mn-F: soil 
ferromangan-bound fluorine; Res-F: soil residual fluorine

Treatments FTotal W s-F Ex-F OM-F Fe/Mn-F Res-F
mg  kg−1 mg  kg−1 mg  kg−1 mg  kg−1 mg  kg−1 mg  kg−1

CK 454.25 ± 31.13a 2.54 ± 0.13c 0.16 ± 0.02b 2.11 ± 0.07b 4.70 ± 0.31b 444.66 ± 30.95a

B1 427.57 ± 30.30a 2.25 ± 0.03c 0.15 ± 0.01b 2.18 ± 0.23b 4.78 ± 0.33ab 418.21 ± 29.75a

B2 418.18 ± 29.00a 2.49 ± 0.09c 0.15 ± 0.01b 2.37 ± 0.23ab 5.19 ± 0.23a 407.96 ± 29.28a

B3 421.79 ± 50.61a 3.17 ± 0.09b 0.17 ± 0.01b 2.48 ± 0.50a 4.26 ± 0.28bc 411.66 ± 51.16a

B4 413.66 ± 10.17a 4.16 ± 0.54a 0.19 ± 0.01ab 2.28 ± 0.18ab 4.09 ± 0.19c 403.02 ± 10.62a

B5 409.82 ± 48.41a 4.37 ± 0.35a 0.20 ± 0.01a 2.36 ± 0.14ab 4.02 ± 0.15c 398.82 ± 48.63a
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increased, whereas an opposite trend was observed 
for the soil Fe/Mn-F. The changes in soil Ex-F and 
OM-F were irregular. Results showed soil Ws-F content 
among the biochar treatments in all tested soils ranged   
from 2.25 to 4.37 mg   kg−1. Soil Ws-F contents were not 
affected by the lower biochar application rate (0.5–2.5%) 
when compared to CK. However, it could be clearly seen 
that the application of 5.0–10.0% biochar significantly 
increased the soil Ws-F content by 24.8%, 63.8%, and 
72.0%, respectively (p < 0.05). Overall, the difference in 
soil Ws-F content was greatest between 2.5% and 5.0% 
biochar. Compared with the control, the high applica-
tion rate of biochar (8.0–10.0%) had a greater impact on 
Fe/Mn-F, while the difference was not significant at 0.5% 
application rate.

Soil properties, including soil pH, exchangeable base 
cations, and Ex-Al under different treatments, are shown 
in Table 2. Different amounts of biochar were significant 
for the soil pH. The 0.5% and 2.5% treatments slightly 
decreased pH compared with the control (p < 0.05). Con-
versely, the 5.0%, 8.0%, and 10.0% treatments significantly 
increased soil pH by 0.81, 1.37, and 1.63 units, respec-
tively (p < 0.05). Compared with other treatments, the dif-
ference in soil pH was more evident under 5.0% and 8.0% 
biochar treatments.

Changes in exchangeable base cations were measured 
at the end of the pot experiment. Results showed that 
exchangeable  Ca2+ in untreated soil was the main com-
ponent of exchangeable base cations, accounting for 
80.5%. The exchangeable  Na+ contents were higher in all 
treatments than in the control treatment, but statistically 
insignificant (p < 0.05). As seen in Table 2, the data about 
exchangeable  K+,  Ca2+, and  Mg2+ were not affected by 
lower biochar application rates (0.05–2.5%) compared 
to the unamended soil. The exchangeable  K+,  Ca2+, and 
 Mg2+ significantly increased (p < 0.05) only at the high 
biochar rates (5.0–10.0%). The 10.0% biochar treatment 
enhanced soil exchangeable  K+,  Ca2+, and  Mg2+ con-
tents, which were 3.4, 2.3, and 1.3 times higher than CK, 
respectively.

Compared with the increase of soil pH, soil Ex-Al 
content decreased with increasing biochar applica-
tion rate. According to the current study, soil Ex-Al 
contents of the different amount treatments were 
B1 > CK > B2 > B3 > B4 > B5 in descending order. In com-
parison to CK, the application of 2.5–10.0% biochar 
rates significantly decreased soil Ex-Al content (p < 0.05), 
except for 0.5%, and the decreases were 46.37%, 88.26%, 
91.50%, and 91.90% for each treatment, respectively. 
The soil Ex-Al content was 1.93 mg  kg−1 when added at 
5.0%, and the difference in the results was not statisti-
cally significant (p < 0.05) when the amount continued to 
increase.

