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Abstract 

Although research on biochar has received increasing attention for environmental and agricultural applications, 
the significance of nanobiochar for environmental pollutant  remediation is poorly understood. In contrast to bulk 
biochar, nanobiochar has superior physicochemical properties such as high catalytic activity, unique nanostructure, 
large specific surface area and high mobility in the soil environment. These unique characteristics make nanobiochar 
an ideal candidate for pollution remediation. Thus far, the research on nanobiochar is still in its infancy and most of 
the previous studies have only been  conducted for exploring its properties and environmental functions. The lack 
of in-depth summary of nanobiochar’s research direction makes it a challenge for scientists and researchers globally. 
Hence in this review, we established some key fabrication methods for nanobiochar with a focus on its performance 
for the removal of pollutants from the environment. We also provided up-to-date information on nanobiochar’s role 
in environmental remediation and insights into different mechanisms involved in the pollutant removal. Although, 
nanobiochar application is increasing, the associated drawbacks to the soil ecosystem have not received enough 
research attention. Therefore, further research is warranted to evaluate the potential environmental risks of nanobio-
char before large scale application.

Highlights 

Key synthesis technologies and properties of nanobiochars were discussed.
The interactions pathways of nanobiochar with pollutants were elucidated.
Role of environmental factors on pollutants remediation and life cycle was delineated.
Important research outlooks on nanobiochar’s potential in pollutant remediation were elaborated.
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Graphical Abstract

1  Introduction
Environmental pollution threatens the soil and water 
resources and needs immediate global attention (Hou 
et  al. 2020; Pure Earth/Green Cross 2015; WHO 2019; 
Zhang et  al. 2016). The pollutants may enter the envi-
ronment through natural processes and anthropogenic 
activities such as industrial emissions, domestic sewage 
discharge and agricultural activities (Jaishankar et  al. 
2014; Liu et al. 2022; Young et al. 2004). Generally, pol-
lutants are classified as biodegradable and non-biode-
gradable (Gong et  al. 2022; Samadi et  al. 2021). Heavy 
metals are non-biodegradable, which  makes it difficult 
to eliminate them from the soil and water environments, 
resulting in their accumulation by living organisms 
(Kirpichtchikova et  al. 2006). Globally, over 20 million 
hectares of land have been polluted with heavy metals 
(Liu et  al. 2018b). Prolonged exposure to heavy metals 
negatively impacts human health  and may cause vari-
ous cancers, hallucinations, insomnia, and other dis-
eases (Zhang et  al. 2022b). Although organic pollutants 
are biodegradable, some persistent organic pollutants are 
often toxic and cancerogenic to human and animals even 

in small amounts (Liu et al. 2020b; Singh et al. 2022). For 
example, Khan et al. (2021) found that traces of pharma-
ceutical compound  residues in the aquatic environment 
may pose a threat to the public health and they have even 
been detected in trace amounts in surface water. Numer-
ous studies have reported that unprecedented amounts 
of pollutants have accumulated both in aquatic and soil 
systems (Hou et  al. 2020; Gong et  al. 2022; Pure Earth/
Green Cross 2015). Therefore, it is of great importance to 
conduct soil and water remediation activities.

In recent years, biochars have been widely used as 
effective amendments to remediate polluted soil and 
water (Azadi and Raiesi 2021; Chen et  al. 2022; Luo 
et al. 2022; Wang et al. 2021). Studies have shown that 
biochar can effectively remove pollutants from waste-
water (Li et  al. 2020; Lian et  al. 2020; Ren et  al. 2022; 
Zhang et al. 2019a) and reduce pollutant   bioavailabil-
ity in soils (Sun et al. 2022). Biochar is pyrolyzed from 
biomass raw materials under low to high  temperatures 
(300–700  °C) in oxygen limited conditions (Lehmann 
2007; Li et al. 2022). Since the raw material sources of 
producing biochar are usually agricultural and forestry 
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wastes, it is economical and environmentally friendly 
and may also become an effective additive for carbon 
sequestration (Lyu et al. 2020; Tripathi et al. 2011). Bio-
char with particle sizes in the range of 1–100 nm is con-
sidered as nanobiochar (Naghdi et al. 2017a; Sulaiman 
et al. 2013; Zhang et al. 2022b). Generally, nanobiochar 
can be obtained by two main ways. One is artificially 
manufactured and, the other is physical disintegration 
of biochar by aging process in the environment (Huang 
et  al. 2021; Ramanayaka et  al. 2020b). Compared to 
bulk  biochar, nanobiochar a much larger specific sur-
face area (SSA), smaller hydrodynamic radius, more 
negative zeta potential, and more oxygen-containing 

functional groups (Lyu et al. 2018a; Naghdi et al. 2017a; 
Pratap et al. 2022; Ramanayaka et al. 2020b).

Nanobiochar has been studied and applied to dif-
ferent fields including biosensors, soil amendments, 
photocatalytic materials, and as pollutant adsorbents 
(Fig.  1a, also see Dong et  al. 2018; Xiao et  al. 2020; 
Zhang et al. 2022b). The scientmetric analysis through 
Web of Science displayed that the number of arti-
cles on the term “nanobiochar and nano-biochar” has 
increased  in recent years from 2017 to 2021, and it now 
appears that research in 2022 will also likely exceed 
that in 2021 (Fig. 1b). Furthermore, the use of nanobio-
char to remediate polluted soils and water was the most 

Fig. 1  Summary of research hotspots by using term “nanobiochar” as the keyword (a). Proportion of publication by research areas in recent 5 years 
using the term “nanobiochar, nano-biochar and ball milled biochar” separately, as keywords (b). Sourced from web of science, data accessed on 4 
August 2022 (c)
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studied areas (account for 51%, see Fig.  1c). Nanobio-
char can be an effective additive for pollutant removal 
from polluted water (Lyu et al. 2018a; Xiao et al. 2020; 
Zhang et al. 2021) and can also be used for stabilization 
of pollutants in polluted soils (Sun et  al. 2022; Zhang 
et  al. 2022a). Despite this, the total number of papers 
searched in Web of Science in the past 5 years was less 
than 70, which further suggests that this is a new field, 
and a lot of research needs to be carried out.

As a new research direction in the field of biochar, 
the research on nanobiochar has not yet been done sys-
tematically at present. In addition, long-term research 
on the environmental functions of nanobiochar is lack-
ing. Although there have been some articles reviewing 
related research on nanobiochar, these reviews either 
focus on the properties of nanobiochar or aim at broad 
overviews of its application for many fields. To our 
knowledge, there  is currently no detailed review that 
summarizes the use of nanobiochar in environmental 
pollution remediation. Therefore, this review aimed 
to summarize the results from studies (1) concern-
ing the effects of nanobiochar on the remediation of 
water and soil pollution, (2) on the preparation process 
of nanobiochar, (3) concerning affecting nanobiochar 
performance in environmental pollutant remediation 
and the associated mechanisms. This will provide a 
theoretical basis and practical guidance for the safe and 

effective use of nanobiochar for environmental pollu-
tion remediation.

2 � Preparation of nanobiochar
Generally, the raw material of nanobiochar will affect 
its physiochemical properties. It has been reported that 
biomass with high hemicellulose usually derives nanobio-
char with low carbon content and high oxygen content 
(Weber and Quicker 2018), while materials with high 
lignin usually produce nanobiochar with strong aggre-
gation ability (Föhr et  al. 2017). Oleszczuk et  al. (2016) 
observed that wicker and wheat straw nanobiochars 
had relatively open-structured primary small particles 
while miscanthus nanobiochar   possessed large spheri-
cal particles and exhibited weaker aggregation effects 
than the first two nanobiochars. Moreover, the ash con-
tent of nanobiochar produced from agricultural waste 
was directly proportional to the bulk biochar,   however, 
this was not observed in nanobiochar produced from 
municipal waste (Song et al. 2019). Usually, nanobiochar 
is produced in the same manner as bulk biochar with a 
few additional steps (Chausali et al. 2021), which will be 
discussed in detail below (see Fig. 2).

