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Abstract 

Biochar produced from pyrolysis of biomass has been developed as a platform carbonaceous material that can be 
used in various applications. The specific surface area (SSA) and functionalities such as N-containing functional groups 
of biochar are the most significant properties determining the application performance of biochar as a carbon mate-
rial in various areas, such as removal of pollutants, adsorption of  CO2 and  H2, catalysis, and energy storage. Producing 
biochar with preferable SSA and N functional groups is among the frontiers to engineer biochar materials. This study 
attempted to build machine learning models to predict and optimize specific surface area of biochar (SSA-char), 
N content of biochar (N-char), and yield of biochar (Yield-char) individually or simultaneously, by using elemental, 
proximate, and biochemical compositions of biomass and pyrolysis conditions as input variables. The  predictions of 
Yield-char, N-char, and SSA-char were compared by using random forest (RF) and gradient boosting regression 
(GBR) models. GBR outperformed RF for most predictions. When input parameters included elemental and proxi-
mate compositions as well as pyrolysis conditions, the test  R2 values for the single-target and multi-target GBR models 
were 0.90–0.95 except  for  the two-target prediction of Yield-char and SSA-char which had a test  R2 of 0.84 and the 
three-target prediction model which had a test  R2 of 0.81. As indicated by the Pearson correlation coefficient between 
variables and the feature importance of these GBR models, the top influencing factors toward predicting three targets 
were specified as follows: pyrolysis temperature, residence time, and fixed carbon for Yield-char; N and ash for N-char; 
ash and pyrolysis temperature for SSA-char. The effects of these parameters on three targets were different, but the 
trade-offs of these three were balanced during multi-target ML prediction and optimization. The optimum solutions 
were then experimentally verified, which opens a new way for designing smart biochar with target properties and 
oriented application potential.

Highlights 

• Yield, N content, and specific surface area of biochar predicted by machine learning
• Gradient boosting regression outperformed random forest, with test  R2 of 0.81–0.95
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1 Introduction
Biochar, a platform carbonaceous material or pyrogenic 
organic matter produced from the pyrolysis of bio-
mass, has attracted increasing interest among research-
ers, practitioners, and policymakers worldwide due to 
its wide application potentials in a variety of areas (Liu 
et al. 2015; Wang and Wang 2019; Chen et al. 2021). Bio-
char was first introduced as a potential carbon sequester 
since it can store the biochar carbon or black carbon in 
the soil for more than 100 years, helping mitigate climate 
change (Amalina et  al. 2022; Parthasarathy et  al. 2022). 
In the recent decade, it has been widely used in various 
domains such as adsorption of pollutants, energy stor-
age, chemical   reaction catalysis, and soil remediation 
and amendment (Leng et al. 2019; Huang et al. 2019; Qiu 
et al. 2021; Liu et al. 2022). The potential for the applica-
tion of biochar in different areas mainly depends on its 
surface characteristics, including specific surface area 
(SSA) and functionalities, etc. (Cao et al. 2020; He et al. 
2021; Leng et al. 2022; Yang et al. 2022).

SSA generally determines the number of sites, par-
ticularly active sites that work effectively in different 
applications, and the higher SSA means higher avail-
ability of the material’s surface, and thus better appli-
cation performance for most cases. For example, SSA 

ranked second (only after pressure), among the nine 
influencing factors studied in a machine learning 
(ML) model, to predict the hydrogen uptake capacity 
of porous carbon materials (Cao et  al. 2016; Maulana 
Kusdhany and Lyth 2021). This is reasonable since SSA 
is determined based on the gas uptake capability using 
 N2 or sometimes  CO2 under a compressed atmosphere. 
Therefore, SSA is decisive to the  CO2 adsorption capac-
ity of biochar, and it was more important than other 
biochar variables in ML models (Yuan et al. 2021). SSA 
was also listed as the top factor in ML models deter-
mining the adsorption of organic pollutants such as 
pharmaceuticals and personal care products on biochar 
and activated carbon, while the effects of other vari-
ables seemed negligible (Zhu et al. 2021, 2022). Moreo-
ver, many other ML predictions studied the adsorption 
coefficient of various organics on biochar, and they 
indicated that SSA was the most important descrip-
tor (Sigmund et al. 2020; Pathy et al. 2020; Zhao et al. 
2021, 2022). In another ML study, SSA was ranked the 
most significant property for carbonaceous membrane 
electrode materials of proton exchange membrane fuel 
cells among the 26 studied variables that might affect 
the current density and specific power of the fuel cells 
(Huo et  al. 2021). Therefore, SSA is among the most 

• Temperature, nitrogen, and ash were top features for predicting the three targets
• The yield and properties of biochar were engineered and experimentally verified
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important properties that determine the applica-
tion performance of carbon materials such as biochar, 
although the importance level varies between applica-
tions and between studies.