3.4  Correlation analysis
Figure  3  shows the correlation analysis of F in the soil-
tea system under different biochar treatments. The Ws-F 
contents of tea leaves were extremely significant positive 
correlated with the tea stems Ws-F content, the Ws-Al 
contents of tea roots, stems, and leaves, and the soil 
Ex-Al contents, and the correlation coefficient reached 
0.71, 0.90, 0.91, 0.95, and 0.89, respectively (p < 0.01). 
Tea Ws-F contents were significantly negatively corre-
lated with soil Ws-F and OM-F contents (p < 0.05) and 
highly significantly negatively correlated with soil pH, 
exchangeable  K+,  Ca2+, and  Mg2+ (p < 0.01). What could 
be observed was that tea Ws-F contents were positively, 
but not significantly, correlated with the contents of tea 
root Ws-F, soil Fe/Mn-F and Res-F.

The TPP and CAF were highly negatively correlated 
with tea Ws-F (p < 0.01). Changes in tea Ws-F con-
tents were significantly and positively correlated with 
FAA (p < 0.05). The change in tea Ex-Al contents was 
significantly negatively correlated with TPP (p < 0.05) 
and highly significantly negatively correlated with CAF 
(p < 0.01). In terms of soil parameters, the TPP was posi-
tively correlated with soil OM-F (p < 0.05), and there 
was a highly significant negative correlation with Ex-Al 
(p < 0.01). The soil Ws-F and Ex-F had a significant direct 
negative effect on FAA. Whereas soil Ex-Al revealed 

Table 2 Effects of biochar treatments on soil pH, exchangeable base cations and exchangeable aluminum

The values in the table are presented as mean ± SE (n = 3), the same letter in a column indicates no significant difference at p < 0.05 according to the least-significant 
difference (LSD). pH: soil pH;  K+,  Na+, and  Ca2+,  Mg2+: soil exchangeable base cations; Ex-Al: soil exchangeable aluminum

Treatments pH K+ Na+ Ca2+ Mg2+ Ex-Al
cmol  kg−1 cmol  kg−1 cmol  kg−1 cmol  kg−1 mg  kg−1

CK 5.65 ± 0.08d 0.18 ± 0.04d 0.27 ± 0.06a 4.74 ± 0.60b 0.70 ± 0.06b 16.47 ± 0.96a

B1 5.11 ± 0.02f 0.17 ± 0.05d 0.28 ± 0.03a 5.31 ± 0.72b 0.71 ± 0.06b 16.73 ± 0.25a

B2 5.40 ± 0.08e 0.25 ± 0.02d 0.33 ± 0.10a 6.39 ± 1.04b 0.86 ± 0.10ab 8.83 ± 0.12b

B3 6.46 ± 0.09c 0.40 ± 0.02c 0.33 ± 0.04a 9.45 ± 1.12a 0.92 ± 0.11a 1.93 ± 0.34c

B4 7.02 ± 0.02b 0.49 ± 0.05b 0.34 ± 0.01a 10.66 ± 1.07a 0.84 ± 0.10ab 1.40 ± 0.16c

B5 7.28 ± 0.06a 0.62 ± 0.06a 0.30 ± 0.02a 10.89 ± 0.95a 0.90 ± 0.08a 1.33 ± 0.05c
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detect positive effects on FAA (p < 0.01). Meanwhile, the 
value of pH,  K+, and  Ca2+ all were negatively correlated 
with FAA (p < 0.01). In addition, no significant correla-
tions (positive or negative) were observed between WLS, 
CAF, and soil parameters.

4  Discussion
4.1  Biochar reduced tea F accumulation
Tea plant, as F hyperaccumulator, differs from other 
plants in that the above-ground F content is much higher 
than the below-ground F content (Peng et al. 2021). Large 
amounts of F absorbed by roots are readily transported 
through the xylem to mature leaves in the form of  F− 
and F-Al complexes without toxic symptoms (Ruan and 
Wong 2001; Ruan et  al. 2003; Niu et  al. 2020b). Similar 
to the results from Yang et al. (2016), the total F content 
in mature leaves in control soil was above 1000 mg  kg−1 
(Additional file 1: Fig. S1). Previous studies reported that 
up to 90.0–98.0%   Ws-F in tea plants was distributed in 
the leaves (Sha and Zheng 1994; Ruan et  al. 2003; Gao 
et al. 2012), which was consistent with this study. Com-
pared with tea T-F, tea   Ws-Fis closely related to bioavail-
ability and therefore poses a more toxic risk to human 
health (Yi et al. 2017; Peng et al. 2021). Gao et al. (2012) 
set the highest amount of charcoal or bamboo charcoal at 
5.0% and obtained the lowest  Ws-F accumulation. Ghas-
semi-Golezani and Farhangi-Abriz (2019) found that 
5.0% biochar was superior to 2.5% biochar for F reduc-
tion in safflower (Carthamus tinctorius L.) seedlings. 