2.1 � Milling method
Ball milling has been a commonly used approach for 
producing nanobiochar, which  can mechanically break 

Fig. 2  Methods (ball milling, ultrasound and microwave methods) used for preparing nanobiochar from bulk biochar
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the biochar and reduce particles to nanometer size (Anu-
pama and Khare 2021; Chausali et  al. 2021; Lyu et  al. 
2017; Soares et al. 2015). In the milling process, smaller 
pores with flat pieces are formed from squeezing of lon-
gitudinal pores and canals, which  leads to the increase of 
SSA (Ramezanzadeh et  al. 2021). This method includes 
dry milling mode and wet milling mode, which is based 
on whether the biochar is mixed with water or not dur-
ing the grinding process. Yuan et al. (2020) showed that 
wet ball milling for 12 h was more effective in obtaining 
smaller particle size and more evenly distributed biochar 
than dry ball milling, and both ball milling methods can 
obtain larger SSA of biochar than hand grinding.

The ball milling method has been demonstrated to 
be a green approach with low cost and reproducibil-
ity   (Kumar et al. 2020; Naghdi et al. 2017b; Wang et al. 
2018), however, it is not the only milling method  used 
for nanobiochar production. For example, the double-
disc milling method has been used to produce polygonal 
platelet-shaped particles with the diameter of 50–150 nm 
(Ramanayaka et al. 2020a). In addition, other studies have 
found that vibrating disc milling can produce more uni-
formly shaped nanobiochar and  has a greater yield than 
ball milling (Bayram and Öner 2007; Huang et al. 2022). 
The selection of a suitable milling method for nanobio-
char production usually depends on the purpose of the 
experiment and raw materials.

2.2 � Ultrasonication method
Ultrasonication is another effective method for produc-
ing nanobiochar. During the sonication process, a probe 
tip is immobilized below the surface of the suspension 
where biochar particles are disintegrated and biochar’s 
graphite-like structure is exfoliated by shockwaves (Li 
et al. 2013; Oleszczuk et al. 2016). The main mechanism 
involves the use of ultrasound-induced microjets and 
shockwaves to create new pores, open blocked pores, 
and change the biochar structure, which ultimately leads 
to an increase of microporosity (Sajjadi et al. 2020). Liu 
et al. (2018a) showed that the fine fragments adhering to 
the surface or embedded in the pores of the parent bio-
char are separated by ultrasonic waves and longer soni-
cation time may produce more nanobiochar. Dong et al. 
(2019) found that the ultrasonically treated regular bio-
char successfully produced nanobiochar with a  particle 
size of 42 ± 6 nm. Song et al. (2019) carried out ultrasonic 
work on bulk biochars derived from different raw materi-
als for 30 min and nanobiochar was obtained with a par-
ticle size less than 100 nm.

In addition to the above methods, other approaches 
have also been applied to prepare nanobiochar, for exam-
ple, microwave pyrolysis   reactors have been used to 
directly produce nanobiochar (Wallace et al. 2019). This 

method is cost-effective and efficient because only one 
step is required (Li et  al. 2016). Centrifugation technol-
ogy is another direct method or a step to produce nano-
biochar and the resulting biochar nanoparticles are 
ordered (Lian et al. 2020; Xu and Cölfen 2021). The diges-
tion of the bulk biochar by concentrated nitric and sulfu-
ric acids can also be used to produce nanobiochar (Guo 
et al. 2020).

2.3 � Modified nanobiochar
More recently, many methods have been employed for 
the modification of   bulk biochar and nanobiochar in 
order to improve their properties (Ndirangu et al. 2019; 
Wang et al. 2021), which mainly include metal modifica-
tion (Jenie et al. 2020; Nath et al. 2019; Qiao et al. 2019), 
ultrasonic modification (Li et al. 2017b), acid-base modi-
fication (Mahmoud et  al. 2020a), and thiol modifica-
tion (Lyu et al. 2020) (see Fig. 3). For example, Lyu et al. 
(2020) modified wood chip nanobiochar with 3-mercap-
topropyltrimethoxysilane (3-MPTS) and found that the 
SSA of the modified nanobiochar was much larger than 
that of the pristine biochar, the zeta potential was more 
negative, and it had more surface functional groups. Xu 
et al. (2019) compared the properties of pristine biochar, 
ball-milled biochar, and ball-milled N-doped biochar 
and found that the SSA and pore volume of ball-milled 
biochar significantly increased after adding ammo-
nium hydroxide. This suggests that ammonium hydrox-
ide may act as an activator to further generate pores on 
the biochar during ball milling process. The N-doped 
nanobiochar, however, was easier to agglomerate due to 
hydrophilic groups present on the biochar particles. Nath 
et  al. (2019) modified rice husk nanobiochar with iron 
oxides to increase the  nanobiochar C–O and Fe–O func-
tional groups and optimize its adsorption capacity. Many 
studies have shown that the modified nanobiochars has a 
stronger ability to remove pollutants than the non-mod-
ified nanobiochar (Vishnu et  al. 2022; Wang and Wang 
2018).

3 � Adsorption of environmental pollutants 
by nanobiochar

3.1 � Heavy metals
As shown in Table 1, nanobiochar has been demonstrated 
to be an effective tool for heavy metal immobilization 
in the environment. For instance, previous studies have 
shown that nanobiochar could strongly absorb Cd, Pb 
or Cu in aqueous system, and the heavy  metal removal 
rate increases  gradually as the concentration of nano-
biochar increases. This increase in heavy metal removal 
rate may be due to the adsorbent exchangeable sites and 
the larger SSA of nanobiochar (Li et al. 2017b; Yue et al. 
2019a; Vishnu et  al. 2022). However, high nanobiochar 
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concentrations may lead to the occurrence of agglom-
eration effect especially under acidic conditions. The 
agglomeration of nanobiochar significantly reduces 
SSA and nanobiochar ability to immobilize   pollutants 
(Mahmoud et al. 2019; Rasaki et al. 2019). As reported by 
Lyu et al. (2018a), Nickel (Ni) adsorption rate increased 
when soils were amended with low rate of nanobiochar 
but decreased with high rate of nanobiochar applied. In 
addition, hetero aggregation between nanobiochar and 
soil minerals may also frequently occur in soil system. 
This mainly  occurs because that the positive charged soil 
minerals form electrostatic interactions with the nega-
tively charged nanobiochar surfaces, thereby increasing 
the heteroaggregation (Zhang et  al. 2022b). Therefore, 
there is an urgent need to understand and develop ways 
to reduce nanobiochar agglomeration and heteroaggre-
gation in the environment to improve its ability to adsorb 
pollutants.