However, researchers did not consider the effect of higher 
amounts of biochar on tea F levels. Our current study 
emphasizes the importance of different biochar amounts. 
In this case, the maximum amount was innovatively set 
at 10.0% in this study, which is twice the amount of bio-
char applied in tea garden in previous studies (Gao et al. 
2012; Wang et al. 2018; Yan et al. 2021). Compared with 
previous use of humic acid aluminum and polyphenol-
Ce adsorbents to reduce F accumulation in tea leaves by 
74.29% and 74.75% (Zhao et al. 2015; Huang et al. 2020), 
the 8.0% biochar treatment in this study was the best, 
reducing F accumulation by 72.55%, and the 5.0% and 
8.0% treatments were not significant. According to a pre-
vious report (Cao et al. 1996), the F content in tea is con-
sidered to be within the safe range when it is maintained 
between 100.0–300.0 mg  kg−1. Therefore, 5.0–8.0% could 
be considered as an acceptable amount of biochar appli-
cation. Interestingly, 10.0% biochar was not as effective 
in reducing F in tea leaves as 8.0%. This indicates that 
there is a threshold when the amount of biochar applied 
reaches a certain level at which the Ws-F content in tea 
leaves no longer decreases significantly, which has been 
shown in previous studies (Wang et al. 2022b; Yan et al. 
2022b). However, it is difficult to give specific explana-
tions of the results obtained, and further detailed investi-
gations are required. In particular, it is not clear whether 
this is attributable to the bioconcentration effect of F due 
to biomass reduction (Lv et al. 2021). Therefore, the effect 
of the amount of biochar application on tea biomass 

Fig. 3 Soil-tea plant system fluorine correlation analysis. WF-Leaf: soluble fluorine in leaf; WF-Stem: soluble fluorine in stem; WF-Root: soluble 
fluorine in root; WAl-Leaf: soluble aluminum in leaf; WAl-Stem: soluble aluminum in stem; WAl-Root: soluble aluminum in root; TPP: tea polyphenol; 
FAA: free amino acid; WLS: water leachate; CAF: caffeine; WS-F: soil water-soluble fluorine; Ex-F: soil exchange fluorine; OM-F: soil organically bound 
fluorine; Fe/Mn-F: soil ferromangan-bound fluorine; Res-F: soil residual fluorine;  K+,  Na+,  Ca2+, and  Mg2+: soil exchangeable base cations; Ex-Al: soil 
exchangeable aluminum. * and ** show the correlations significant at the 0.05 and 0.01 levels
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needs further study. In conclusion, the appropriate 
amount of biochar should be considered according to the 
purpose of production practice to achieve the maximum 
benefit while ensuring low cost.

Tea leaves are the most important F-accumulating tis-
sues of tea plants. The high F accumulation in tea leaves 
is mainly due to the particular absorption, transport and 
accumulation mechanism of tea roots (Zhang et al. 2012). 
Soil F fractions, especially soil Ws-F, are easily absorbed 
by tea roots and then translocated, metabolized, and 
accumulated in the tea leaves (Yin et al. 2016; Peng et al. 
2021). The present study revealed that the Ws-F content 
of tea leaves in the control was approximately 43 times 
that of the roots, which is consistent with the results of 
previous studies by Zhu et  al. (2019). Niu et  al. (2020b) 
found that F absorbed by tea roots was mainly trans-
ported through the xylem, but also partially through the 
bast of tea stems. The absorption of F by tea    rootswas 
linearly correlated with exogenous F, and active transport 
was the primary form of F transport in tea plants (Peng 
et  al. 2013; Zhang et  al. 2015). According to a previous 
report, the F content in roots and leaves reduced under 
the F-contaminated soil with different biochar treat-
ments (Ghassemi-Golezani and Farhangi-Abriz 2019). 
However, biochar applied to soil did not show significant 
effect on the uptake in T-F and Ws-F in tea roots com-
pared with the control in this paper. This contradicts the 
previous study by Gao et al. (2012), which found that the 
addition of charcoal and bamboo charcoal significantly 
reduced the Ws-F content of tea roots. Different experi-
mental conditions may explain the above differences.