As mentioned above, studies have used modified nano-
biochar to remediate some specific environmental pol-
lutants. It has been reported that pristine nanobiochar 
had lower adsorption capacity for Chromium [Cr(VI)] 

than modified biochar (Wang et  al. 2020a). Heavy met-
als tend to be positively charged, hence nanobiochars 
with surface functional groups that are not easily proto-
nated or nanobiochars with negative charges introduced 
on the surface may have better adsorption capability (Yi 
et al. 2015). Lyu et al. (2020) introduced thiol groups to 
the surface of nanobiochar using the ball milling method, 
which increased the surface negative charge and conse-
quently the adsorption capacity of positively charged 
mercury (Hg) reached 320.1 mg  g−1. An iron oxide per-
meated mesoporous rice husk modified nanobiochar was 
demonstrated to remove up to 95% of Arsenic (As) in the 
environment (Nath et al. 2019). However, when the mod-
ified nanobiochar was applied in the environment, the 
modified materials (e.g. metals) may leach from its sur-
face and cause harm to the environment. Therefore, the 
environmental risk of modified nanobiochar needs to be 
further studied.

3.2 � Organic pollutants
Unlike heavy metals, organic pollutants can be degraded, 
and the application of nanobiochar can reduce the 

Fig. 3  Methods used for the preparation of modified nanobiochar
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migration and bioavailable fraction of organic pollut-
ants in both aquatic and soil systems through a series of 
mechanisms such as adsorption and catalytic degrada-
tion (see Table  2). Due to its special properties, nano-
biochar offers   excellent sorption capacity for many 
organic pollutants, such as herbicides, polychlorinated 
biphenyls (PCBs), and polycyclic aromatic hydrocarbons 
(PAHs) (Anupama and Khare 2021; Kumar et  al. 2018). 
It has been reported that nanobiochar has a maximum 
adsorption capacity of 103.4  mg  g−1 for acetone, which 
is 16-fold higher than the pristine biochar (Xiang et  al. 
2020). The development of nanobiochar composites and 
its modification methods also prove a way to enhance its 
adsorption capacity for pollutants. The adsorption capac-
ity of the composites with 25% ball-milled nanobiochar 
(1210  mg  g−1) and 75% calcium-alginate for methyl-
ene blue was much greater than that of pure ball-milled 

nanobiochar (184  mg  g−1) (Wang et  al. 2019). Xu et  al. 
(2019) found that the adsorption capacity of N-doped 
nanobiochar on reactive red was 18.8 times higher than 
that of the bulk biochar and over 2 times higher than that 
of the common nanobiochar. This is due to the increase 
of the zeta potential and zero-point charge (PZC) of the 
biochar by N doping, which promotes the adsorption 
of anionic reactive red (Pereira et al. 2003). The basic N 
groups on N-doped nanobiochar can be protonated and 
positively charged, enabling the biochar to adsorb Congo 
red (a type of dye) through electrostatic adsorption (Tian 
et al. 2018).

Due to the low surface-active site density and low acti-
vation energy of adsorption bonds, nanobiochar   can 
also be coupled with photocatalyst zinc oxide (ZnO) to 
degrade phenol indirectly (Chen et al. 2016). The addition 

Table 1  Effect of nanobiochar application on the mobility of heavy metals

Feedstocks Heavy metals Environment Results References

Pitch pine Pb Aqueous solution The maximum adsorption capacity of the 
nanobiochar to Pb is 55.56 mg g−1

Li et al. (2017b)

Bark chips Cu, Pb, Zinc (Zn) Soil The adsorption capacity of the nanobio-
char for Cu, Pb, and Zn was 121.5, 336, and 
134.6 mg g−1, respectively

Arabyarmohammadi et al. (2018)

Bagasse Ni Aqueous solution The maximum adsorptive removal capacity of 
nanobiochar was 1949 mmol kg−1

Lyu et al. (2018a)

Wood chips Cu Aqueous solution The adsorption capacity of nanobiochar to Cu 
is 22 mg g−1

Safari et al. (2019)

Rice-hull Cd Soil Nanobiochar has high adsorption affinity for 
Cd which greatly reduces the uptake and 
phytotoxicity of Cd

Yue et al. (2019a)

Poplar wood Hg Aqueous solution The removal efficiency of Hg was 
320.1 mg g−1

Lyu et al. (2020)

Sludge Pb Aqueous solution The optimum Pb removal (99.87%) was at 
0.5 g of nanobiochar, 5 mg L−1 initial concen-
tration and 30 min contact time

Makshut et al. (2020)

Dendro Cr, Cd Aqueous solution The maximum adsorptive removal capacities 
of dendro nanobiochar to Cd and Cr were 
922.27 and 7.46 mg g−1

Ramanayaka et al. (2020a)

Pine wood Ni Aqueous solution The maximum Ni removal was 71% Sajjadi et al. (2020)

Cornstalk Cr Aqueous solution Removal rates of Cr are 49.6%, 65.8%, and 
97.8%, respectively by Fe0-nanobiochar com-
posite consisting of biochar pyrolyzed at 300, 
500 and 700 °C

Wang et al. (2020b)

Wheat straw Cd Soil The application of nanobiochar reduced the 
available Cd in soil

Liu et al. (2020a)

Cynara scolymus leaves Cd, Samarium (Sm) Aqueous solution The equilibrium uptake capacity values of 
Cd and Sm were established as 1150 and 
650 μmol g−1, respectively

Mahmoud et al. (2021)

Wood Cd Soil The maximum sorption of Cd by nanobiochar 
reached 1062.4 mg kg−1

Ramezanzadeh et al. (2021)

Cynodon dactylon residues Cu, Pb Aqueous solution The nanobiochar showed the adsorp-
tion capacity of 220.4 mg g−1 for Cu and 
185.4 mg g−1 for Pb

Vishnu et al. (2022)

Corn straw Cd, Pb Soil The adsorption capacity of nanobiochar was 
18.7 mg g−1 for Cd and 126.0 mg g−1 for Pb

Zhang et al. (2022a)



Page 8 of 21Jiang et al. Biochar             (2023) 5:2 

of nanobiochar may improve the photoresponse and pho-
tocatalytic performance of the catalyst during the degra-
dation process and the nanobiochar itself also adsorbs 
some phenol molecules. Zhang et al. (2021) showed that 
the degradation efficiency of the composite material to 
phenol within 90 min was 99.8% higher than that of pure 
ZnO. Other modification methods (see Sect.  2.2.3) will 
also strongly affect the properties of nanobiochar, thereby 
affecting its ability to remove organic pollutants. How-
ever, thus far, only few studies on the use of nanobiochar 
or modified nanobiochar to remove organic pollutants 
have been done, and therefore further studies are needed 
to improve our understanding of the role of nanobiochar 
in this field.

3.3 � Emerging pollutants
Emerging pollutants include a range of organic com-
pounds including pharmaceuticals and personal care 
products (PPCPs), detergents, pesticides, and industrial 
chemicals (Daughton and Ternes 1999; Matei et al. 2022; 
Norvill et al. 2016). They are highly polar, hydrophilic and 
resistant to biodegradation. Many emerging pollutants 
can enter the biosphere through groundwater and sur-
face water (Gondi et al. 2022; Wanda et al. 2017). Some 
emerging pollutants may interfere with human enzymatic 
activities, hormones, or be mutagenic (Basheer 2018). 
In recent years, due to rapid industrialization, the global 
emission of emerging pollutants has increased to 10,000 
tons per year (Gondi et al. 2022).

Table  3 summaries recent representative studies of 
nanobiochar application for the removal of emerging pol-
lutants. Due to the abundant surface functional groups 
and rich pores, nanobiochar’s high-efficiency removal 

ability for mainstream antibiotics in the environment has 
been demonstrated. Previous studies have shown that the 
removal rate of tetracycline (TC) in TC contaminated soil 
amended with ball milled nanobiochar was 96.36%, which 
was significantly higher than that amended with the bulk 
biochar (Sun et al. 2022). This result was attributed to the 
enhanced activity of soil microorganisms through the 
adsorption and degradation of TC by nanobiochar (Yue 
et al. 2019a). Moreover, active carbon and metal-organic 
frameworks (MOFs) were considered as super adsor-
bents for pollutants in wastewater, however,   they are 
unable to completely remove persistent organic pollut-
ants from wastewater (Hernández-Leal et al. 2011; West-
erhoff et al. 2005). However, nanobiochar has exhibited a 
considerable adsorption capacity (609–2098 mg kg−1 for 
galaxolide) for persistent organic pollutants, which was 
much higher than active carbon (Zhang et al. 2019b). All 
these studies further indicated that nanobiochar can be 
used as a useful amendment for removal of antibiotics in 
the environment.

Increasing antibiotic exposure in the environment 
promotes the relative abundance of antibiotic resist-
ance genes (ARG)  (Pruden et al. 2006). Lian et al. (2020) 
found that nanobiochar  could adsorb the extracellu-
lar DNA (eDNA) of ARGs and the adsorption capacity 
reached 296 mg g−1. It is worth noting that the adsorbed 
eDNA is cleaved into short fragments or loses structural 
integrity over time. At the same time, the comparison 
found that the binding ability of nanobiochar to ARGs 
was 50–100 times higher than that of the bulk biochar. 
They also found that the nanobiochar not only adsorbed 
and damaged ARGs, but also inhibited their replication 
(Lian et  al. 2020). In contrast, the bulk  biochar–ARGs 

Table 2  Effect of nanobiochar application on the removal of organic pollutants

Feedstocks Organic pollutants Environment Results References

Forest wood Phenanthrene, pyrene Soil The migration and cumulative release of phenanthrene and 
pyrene were significantly reduced by nanobiochar

Zand (2017)

Sugarcane bagasse Methylene blue (MB) Aqueous solution The maximum MB removal capacity of 450 °C biochar after ball 
milling can reach 354 mg g−1, which is 20 times higher than 
that of the pristine 450 °C biochar

Lyu et al. (2018b)

Bamboo Methylene blue Aqueous solution 74% MB was removed by nanobiochar Wang et al. (2019)

Rice husk Toluene Aqueous solution The adsorption capacity for toluene by nanobiochar enriched 
in silicon was 264 mg g−1

Shen et al. (2019)

Hickory wood Acetone Aqueous solution Nanobiochar exhibited faster adsorption than the pristine 
ones and the maximum adsorption capacity of acetone was 
103.4 mg g−1

Xiang et al. (2020)

Poplar wood CH3Hg+ Aqueous solution Modified nanobiochar has higher removal efficiency of 
CH3Hg+, 104.9 mg g−1

Lyu et al. (2020)

Cellulose nanocrystals Phenol Aqueous solution The degradation rate of nanobiochar to phenol was 99.8% 
within 90 min

Zhang et al. (2021)

Pine sawdust MeHg Aqueous solution The maximum adsorption capacity of MeHg was 
108.16 mg g−1

Zhao et al. (2022)



Page 9 of 21Jiang et al. Biochar             (2023) 5:2 	

interaction only involves adsorption without the damag-
ing and inhibition effects.

Ma et al. (2019) reported that the maximum adsorption 
capacity of diethyl phthalate by nanobiochar under pH 9 
was much greater than that of micro-size biochar, while 
the adsorption capacity of nanobiochar and micron-scale 
biochar was insignificant at pH 3, which indicates that the 
corn stover nanobiochar has high activity under alkaline 
conditions. Studies have shown that biochar can prevent 
leaching and increase  the dissipation of these biopes-
ticides thereby reducing their potential environmental 
risk (Anupama and Khare 2021; Gámiz et  al. 2016). In 
terms of pollutant adsorption and degradation, biochar 
and nanobiochar share similar mechanisms which are 
discussed in detail below. Shen et  al. (2020) found that 
nanobiochar can weaken the Imperata cylindrica allelo-
pathic effect on rice seedlings. Together these studies 
demonstrated that nanobiochar is an effective absorbent 
for controlling the release of allelopathic compounds.

According to the above discussion, nanobiochar can 
significantly stabilize or remove toxic substances from 
soil, which may offer a healthy environment for plant 
growth. In addition, nanobiochar combines the pristine 
biochar and  nanomaterial properties to promote plant 

growth (Garg et  al. 2022; Rajput et  al. 2022; Shen et  al. 
2020). Therefore, during phytoremediation process, 
nanobiochar application to contaminated soil will also 
further improve the phytoremediation effectiveness.

4 � Adsorption mechanism of pollutants using 
nanobiochar

As a powerful pollutant adsorbent, the adsorption mech-
anism of nanobiochar is complex and diverse, including 
ion exchange, complexation, precipitation, electrostatic 
interaction, and physical adsorption (Zhang et al. 2022b). 
In the adsorption process, the above reactions or their 
combined reactions may be involved (Mahmoud et  al. 
2021). The adsorption mechanisms, however, varied with 
the properties of nanobiochar, environmental conditions, 
and the type of adsorbed pollutants (Antonangelo et  al. 
2019). For example, studies showed that the adsorption 
of Ni on carbonaceous materials mainly involves electro-
static forces, cationic-π interactions, and surface com-
plexed, while the adsorption mechanism of glyphosate 
on nanobiochar may not include chemisorption (Meena 
et  al. 2005; Ramanayaka et  al. 2020a; Sato et  al. 2007). 
The increase of acidic functional groups will reduce 
the surface potential and PZC of nanobiochar, thereby 

Table 3  Effect of nanobiochar application on the removal of emerging pollutants

Feedstocks Emerging pollutants Environment Results References

Corn straw and rice husk Diethyl phthalate (DEP) Aqueous solution The maximum adsorption capacity of 
DEP by corn straw nanobiochar and rice 
husk straw nanobiochar was 33.87 and 
27.65 mg g−1, respectively

Ma et al. (2019)

Rice husk and wheat straw Galaxolide Aqueous solution The nanobiochar adsorbed 609–
2098 mg kg−1 of galaxolide, which 
was about 3 times more than unmilled 
biochars

Zhang et al. (2019b)

Wheat straw Tetracycline Aqueous solution The adsorption capacity of nanobiochar 
pyrolyzed at 700 °C for tetracycline was 
268.3 mg g−1

Li et al. (2020)

Rice straw Antibiotic resistance genes (ARG) Aqueous solution The maximum adsorption capacity of 
nanobiochar for eDNA was 296 mg g−1

Lian et al. (2020)

Artichoke leaves Metformin hydrochloride anti-
diabetic drug (MFH)

Aqueous solution The implementation of modified nano-
biochar for removal of MFH anti-diabetic 
drug (10 mg L−1) from tap water, waste-
water and sea water was affirmed by 
87.0%, 97.0% and 92.0%, respectively

Mahmoud et al. (2020a)

Poplar woodchips Enrofloxacin Aqueous solution Nanobiochar pyrolyzed at 300 °C exhib-
ited the highest degradation rate (80.2%) 
and mineralization ability (66.4%) of 
enrofloxacin

Xiao et al. (2020)

Date-palm Phosphate and nitrate Aqueous solution The maximum monolayer adsorp-
tion capacity of phosphate and nitrate 
by nanobiochar was 177.97 and 
28.06 mg g−1

Alagha et al. (2020)

Wheat straw and rice husk Tetracycline Soil The removal rate of tetracycline by wheat 
straw and rice husk nanobiochar at 500 °C 
was 96% and 94.9%, respectively

Sun et al. (2022)
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enhancing the electrostatic effect of adsorption (Lyu 
et al. 2018a). Moreover, high temperature pyrolysis may 
result in the increase of the SSA and void structure rich-
ness of biochar and a decrease in polar surface functional 
groups, consequently the dominant adsorption mecha-
nism tends to be physical adsorption. On the contrary, 
the SSA of low-temperature nanobiochar is relatively 
low and the polar surface functional groups are rela-
tively more, and the dominant adsorption mechanism is 
biased towards chemical adsorption (Zhuang et al. 2021). 
Therefore, to explore the nanobiochar with good removal 
ability for heavy metals and organic pollutants, it is nec-
essary to study the mechanisms that mainly control the 
adsorption.