4.2  Biochar helps to improve tea quality
At present, as a new type of agricultural fertilizer, biochar 
has been reported on the growth of maize, rape, citrus, 
and other economic crops, but there are few reports on 
the impact of tea quality (Zhang et al. 2021; Dong et al. 
2022; Yan et al. 2022b). Tea is the most universally con-
sumed healthy beverage worldwide. The potential health 
benefits of drinking have been extensively examined and 
are known to control blood sugar, prevent cardiovascular 
disease, boost the body’s immunity and suppress tumour 
cell formation (Bag et al. 2022). The TPP, FAA, WLS, and 
CAF are the four leading indicators characterizing the 
tea quality, mainly related to the aroma, soup color, and 
taste of tea (Samynathan et al. 2021; Liao et al. 2022). Gao 
et  al. (2012) indicated that bamboo charcoal and char-
coal at 0.5% and 2.5% had no significant effect on TPP, 
but significantly reduced CAF. In this paper, TPP and 
CAF at 2.5% were significantly higher than CK at 16.64% 
and 51.69% (p < 0.05). This can be attributed to differ-
ent biochar types and addition amounts (Nobaharan 
et al. 2022; Yan et al. 2022b). Similar to a previous report 

(Zhao et  al. 2022), biochar application (5.0%) tended to 
increase the WLS while increasing the TPP. For WLS 
and CAF, the results of Zhang et al. (2022) and Li et al. 
(2021) supported that biochar could help to improve 
them. Studies have shown that the appropriate content of 
TPP was around 20.0%, and too high would lead to bit-
terness and astringency directly affecting the quality of 
tea (Liao et al. 2022). This study showed that the content 
of TPP in each treatment fluctuated between 14.24% and 
18.31%, and 5.0% biochar addition had the best effect on 
improving TPP. However, Li et al. (2021) showed that the 
TPP under different biochar treatments was not signifi-
cantly different, fluctuating between 13.50% and 14.58%. 
The FAA endows tea "umami" taste, its content in the tea 
range of 1.1–6.5%,  and the higher the content of the bet-
ter quality (Chen and Zhou 2005). In the present study, 
the FAA gradually decreased with biochar amounts, and 
was significantly higher in 0.5% treatment than in the 
other treatments (Fig.  2). This is similar to the study of 
Lin et  al. (2022), which showed that a small amount of 
biochar addition is more effective for FAA. Notably, Luo 
et al. (2019) found that the addition of exogenous Ca may 
affect the content of TPP, FAA, CAF, gallic acid, and solu-
ble sugars due to the synergistic effect with F, thus affect-
ing the tea quality. In general, based on the purpose of 
tea quality improvement, 5.0–8.0% biochar application 
should be considered in tea garden practices.

Tea quality is closely related to soil nutrients (Zhao 
et al. 2022). Biochar is reported to help increase the input 
of soil K, Ca, and Mg, and promote  the enrichment of 
nutrients in tea plants, which contributes to the improve-
ment of tea quality (Zhao et  al. 2015; Chen et  al. 2021; 
Li et al. 2021). In this paper, biochar enhanced soil fertil-
ity metrics, including N, P, K,  NH4

+, AP, and AK (Addi-
tional file  1: Fig. S2), as well as promoting the uptake 
of available nutrients such as N, P and K by tea plants 
(Additional file  1: Fig. S3). It has been shown that FAA 
is a nitrogenous organic matter whose content depends 
on the enrichment of N in leaves (Yang et al. 2018; Tang 
et al. 2022). The results are not unrelated to the N nutri-
ent contents of leaves in those treatments. Our results 
showed that TPP, WLS and CAF  were positively corre-
lated with soil exchangeable base cations (Fig.  3). With 
the increase of biochar, the tea Ws-F contents decreased 
and the tea quality improved. This is consistent with 
the results obtained by Yang et  al. (2015) and Cai et  al. 
(2016), who reported that excessive F accumulation could 
stress tea plants and affect tea quality. Chen et al. (2021) 
indicated that the TN content in tea garden soil increased 
with increasing biochar application, which suggests that 
biochar is beneficial in improving soil N retention. Wang 
et al. (2018) and Yan et al. (2021) also found that biochar 
can promote tea growth by alleviating soil acidification 
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and reducing heavy metal availability. In addition, it 
should not be overlooked that the application of biochar 
also increases the abundance of beneficial bacteria and 
enzyme activity in the soil, thus improving the soil eco-
system function and providing a more friendly environ-
ment for the growth of tea plants (Jiang et al. 2021; Yang 
et  al. 2021). In conclusion, these findings suggest that 
the soil environmental changes brought about by proper 
biochar amounts have a good prospect for improving tea 
quality.