Fan et al. (2020) concluded that the main mechanism 
for the adsorption of heavy metals by nanobiochar was 
attributed to the interaction between the negatively 
charge surface carrying oxygen-containing functional 
groups as electron donors and positively charged met-
als. Wang et al. (2020b) showed that the complexation 
of the positively charged –OH groups of nanobiochar 
with the negatively charged Cr(VI) in aqueous sys-
tems  was the dominant mechanism involved in the 
adsorption process. Ramanayaka et al. (2020a) pointed 
out that no physical adsorption was found in the 
adsorption of Cr(VI) by nanobiochar, and the surface 
–OH, –COOH, –C=O and other oxygen-containing 
functional groups provide electrons for the reduc-
tion of Cr(VI), which was confirmed by Zhang et  al. 
(2013a, b). Cations (Ca2+ and Mg2+) were observed to 
be released from biochar into solution during adsorp-
tion process, which suggests that cation exchange 
is another important adsorption mechanism during 
Cr(III)-biochar reaction (Chen et al. 2015). For anions, 
nanobiochar showed different adsorption mechanisms. 
Niazi et al. (2018a) reported that the functional groups 
were involved in As sequestration by biochar. After As 
loading, the shift peaks of functional groups consistent 
with hydroxy, carboxyl, and C–O ester of alcohols were 
observed in Fourier Transform Infrared Spectroscopy 
(FTIR) spectra (Samsuri et  al. 2013), suggesting the 
complexation of As with functional groups. In addi-
tion to complexation, electrostatic interaction may 
be another mechanism which largely controls  the As 
adsorption (Li et al. 2017a). This is evidenced by Wang 
et al. (2016b) who found the surface functional groups 
with higher degree of protonation at low pH attract As 
oxyanion through electrostatic interaction. Lyu et  al. 
(2018a) found ball milling increased the internal and 
external surface area and exposed the graphene struc-
ture on the surface of nanobiochar, which enhanced 
Ni adsorption via strong cation-π  interactions. Fur-
thermore, electrostatic interaction and surface 

complexation were also observed to be the main mech-
anisms of Ni-nanobiochar reaction.

Different from heavy metals, the removal of organic 
pollutants by nanobiochar also includes promoting the 
pollutant   degradation (Khan et  al. 2022). Xiao et  al. 
(2020) showed that the ball-milled nanobiochar exposed 
to visible light produced more oxygen-containing func-
tional groups and exhibited a high degradation rate to 
enrofloxacin. Sun et  al. (2022) showed that the adsorp-
tion of TC in soil by ball-milled nanobiochar is mainly 
based on surface adsorption, π–π interactions, hydro-
phobic  interactions, and hydrogen bonding. Tetracycline 
adsorbed on nanobiochar surface was degraded by micro-
organisms whose activity were enhanced by nanobiochar 
(Yue et  al. 2019b). It is likely that the removal process 
was adsorption at initial period and followed by degra-
dation. Another study also reported that the adsorption 
mechanism of TC in wastewater on magnetic ball-milled 
nanobiochar was mainly based on the combined effect of 
electrostatic interaction, hydrogen bonding and Cπ–Cπ 
interaction (Li et  al. 2020). Hydrogen bonding may be 
the key mechanism for TC adsorption because of the TC 
aromaticity, whose molecular structure contains several 
components that can act as H+ acceptors (e.g. –N(CH3)2 
and –C=O) or both as H+ acceptors or donors (e.g. –
OH, –CONH2, and –NH2). These components can form 
hydrogen bonds with the surface components of biochar 
(Jing et al. 2014; Yang et al. 2011). Electrostatic interac-
tions are the most common adsorption mechanism dur-
ing the binding of nanobiochar to organic pollutants 
(Abbas et  al. 2018; Zheng et  al. 2013). The solution pH 
largely determines the strength of the electrostatic force 
and whether it is attractive or repulsive (see Sect.  5.3). 
With the pH value  ranging from 1.8 to 9.8, the adsorp-
tion capacity of nanobiochar for methyl blue ranged from 
216 to 351 mg g−1, which indicates that the electrostatic 
interaction mechanism plays an important role in the 
adsorption process (Lyu et al. 2018b). Compared to bulk 
biochar, nanobiochar has more graphene structure and 
larger pore volume and pore size. Therefore, pore filling 
and π–π interactions should occur more frequently dur-
ing the reaction. Zhang et  al. (2019b) found that pore 
filling and π–π interactions enhanced the adsorption of 
galaxolide by high-temperature ball-milled nanobiochar. 
The adsorption mechanism of nanobiochar on pollutants 
is ultimately determined by its properties, which is dis-
cussed in detail below.

5 � Factors affecting performance of nanobiochar 
for environmental remediation

The biogeochemical behavior of nanobiochar during the 
removal or stabilization of pollutants is affected by vari-
ous factors, such as the physical and chemical properties 
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of nanobiochar, characteristics of pollutants and envi-
ronmental conditions. These factors also have different 
degrees of influence on nanobiochar’s biogeochemical 
behavior in soil and water environments. For example, 
when environmental factors (e.g. acid rain) attempt to 
alter the soil and water pH, the soil pH was more affected  
than water system due to due to the strong buffering 
capacity of the soil. In addition, the types of microor-
ganisms in soil and water also vary, which may lead to 
greater variability in nanobiochar biogeochemical behav-
ior in both systems.

5.1 � Properties of nanobiochar
It has been widely accepted that the pyrolysis tempera-
ture can significantly affect nanobiochar properties. 
During pyrolysis, the release of volatile gases leads to 
an increase in porosity and therefore  increases the SSA 
of biochar/nanobiochar (Niazi et al. 2018b; Swaren et al. 
2022; Weber and Quicker 2018). Most nanobiochars have 
large SSA ranging from 5.58 to 1736 m2 g−1 (Table 4) due 
to the small particle size. Studies have shown that the 
SSA of nanobiochar could increase with the pyrolysis 
temperature (see Table  4 and references therein). How-
ever, there are also conflicting opinions which  suggest 
that the increase of pyrolysis temperature had no effect 
or negatively effect on nanobiochar SSA (Table  4). The 
reason for these differences may be due to the difference 
in the raw parent materials of the nanobiochar.

Chen et  al. (2011) reported that nanobiochar made 
from high hemicellulose biomass had a larger surface 
area than that from high lignin content material. This 
may be due to the high recalcitrance of lignin pyroly-
sis below 1000 °C (Neeli and Ramsurn 2018). Under the 
same preparation conditions, the carbon content of bar-
ley grass nanobiochar was only 5.02%, however, the pig 
manure nanobiochar reached 44.9% (Song et al. 2019). As 
for the ash content, corn straw nanobiochar had a much 
lower ash content than that of rice straw nanobiochar, 
which was mainly due to the rice straw containing more 
silicon (Si) than corn straw (Ma et al. 2019).

In addition to the raw material, the ash content was 
usually related to the pyrolysis temperature (Anupama 
et  al. 2021; Nath et  al. 2019). As the pyrolysis tempera-
ture increases, the base cation and carbonate content of 
the biochar increases  thus leading to an increase in total 
ash content (Ramanayaka et al. 2020a). For instance, the 
ash content of 800 °C sugarcane bagasse biochar was 2–3 
times higher than low temperature biochar (Hass and 
Lima 2018). In addition, the ash content of ultrasonic 
nanobiochar was significantly lower than that of pristine 
biochar by about 50% because of the separation or dis-
solution of minerals by the ultrasonic process (Liu et al. 
2018a). Similar  to the ash content, the carbon content 

also showed a strong correlation with temperature and 
raw material (Zhang et  al. 2022c). Under high tempera-
ture pyrolysis conditions, the C–H and C–O bonds are 
broken leading to the release of hydrogen and oxygen and 
an increase in carbon content (Jindo et  al. 2014; Mahi-
npey et  al. 2009; Xu et  al. 2020). At low temperatures 
(< 300  °C), the raw material is difficult to be carbonized 
and thus retains its original properties, and the carbon 
content of the biochar is lower (Keiluweit et al. 2010). The 
effect of raw materials on the carbon content of nanobi-
ochar has been summarized in Table  4. At the molecu-
lar scale, the main component of nanobiochar carbon 
was mainly the aromatic structure (Ma et  al. 2019). At 
higher pyrolysis temperatures (800–900  °C), smaller 
aromatic rings form larger and more stable aromatic 
ring structures that were more difficult to depolymerize 
(Feng et al. 2017). The aromatic clusters were distributed 
on different graphene-like aggregates (Xiao et  al. 2017). 
Graphene-like multilayer structures have been observed 
by transmission electron microscopy (TEM) (Ma et  al. 
2019; Oleszczuk et al. 2016), where these nanosheets are 
randomly arranged in the turbo-layered state (Xiao et al. 
2016). In addition, amorphous carbon was present on 
the surface of the nanobiochar (Zhao et al. 2022), where 
intrinsic minerals (mainly the alkali and alkaline earth 
metals) can act as catalysts (He et al. 2021). The composi-
tion and structure of nanobiochar have a great impact on 
its ability to adsorb pollutants. For example, nanobiochar 
with higher concentration of cations may enhance the ion 
exchange ability with heavy metals, thereby stabilizing 
more metal ions. A more aromatic structure nanobiochar 
may lead to more π–π interactions between nanobiochar 
and pollutants (mainly for organic pollutants). Therefore, 
when nanobiochar is used as an amendment for envi-
ronmental remediation, its composition and structure 
should also be taken into consideration.

The aggregation ability, colloidal stability and the 
electro kinetic properties of  nanobiochar may affect 
the adsorption capacity of nanobiochar on pollutants, 
which can be assessed by measuring the zeta poten-
tial (Filipinas et al. 2021; Safari et al. 2019). Generally, 
the zeta potential of nanobiochar is lower than that of 
microbiochar, which is due to the smaller particle size, 
lower carbon content and higher ash content of nano-
biochar (Song et al. 2019). The zeta potential may vary 
due to differences in chemical composition of the par-
ent material (such as –COOH) (Qian et al. 2016). Song 
et al. (2019) observed that nanobiochar produced from 
wood, forage and agricultural waste had a much higher 
zeta potential than that produced from manure and 
activated sludge. Surface functional groups of nano-
biochar also vary with pyrolysis temperature and par-
ent material. As the temperature increases, the volatile 
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Table 4  Physicochemical properties of nanobiochar

Feedstocks Pyrolysis 
temperature 
(°C)

Properties Methods References

pH Surface area 
(m2 g–1)

Ash content 
(%)

Carbon 
content (%)

Particle size 
(nm)

Rice husk 450 – – – – 45 Milling Richard et al. 
(2016)

Pine white 
wood

525 ± 1 6.61 ± 0.35 47.25 2.0 ± 0.1 83.1 ± 2.5 60 ± 20 Naghdi et al. 
(2017b)

Bagasse 300 6.4 10.8 – – 242 Lyu et al. (2018a)

450 6.8 331 – – 170

600 6.9 364 – – 140

Bamboo 300 7.1 8.3 – – 250

450 7.9 299 – – 165

600 8.4 276 – – 140

Hickory wood 
chips

300 6.2 5.6 – – 333

450 7.2 309 – – 158

600 7.8 270 – – 133

Poplar wood 500 – – – 68.63 10–1000 Liu et al. (2019)

Corn straw 500 7.9 ± 0.2 364 6.27 ± 0.08 77.62 ± 0.28 100–600 Ma et al. (2019)

Rice straw 500 8.7 ± 0.1 298 31.51 ± 0.08 53.05 ± 0.25 100–600

Bamboo 450 – 298.6 – – 52.5–159.1 Wang et al. 
(2019)

Wheat straw 500 – 289 – 62.7  < 100 Zhang et al. 
(2019b)

Crude biochar 
from gasifica-
tion

– – 9.19 63.1 58.4 70–80 Goswami et al. 
(2020)

Waste lignin 800 – 83.41 – 84.44 473.6 ± 81.9 Jiang et al. (2020)

Wheat straw 700 – 296.3 – 47.98  < 250 Yin et al. (2020)

Fruit tree 
branch

350 – 26.06 – 27.75 ± 0.16 44–119 Xu et al. (2020)

450 – 10.72 – 27.72 ± 0.11 44–120

550 – 30.46 – 77.32 ± 0.21 41–112

Corn straw 350 – 5.58 – 11.65 ± 0.02 51–87

Peanut straw 350 – 69.6 – 29.67 ± 0.08 60–103

Poplar wood-
chips

300 – – – –  < 100 Xiao et al. (2020)

500 – – – –  < 100

700 – – – –  < 100

Coconut shell – 9.6 – – – 40 Yang et al. 
(2020b)

Poplar wood 
chips

300 – 61.34 – 66.53 ± 1.59  < 1000 Lyu et al. (2020)

Cornstalk 700 – 251.938 – – 100 Wang et al. 
(2020b)

Sawdust 600 – 360 2.82 ± 0.13 85.6 ± 4.2 76–230 Yuan et al. (2020)

600 – 334 16.7 ± 0.14 71.9 ± 3.6 153–307

Artichoke 
leaves

350 – – – – 23.54–27.8 Mahmoud et al. 
(2021)

Sugarcane 
waste

800 – – – – 150–300 Yao et al. (2021)

Wheat straw 350 6.8 – – –  < 50 Sonicator/ Cen-
trifugation

Wang et al. 
(2013)

550 6.7 – – –  < 110
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organic compounds in the material are devolatilize, 
resulting in a surface functional group reduction (Alam 
et  al. 2018). Hence, low-temperature pyrolysis nano-
biochar was reported to have an abundance of surface 
functional groups, high absolute zeta potential and 
strong suspension stability (Xu et al. 2020).

5.2 � Characteristics of pollutants affecting sorption 
by nanobiochar

  The adsorption behaviour of nanobiochar for differ-
ent pollutants may varies greatly due to the large differ-
ences in the properties of the pollutants. As for heavy 
metals, the valence, hydration radius, electronegativity 
and hydrolysis constant are the main factors that gov-
ern the remediation process of nanobiochar (Fig.  4). 
Zhang et  al. (2022a) found that under the same condi-
tions, the adsorption capacity of nanobiochar for Pb was 

much greater than that for Cd. This could be attributed 
to the property difference of metals and their affinity for 
adsorption sites. The hydration radius of Cd (4.26  Å) is 
larger than that of Pb (4.01 Å) and the pKH (negative log 
of hydrolysis constant) of Cd (10.1) is larger than that 
of Pb (7.71). These metallic properties indicate that Pb 
can be better adsorbed through internal surface com-
plexation or adsorption reactions than Cd. In addition, 
the electronegativity of Pb (2.33) is greater than that of 
Cd (1.69), which leads to a better binding tendency of Pb 
to hard Lewis base surface functional groups (Ni et  al. 
2019).