4.3  Soil water-soluble F, pH, and exchangeable base 
cations affect tea F accumulation

F in tea plants mainly comes from the soil, and soil F bio-
availability plays an essential role in the absorption and 
enrichment of F by tea leaves (Yi et al. 2017). Soil Ws-F 
is the main fraction absorbed and utilized by tea leaves 
(Xie et al. 2001; Sun et al. 2022). The results showed that 
0.5–2.5% biochar reduced soil Ws-F content compared to 
CK, although the difference was insignificant (Table  1). 
However, biochar enhanced the F solubility at 5.0–10.0% 
application rates. This is because large amounts of bio-
char raised the soil pH and promoted the desorption 
of F from the soil solid phase (Evans and Jacobs 2020). 
This result contrasts with that of Gao et al. (2012), which 
reported that  the addition of 5.0% biomass materials sig-
nificantly reduced soil Ws-F content in a tea garden in 
Southern China. In this case, biochar modification can 
be used to improve the adsorption capacity. Fan et  al. 
(2022) reported that 12.0% (w/w) trivalent metals-mod-
ified-biochar in F-contaminated soil could reduce Ws-F 
by up to 90.17%. The presence of F in soil is diverse and 
in dynamic change, and the determination of soil F frac-
tion at different biochar amounts can reflect the change 
of soil F bioavailability, which is important for studying 
the migration of F from soil to tea plant (Gao et al. 2012; 
Yi et  al. 2017; Long et  al. 2021). The different fractions 
of F in soil are in dynamic balance, and the bioavailable 
Ws-F and Ex-F could be transformed into other frac-
tions of F under the influence of external conditions (Cai 
et al. 2013). There was a highly remarkable negative cor-
relation between soil Ws-F and soil Fe/Mn-F (p < 0.01), 
which could be found by correlation analysis (Fig. 3). Soil 
Ws-F is readily absorbed by plants, so converting it to a 
non-absorbable form could reduce the potential risk of 
F accumulation in plants (Li et  al. 2018). Changing the 
dynamic equilibrium of insoluble, exchangeable and sol-
uble F in the soil would affect F uptake by tea roots (Xu 
et  al. 2006). In a previous study, different additions of 
biomass material significantly increased the soil Fe/Mn-F 
content and significantly decreased the soil Ws-F and 
Ex-F and tea Ws-F contents (p < 0.05) (Gao et  al. 2012). 

Differences in F fraction distribution and content in soil 
following the application of biochar might be due to bio-
char and soil species in this study.

Furthermore, the study found that tea Ws-F was sig-
nificantly negatively correlated with soil Ws-F (-0.59), 
contrary to previous findings (Xie et al. 2007; Long et al. 
2021). However, other authors also found no significant 
correlation between soil and plant  Ws-F in their experi-
ments (Jha et  al. 2008; Wang et  al. 2012). A possible 
explanation for this is related to the different amounts of 
biochar causing different soil F solubility. It is reported 
that soil pH is the critical geochemical factor that deter-
mines the bioavailability of soil F and their transport into 
tea leaves (Yi et al. 2017). As our results show, the tested 
soil pH increased by 0.81–1.63 units, higher than in pre-
vious studies (Gao et  al. 2012; Ghassemi-Golezani and 
Farhangi-Abriz 2019), which was mainly due to the high 
amount of biochar used in this study. Under high pH con-
ditions, high levels of  OH− in soil solution compete with 
F for sorption and may displace F from soil sorption sites, 
leading to an increase in Ws-F because they have almost 
the same diameter (Wang et  al. 2012; Li et  al. 2017). 
The  OH− content increase led to a rise in soil pH,  thus 
enhancing the solubility of F, which was also reflected by 
the correlation between soil pH and Ws-F (Fig. 3). Ruan 
et al. (2004) found that lime treatment increased soil pH 
and Ws-F content. Zhou et al. (2014) also concluded the 
same conclusion that soil pH and Ws-F have a positive 
correlation. However, it has also been noted that the cor-
relation between soil   Ws-F and pH is insignificant or 
even becomes negative (Cai et al. 2016; Gan et al. 2021). 
It is worth noting that biochar itself also contains F which 
may increase soil input risk. In our study, the Ws-F con-
tent of biochar and soil was 2.67 and 2.90 mg  kg−1 (Addi-
tional file 1: Table S1), respectively, and the Ws-F content 
after mixing the highest biochar application (0.7 kg) with 
soil (7.0  kg) was lower than that of CK: (2.67 × 0.7 + 2.9 
× 7) ÷ 7.7 = 2.88 < 2.90  mg   kg−1. Hence, the risk of Ws-F; 
leaching from the biochar itself should be very low. Stud-
ies have shown that the tea Ws-F increased significantly 
with increasing pH when soil pH exceeded 5.0 (Sun et al. 
2022). In this study, tea Ws-F was significantly negatively 
correlated with soil pH (−0.62) (Fig.  3). This indicates 
that although biochar increased soil Ws-F content, it 
decreased the transport of WS-F from soil to tea leaves, 
which may be related to some mechanism that will be 
discussed in the next 4.5.

The increase in soil pH is mainly related to introduc-
ing a lot of exchangeable base cations with the increase 
of biochar application (Fig.  3). Previous studies have 
shown a highly significant positive correlation between 
exchangeable  K+,  Na+,  Ca2+, and  Mg2+ and Ws-F in 
soil and tea (Yi et al. 2017). However, tea Ws-F contents 



Page 11 of 16Wang et al. Biochar            (2023) 5:37  

showed a highly significant negative correlation with soil 
base ions in this study (p < 0.01). Ruan et al. (2004) found 
that adding Ca(NO3)2 or CaO to soil increased soil Ws-F 
content, but significantly decreased tea Ws-F content, 
which may be related to soil  Ca2+ on the permeability of 
tea cell wall. Luo et  al. (2019) also found that the effect 
of exogenous Ca on F tolerance in tea may be related to 
intracellular ion homeostasis (e.g., B, Al, Cu, and Zn). 
 Ca2+ plays an important role in plant ion uptake as a 
ubiquitous second messenger (Luan 2009). Zhang et  al. 
(2015) demonstrated that endogenous  Ca2+ and CaM 
in tea plants contributed to F accumulation in tea root-
promoted by  Al3+ pretreatment. Similar result showed 
that  Ca2+-CaM was involved in the inhibition of F accu-
mulation in tea   plants by the anion channel inhibitor 
NPPB (Zhang et  al. 2016). According to this paper, soil 
exchangeable  Ca2+ content gradually increased with the 
increase of biochar amounts. Tea Ws-F was significantly 
negatively correlated with soil exchangeable  Ca2+, with a 
coefficient of −0.78, higher than  K+ and  Mg2+. Therefore, 
we infer that soil exchangeable  Ca2+ may be involved in 
biochar inhibition of Ws-F accumulation in tea leaves. 
Numerous studies have shown that increasing the con-
tent of soluble  Ca2+ in soil by applying acidic soil amend-
ments such as Nano-hydroxyapatite (NHAP), flue gas 
desulphurisation gypsum, and calcium oxide (CaO) could 
limit the migration of soil Ws-F   to the above-ground 
parts of plants (Ruan et  al. 2004; Alvarez-Ayuso et  al. 
2011; Gan et al. 2021). In any case, more intensive experi-
ments are needed to investigate whether the increase in 
exchangeable  Ca2+ brought about by biochar application 
is associated with reduced tea F accumulation.

4.4  Soil exchangeable aluminum affects tea F 
accumulation

In acidic soil solutions (pH < 6.0) in tea gardens,  Al3+ 
could complex with  F−, mainly in the form of  AlF2+, 
 AlF2

+, and  AlFx
(3−x)− (Xie et al. 2007). In soil-tea ecosys-

tems, the chemical behavior related to F and Al has been 
of interest because tea leaves absorb F mainly as F-Al 
complexes from the soil and transfer them to the leaves 
in this form (Xie et  al. 2001; Yang et  al. 2016). Soil-free 
 Al3+ (e.g., Ex-Al) contributes to improving the absorp-
tion of soil F by tea plants and increases F enrichment of 
tea leaves (Zhao et al. 2015; Yang et al. 2018; Long et al. 
2021). Li et  al. (2016) and Fung et  al. (1999) found that 
soil Ex-Al content was closely related to soil F trans-
formation and migration. The acidic soils are known to 
enrich more Al, which affects the soil F components (An 
et  al. 2015; Barrow et  al. 2016). As far as we know, the 
dynamic effects of different biochar application rates 
on free  Al3+ and  F− in tea garden soils are unclear. In 
this study, soil Ex-Al showed an extremely significantly 

negative correlation with Ws-F and Ex-F (p < 0.01) and 
decreased significantly with the increase of biochar con-
tent (p < 0.05) (Fig.  3). Ex-Al is the most abundant and 
active Al form that could be extracted from tea garden 
soil, and is an important Al form that binds to Ws-F 
and is also the main source of aluminum in mature tea 
leaves (Xie et al. 2007). Biochar applied to acidic soils has 
been reported to reduce the bioavailability of soil Al and 
decrease plant toxicity (Dong et al. 2022). Dai et al. (2014) 
found that 3.0% swine manure and rape straw biochar 
reduced Ex-Al contents in acid soils by 99.0% and 90.0%, 
respectively. The Ws-F content of tea leaves was posi-
tively correlated with soil Ex-Al (r = 0.89, p < 0.05), fur-
ther confirming that the available Al content in the soil 
might be able to predict the F contents in tea leaves (Xie 
et al. 2007). However, some reports (Ruan et al. 2003; Xie 
et al. 2007) mentioned that tea F and soil Ws-Al had the 
same change trend. In any case, the mechanism of F-Al 
complexes uptake and transport from soil to tea still lacks 
intuitive and strong evidence, especially under the condi-
tions influenced by Ex-Al, and further studies are needed.