The characteristics  of organic pollutants such as polar-
ity, hydrophobicity, aromaticity, and molecular size are 
important factors affecting their interaction with nano-
biochar   (Fig.  4). Since acetone polarity was higher than 
that of toluene, the adsorption capacity of nanobiochar 

Table 4  (continued)

Feedstocks Pyrolysis 
temperature 
(°C)

Properties Methods References

pH Surface area 
(m2 g–1)

Ash content 
(%)

Carbon 
content (%)

Particle size 
(nm)

Pine needle 350 6.7 – – –  < 150

550 6.8 – – –  < 220

Wheat straw 350–700 9.1 ± 0.2 29.56 ± 1.1 52.35 27.88 ± 0.09 600 Oleszczuk et al. 
(2016)

Wicker 350–700 8.9 ± 0.3 18.25 ± 1.5 30.97 51.57 ± 1.7 210

Miscanthus 350–700 7.8 ± 0.1 36.39 ± 2.9 24.74 56.16 ± 2.7 110 Li et al. (2017b)

Pitch pine 600 – – – 79.28 180–400

Peanut shell 300 6.40 ± 0.04 63.6 6.89 ± 1.14 50.2 17.4 ± 4.2 Liu et al. (2018a)

400 6.80 ± 0.03 78.6 7.68 ± 0.46 54.8 –

500 7.08 ± 0.04 230 8.93 ± 0.34 61.1 –

600 7.27 ± 0.03 264 9.16 ± 0.94 61.4 25.3 ± 11.9

Tobacco stems 500 9.79 ± 0.1 21.108 – – 42 ± 6 Dong et al. 
(2019)

Pine wood 500 9.4 – 32.6 44.9  < 100 Song et al. (2019)

Wood chip 500 8.9 – 43.4 17.7  < 100

Barley grass 500 9.17 – 67.3 5.02  < 100

Wheat straw 500 9.69 – 65.5 6.57  < 100

Peanut shell 500 9.82 – 61.3 13.1  < 100

Rice husk 500 10.2 – 68.2 16  < 100

Dairy manure 500 9.76 – 56.6 6.58  < 100

Pig manure 500 9.22 – 68.5 4.21  < 100

Sewage sludge 500 8.43 – 60.8 11.2  < 100

Rice hull 300 – 21.7 – 71.34 190 Yue et al. (2019a)

400 – 80.1 – 71.19 106

500 – 90.9 – 81.25 92

600 – 123.2 – 80.87 59

Rice straw 400 – 93.18 – 55 280 Lian et al. (2020)

700 – 253.9 – 54.8 220

Sago activated 
sludge

500 – 78.863 99.9 0.08 45–75 Twice carboni-
zation

Makshut et al. 
(2020)
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for acetone was greatly improved compared to that of 
toluene (Zhuang et  al. 2021). Generally, the adsorption 
rate of strongly hydrophobic organics by carbonaceous 
adsorbents is slow (Choi et  al. 2013, 2014). Kang et  al. 

(2018) showed that reducing biochar particle size can 
significantly improve the adsorption rate of hydrophobic 
organics  by biochar. Galaxolide is a hydrophobic organic 
pollutant and thus can be better adsorbed by ball milled 
nanobiochar (Zhang et al. 2019b). In addition, the hydro-
phobic interaction between the polar groups of TC and 
the nanobiochar enhanced its adsorption (Sun et al. 2022). 
Aromatic organic compounds can form π–π interactions 
with biochar and be tightly adsorbed (Teixidó et al. 2011; 
Zhu et al. 2005). Zeng et al. (2019) reported that TC was 
adsorbed through the π–π stacking interactions between 
the four aromatic rings in its molecular structure and the 
aromatic carbon matrix of nanobiochar. Pollutants with 
different molecular sizes have different effective contact 
and interception effects on biochar/nanobiochar, subse-
quently the adsorption mechanism and adsorption effect 
are also different (Nguyen et al. 2007). Larger compound 
molecules are hardly absorbed by biochar due to the size 
exclusion effect and pore filling mechanism, which lead to 
organic molecules being largely restricted from entering 
pores smaller than their size (Han et al. 2014; Zhu et al. 
2022). This effect is likely to be amplified on nanobiochar 
due to its generally small pore diameter.

5.3 � Environmental conditions
Environmental factors that strongly affect the perfor-
mance of nanobiochar in environmental remediation 
mainly include pH, coexisting ions, dissolved organic 

Fig. 4  Effects of heavy metal and organic pollutant chemical 
characteristics on their adsorption by nanobiochar

Fig. 5  Effects of environmental factors on biogeochemical behavior of nanobiochar for remediation of environmental pollution



Page 15 of 21Jiang et al. Biochar             (2023) 5:2 	

matter (DOM), organisms and root exudates (soil sys-
tem) (see details in Fig.  5). Environment pH strongly 
governs the biogeochemical behavior of nanobiochar for 
environmental remediation (Gaya et al. 2015). Under low 
pH conditions, the functional groups of nanobiochar are 
easily protonated to form H+, which will cause H+ and 
cation pollutant species to compete with each other for 
cation adsorption sites thus reducing the adsorption 
capacity of nanobiochar (Mahmoud et  al. 2020b; Park 
et al. 2019). In addition, positively charged surfaces may 
hinder the adsorption of pollutants due to electrostatic 
repulsion (Lyu et al. 2018a). Studies have found that the 
adsorption capacity of Cd by nanobiochar increased 
with the pH value (ranging  from 1 to 7) (Mahmoud et al. 
2021; Ramanayaka et al. 2020a). This may be due to the 
protonation of the nanobiochar surface during the acidic 
adsorption process, which   enables Cd to outcompete 
H+ for adsorption sites. However, the negatively charged 
nanobiochar surface also showed lower affinity for nega-
tively charged or neutral pollutants due to electrostatic 
repulsion at high pH (Zeng et  al. 2019). Previous stud-
ies have also shown similar results where the adsorption 
capacity of nanobiochar increased as pH increased from 
2 to 8 and decreased slowly when the pH was greater 
than 8 (Li et al. 2020; Sun et al. 2022). In summary, it is 
essential to study pH changes in the environment when 
using nanobiochar for environmental remediation.

Determination of the PZC is important to accu-
rately investigate how pH affects the adsorption capac-
ity of nanobiochar (Mahmoud et  al. 2021). PZC usually 
occurs when the nanobiochar surface is neutral, and 
under pH < pHPZC conditions, the nanobiochar sur-
face shows a positive charge, otherwise it is negatively 
charged (Choudhary et al. 2020). Changes in the adsorb-
ate solution pH can affect not only the surface chemistry 
of the adsorbent, but also changes in the adsorbate spe-
cies (Li et  al. 2010). For example, Ni2+ is the dominant 
form when the solution pH range is < 9, while the domi-
nant form is Ni (OH)2 (aq) when the pH ranges from 9 
to 11, and Ni (OH)3 for pH 12–14 (Lyu et al. 2018a). As 
for the metal modified nanobiochar, a change in envi-
ronment pH may affect the properties of nanobiochar 
itself, thereby affecting  its pollutants adsorption abili-
ties. Wang et  al. (2020a, b, c) showed that the surface 
of Fe0-nanobiochar contained soluble iron oxides at pH 
lower than PZC under acidic conditions, thus providing 
more opportunities for electron transfer. Li et al. (2022) 
found that the low pH condition resulted in structural 
instability and partial dissolution of the MgAl-layered 
double hydroxide (LDH) phase of the biochar supported 
layered double hydroxide composites, which weakened 
the adsorption capacity of phosphate by the layered dou-
ble hydroxides.