4.5  Fluoride-aluminum complexes affect tea F 
accumulation

The tea plant acts as an Al hyperaccumulator, and the 
presence of Al can affect the accumulation of tea F 
(Ruan et al. 2003; Yang et al. 2016). In recent years, sev-
eral studies have revealed that the combined absorp-
tion of Al and F by tea plants, thereby eliminating the 
toxicity of F and Al alone, may be an important physi-
ological mechanism for the high F enrichment of leaves 
(Ruan et  al. 2003; Shu et  al. 2003; Xie et  al. 2007). Fu 
et  al. (2022) and Gao et  al. (2014) also revealed that 
internal tolerance mechanisms in tea plants can con-
vert the absorbed Al and F into nontoxic or less toxic 
complexes as a way to reduce Al and F toxicity in the 
body. Long   et al. (2021) mentioned that applying 
CO(NH2)2 to the tea garden soil could simultaneously 
enrich tea F and tea Al. However, information on the 
effect of biochar addition on Ws-Al in tea plants and, 
thus, on tea F accumulation remains limited. There-
fore, it is imperative to study the impact of biochar on 
the content of Ws-Al in tea plants. The content distri-
bution of Ws-Al in tea plant organs is consistent with 
previous reports in this study (Shu et  al. 2003; Karak 
et al. 2015). Correlation analysis showed that the rela-
tionship between Ws-F and Ws-Al in tea roots, stems 
and leaves (p < 0.01) was significantly positive. The tea 
Ws-Al and Ws-F contents in each treatment followed 
the same accumulation trend and similar results were 
reported in previous studies (Xie et al. 2007; Long et al. 
2021). It has been proposed that Al and F exist together 
in tea plant and that F-Al complexes are the main form 
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of soil F uptake by tea plants   compared to F- alone 
(Ding and Huang 1991; Nagata et  al. 1993; Yang et  al. 
2016). Niu et  al. (2020a) also reported that exogenous 
selenium (Se) treatment inhibited Ws-F accumulation 
in tea leaves, which may be related to the fact that the 
application of exogenous Se reduced the Al content in 
tea and thus the formation of F-Al complexes. Long 
et  al. (2021) revealed that the changing trend of tea 
T-F at the same growth stage was consistent with the 
F and Al molar ratio, and the higher molar ratio of soil 
F and Al promoted the T-F accumulation of tea leaves. 
For now, there is a lack of quantitative determination of 
soil F-Al complexes, and the transfer and enrichment of 
soil F-Al complexes under biochar will only be inferred 
from the fluctuation of Ws-F and Ws-Al content in tea 
plants. Thus, the results above only explain that tea 
leaves probably absorb both F and Al combined in F-Al 
complexes (Ruan et al. 2003; Pan et al. 2020), and fur-
ther research is needed on the specific mechanism of F 
absorption and enrichment by tea leaves.

Based on previous studies, it can be concluded that 
possible but necessary methods to reduce tea F bio-
availability in tea  gardens mainly include: (1) limiting 
soil Ws-F to reduce tea plant uptake through adsor-
bents such as charcoal, bamboo charcoal, and nano-
hydroxyapatite (Gao et  al. 2012; Gan et  al. 2021); (2) 
chelating soil  Al3+ by adsorbents to prevent the for-
mation of F-Al complexes to reduce Ws-F uptake by 
tea   plants, such as polyphenol-Ce adsorbents (Zhao 
et al. 2015). It was demonstrated that both of the above 
methods could significantly reduce the accumulation of 
Ws-F in tea leaves. Long et al. (2021) similarly concluded 
that the key to reducing tea F content in tea gardens is 
to mitigate soil acidification and reduce the content of 
F-Al complexes in tea garden soil. In this study, the cor-
relation analysis showed that  the Ws-Al contents of tea 
roots and leaves were significantly positively correlated 
with that in soil Ex-Al (p < 0.01) (Fig. 3). Xie et al. (2007) 
also found this phenomenon. Combining previous 
reports and current results, we can infer that although 
the extensive use of biochar increased soil Ws-F release, 
the soil Ex-Al is reduced accordingly, thereby reducing 
the formation of F-Al complexes and thus reducing the 
enrichment of Ws-F by tea leaves. This speculation may 
be supported to some extent by the fact that tea Ws-Al 
and Ws-F have the same increasing and decreasing trend 
at different biochar amounts (Fig. 1). However, effects on 
F-Al complexes in soil and tea plants with different bio-
char amounts remain to be further investigated because 
there is no practical method to analyze the F-Al com-
plexes. In conclusion, whether the indirect reduction of 
F-Al complexes by biochar contributes to the inhibition 

of F accumulation in tea leaves still needs to be clari-
fied in future  studies. This information obtained from 
this study will provide useful references for developing 
strategies to reduce tea F accumulation in agricultural 
practices.

4.6  Environmental implications of this study
Every year, billions of tons of agricultural waste (e.g., 
straw) are produced worldwide. It makes more sense to 
convert them into biochar than to wasteful and pollut-
ing incineration (Hossain et al. 2020; Bhattacharyya et al. 
2021). Biochar is considered to be a better amendment 
with little adverse effects on a wider environment as 
well as animal and human health (Liu et al. 2022). Many 
researchers have demonstrated the potential of biochar 
as a low-cost adsorbent, which has stimulated a grow-
ing research surge in soil remediation (Tang et al. 2020; 
Liu et al. 2021). Of course, the cost of preparation has to 
be considered in the process of using biochar. As biochar 
research has evolved, production methods are becoming 
more and more efficient. The lowest biochar production 
costs are reported to be close to zero (Maroušek 2014; 
Maroušek et al. 2019).

In recent years, biochar has shown benefits as a soil 
amendment in tea gardens and is considered an effec-
tive option for reducing nitrogen leaching and mitigat-
ing soil acidification due to its usability and sustainability 
(Chen et al. 2021; Li et al. 2021). However, there are few 
and unsystematic studies on biochar in reducing tea F 
and improving tea quality. In addition to the biochar 
and soil conditions themselves, the amount of biochar 
applied also affects its remediation effect. Controlling the 
amount is more convenient for production practice than 
controlling the feedstock and preparation conditions (Ali 
et  al. 2020; Wang et  al. 2022c). Therefore, our current 
study emphasizes the importance of different biochar 
amounts, especially at the high dose of 10.0%.   Based on 
the comprehensive analysis of all indicators, our study 
clearly showed that 5.0–8.0% biochar treatment was 
the most suitable ratio for reducing tea F accumulation 
and improving tea quality. Compared to the high cost 
of adsorbents in previous studies (Zhao et al. 2015; Gan 
et  al. 2021), the cost of biochar is acceptable, especially 
considering the high value of tea products. The informa-
tion obtained in this study provides a more comprehen-
sive understanding of the application of biochar in tea 
garden ecosystems. Admittedly, the current results are 
short-term effects, and we need to follow up and report 
long-term as well as field experimental results accord-
ingly. In addition, more factors including biochar modifi-
cation, tea biomass, cost–benefit analysis are required to 
consider in the next study.
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5  Conclusions
In summary, the results of the pot experiment suggested 
that the application of biochar could decrease tea F enrich-
ment of tea leaves and improve tea quality to varying 
degrees. The F content in tea stems was reduced among 
any amounts of biochar treatments, but there was no sig-
nificant effect on the F accumulation in tea roots. Small 
amounts of biochar (0.5–2.5%) addition favored the fixa-
tion of soil Ws-F. However, high amounts of biochar (5.0–
10.0%) instead increased the soil Ws-F solubility due to the 
increase of soil pH. Further analysis showed that the higher 
biochar application could increase soil exchangeable  Ca2+ 
contents and decrease soil Ex-Al contents, which inhibit 
the uptake and accumulation of tea F to a certain extent. 
This may be an essential mechanism to better understand 
the biochar-induced reduction of F enrichment in tea 
leaves, which provides a new perspective to explain the 
effect of different amounts of biochar on the inhibition of 
different accumulations of F in tea leaves. The improve-
ment of tea garden soil quality after biochar application is 
beneficial to the uptake of tea plant nutrients, which can 
improve tea quality (e.g., tea polyphenols and caffeine). In 
general, biochar is an acceptable tea garden soil amend-
ment to reduce tea F content and improve tea quality, 
which plays a role in different amounts. Further research 
and long-term field trials are necessary to assess the effects 
of biochar on tea F accumulation and tea quality.

Novelty statement
This study investigated the effect of biochar application 
on F accumulation in tea leaves during the growth period, 
especially high amount of biochar application, and spec-
ulated the potential mechanism of reduction through pot 
experiments. Our results showed that biochar application 
could significantly reduce Ex-Al in soil, thus preventing 
the formation of F-Al complexes from F and eventually 
effectively inhibiting the accumulation of F in tea leaves. 
In addition, biochar was also beneficial to promote nutri-
ent uptake, which in turn improved tea quality. However, 
it is recommended that the results obtained from the pot 
experiment be validated under field conditions.
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