Previous studies have shown that coexist of mul-
tiple ions may affect nanobiochar’s behavior for pol-
lutant  removal (Yadav et  al. 2017; Zhang et  al. 2020). 
Independent adsorption, cooperative adsorption and 
competitive adsorption are three adsorption relation-
ships which are suitable for substances that coexist in 
the water environment (Wang et al. 2016a). Wang et al. 
(2017) showed that the addition of Pb could promote the 
adsorption of p-nitrophenol on biochar. Likewise, the 
presence of As3+ in the aqueous solution increased the 
adsorption of Cd on the magnetized biochar from 3% 
to 16% (Wu et al. 2018). The cations and anions in water 
system may have a much stronger effect on nanobiochar 
properties than in soil system, which  occurs because 
they can migrate faster in water and are easier to contact 
nanobiochar. There are large number of organisms in the 
environment which may produce secretions or excre-
tions, like extracellular polymers by Escherichia coli cells 
and metabolites by algae, and this may block the pores of 
the adsorbent surface and reduce adsorption sites espe-
cially for nanobiochar  due to its small pore and particle 
size (Kenney and Rosenzweig 2018; Zhang et al. 2020).

DOM is abundant in the environment and plays a criti-
cal role in the removal and migration of pollutants (Fig. 5, 
also see details in Ling et al. 2015). As an important frac-
tion, the presence of humic acid will reduce the adsorp-
tion of sulfamethazine by biochar (Jia et al. 2018). Yang 
et  al. (2020a) found that DOM would suppress the Bis-
phenol S adsorption capacity on biochar (should be the 
same effect on nanobiochar). More importantly, DOM 
itself can bind with metals or combine with organic pol-
lutants, thereby reducing their bioavailability. It is essen-
tial to investigate how different fractions of DOM affect 
nanobiochar adsorption capacity for pollutants.

In soil systems, specifically, the nanobiochar pores can 
promote bacteria and fungi coexistence and offer protec-
tion from pollutants (Quilliam et  al. 2013). The nutri-
ent components of nanobiochar can be absorbed by 
soil microorganisms or used as carbon sources, thereby 
enhancing the activity of soil microorganisms, and pro-
moting pollutant   degradation (Ameloot et  al. 2015). 
Nanobiochar can affect soil properties such as reducing 
soil bulk density, increasing soil effective water content 
and carbon sequestration capacity, which consequently 
affect microbial community structure (Rajput el al. 2022; 
Yu et al. 2015). It is important to note that that effect of 
nanobiochar on soil microorganisms is not unidirec-
tional. Since many microorganisms in the rhizosphere 
soil produce secondary metabolites such as nonriboso-
mal peptides and terpenes (Tyc et al. 2017) that can easily 
agglomerate or heterogeneously aggregate nanobiochars, 
leading to a decrease in SSA. This in turn significantly 
reduces nanobiochar’s pollutant adsorption rate. For soil 
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fauna, earthworms are the most studied organisms in the 
interaction between soil animals and biochar (Lehmann 
et al. 2011). The glandular cells of earthworms are present 
in the posterior epithelium and release mucus to moisten 
the epithelium (Wang et al. 2011). Nanobiochar contact-
ing with mucus is likely to lose its adsorption sites due 
to pore plugging . However, the research on the effects of 
other soil fauna behavioral processes on the environmen-
tal function of nanobiochar is lacked.

In soil systems, plant roots are ubiquitous and release 
root exudates such as organic acids, amino acids and 
other simple sugars during plant growth (Ling et  al. 
2009; Toyama et  al. 2011). Root exudates can promote 
the biodegradation of organic pollutants and control 
redox sensitive   pollutant bioavailability (Martin et  al. 
2014; Sun et  al. 2013). The root exudate   components 
can affect nanobiochar physicochemical properties, 
which may further influence its adsorption capacity 
of pollutants. Li et  al. (2019) reported that oxalic acid 
would undergo acid oxidation with biochar to pro-
mote biochar polarity and reduce its aromaticity, which 
directly led to the enhanced adsorption of phenanthrene 
and the weakened  pyrene adsorption by biochar. Inter-
estingly, the high oxalic acid concentration dissolved the 
ash content and increased the number of micropores in 
biochar to increase its SSA, and consequently promoted 
phenanthrene adsorption (Zhang et  al. 2013a, b). In 
addition, root exudates may also diffuse into the pores 
of nanobiochar to destroy the pore structure, resulting in 
the release of pollutants adsorbed into the environment 
(Joseph et al. 2010).

Usually, natural aging process may also strongly affect 
the adsorption capacity of biochar when using for pollut-
ant  removal. This process can partially crack bulk biochar 
into nanobiochar. Wang et al. (2020c) reported that aging 
will lead to nanobiochar erosion, oxidation, and disag-
glomeration. Some studies showed that biochar aging in 
soil environment will generate more oxygen-containing 
surface functional groups, which  is due to the chemical 
aging by soil minerals (Chang et al. 2019; Ren et al. 2018). 
This enhances biochar/nanobiochar ability to immobilize 
heavy metals. However, Zhang et  al. (2016) found that 
aging process reduced the adsorption capacity of biochar 
to pollutants due to dissolved organic matter blocking the 
pores of biochar. Therefore, how aging process affects  the 
performance of nanobiochar on the removal/stabilize pol-
lutants in the environment still need to be further studied.

6 � Conclusions and outlooks
Although numerous studies have focused on how to use 
biochar in environmental remediation, there are rela-
tively few studies on nanobiochar. By summarizing the 

literatures in this review, we found that nanobiochar has 
much greater potential for remediation of environmen-
tal pollution than biochar, which can be attributed to 
its special physical and chemical properties and higher 
mobility in the environment as nanoparticles. However, 
it is not clear whether nanobiochar will produce nano-
toxicity or display negative effects when it enters the 
environment. Therefore, future studies should be con-
ducted to fill the knowledge gaps which are list as below:

•	 As discussed in Sect.  2, although various methods 
can be used for nanobiochar preparation, their 
yields were still relatively low and this greatly limits 
the development of related research on nanobio-
char. Therefore, further studies are needed to opti-
mize nanobiochar production methods to improve 
its yield.

•	 In the remediation process, the biogeochemical 
behavior of   nanobiochar is still unclear, especially 
the environmental risks. Therefore, studying the 
biogeochemical behavior of nanobiochar and its 
environmental risks will provide a guarantee for the 
safe use of nanobiochar in environmental remedia-
tion.

•	 When nanobiochar is added to the environment, it 
can stabilize a large amount of pollutants. This will 
greatly reduce   pollutant transport and bioavailabil-
ity and consequently diminishing their threat to eco-
systems and human health. However, it is unknown 
whether the immobilized pollutants will be re-
released into the environment. The issue of how to 
recover the biochar used for environmental reme-
diation from the environment has not been solved. 
As nano-level particles, nanobiochar is even more 
difficult to recycle. Therefore, nanobiochar recovery 
technology and its environmental risks after adsorp-
tion of pollutants need to be further studied.
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