N-containing functional groups on biochar such as 
pyridinic-N, pyrrolic-N, quaternary-N, and amine-
N (proteinic-N) have been reported to be responsible 
for the favorable performance of biochar in catalysis 
of oxygen reduction, electric catalysis, and adsorption 
of various pollutants, etc. (Leng et  al. 2021b, 2022). For 
example, the N content of the electrode materials ranked 
the second (following SSA) for determining the perfor-
mance of proton exchange membrane fuel cells (Huo 
et  al. 2021). The atomic ratio (O + N)/C of biochar and 
activated carbon, representing the quantity of O-/N-con-
taining functional groups, also ranked after SSA to pre-
dict the adsorption of pharmaceuticals and personal care 
products (Zhu et al. 2022). In a recent ML study, the N 
content of biochar (N-char) even ranked the first among 
the 20 variables that affect immobilization of heavy metal 
by biochar in soil, while the effect of SSA was negligible 
(ranked 17) (Palansooriya et  al. 2022). The presence of 
N-containing functional groups on the biochar surface 
provides active sites for heavy metals immobilization 
through strong covalent bonding, H bonding, chelation, 
and electrostatic attraction (Cao et  al. 2021; Palansoor-
iya et  al. 2022), and the general sites of biochar (repre-
sented by SSA) should only have a low affinity to heavy 
metals. Among various N-containing functional groups, 
pyridinic-N was proved particularly efficient in catalyz-
ing oxygen reduction reaction in an experimental study 
reported in Science (Guo et  al. 2016), which received 
extensive attention among researchers.

Based on the above studies, it is hypothesized that the 
fabrication of highly oriented pyrolytic biochar with spe-
cific surface characteristics, such as high SSA or high 
content of N (functional groups), or both, can signifi-
cantly enhance the performance of biochar applications. 
According to our previous reviews, which overviewed 
the influence of various factors on N content (Leng et al. 
2020a) and SSA of biochar (Leng et al. 2021a), there are 
so many variables, such as compositions and proper-
ties of biomass (elemental composition, etc.), pyrolysis 
parameters (temperature, residence time, etc.), and addi-
tional treatments (Leng et  al. 2020b, 2021a; Chen et  al. 
2022), that have considerable effects on these two prop-
erties as well as the yield of biochar (Yield-char). There-
fore, engineering biochar with either high SSA or high N 
content with experimental screening method is difficult, 
not to mention mediating these two biochar characteris-
tics with Yield-char together.

However, the prediction of the SSA-char or N-char 
by ML has not yet been revealed, and the multi-target 

prediction of the yield with either SSA or N-char, or both, 
has also not been reported. The achievement of any of 
the above-mentioned predictions can be crucial to engi-
neer smart biochar carbon materials, and simultaneously 
mediating two of the three targets or regulating the three 
altogether can find its practical use in various applica-
tions. Therefore, in the present study, the single-target 
and multi-target predictions of the Yield-char, SSA-char, 
and N-char will be addressed first by varying models 
(algorithms) and model hyper-parameters. Then, the 
optimization will be applied to guide the design of pyrol-
ysis parameters for selected biomass to produce desired 
biochar with experimental validations.

2  Methodologies
2.1  Datasets collected
Data of 400 biochar samples were collected from 50 SCI 
journal papers (references provided in the Additional 
file 1 and detail biochar samples listed in the Additional 
file  9), and the biochar samples were produced from 
pyrolysis of 64 biomasses, including forestry waste, 
agricultural waste, manure, food waste, algae, grass, 
sludge, and their mixtures, etc. The following 14 input 
variables were collected: (i) the elemental composition 
of biomass (the element contents of carbon, hydrogen, 
nitrogen, and oxygen, C-H-N-O); (ii) the proximate 
composition of biomass (ash, fixed carbon, and volatile 
matter, Ash-FC-VM); (iii) the structural or biochemi-
cal composition of biomass (cellulose, hemicellulose, 
lignin, and extractive, Cel-Hem-Lig-Ext), and (iv) the 
pyrolysis conditions (pyrolysis temperature, heating 
rate, and residence time, T-HR-RT). The characteristics 
of biochar (outputs)  included 3 targets, namely Yield-
char, N-char, and SSA-char. Because the prediction tar-
get varied for single-target and multi-target models, the 
collected data were divided into 7 datasets according to 
the 7 different prediction tasks: (i) 3 single-target pre-
diction tasks (predicting Yield-char, N-char, and SSA-
char individually, datasets #1-#3 from Additional files 
2, 3, and 4), (ii) 3 two-target prediction tasks (predict-
ing either of the two from Yield-char, N-char, and SSA-
char, datasets #4-#6 from Additional files 5, 6, and 7), 
and (iii) 1 three-target prediction task (dataset #7 from 
Additional file 8). Since not each piece of data set con-
tains full information of all the above input and output 
variables and the effects of different input variables on 
prediction performance are well worthy of study, every 
dataset from datasets  #1-#7 was split into 6 sub-data-
sets (datasets #n_m, n = 1–7 and m = 1–6) depending 
on input variables (combination of different biomass 
variables with the same pyrolysis parameters): (i) C-H-
N-O, T-RT-HR (m = 1); (ii) Ash-FC-VM, T-RT-HR 
(m = 2); (iii) Cel-Hem-Lig-Ext, T-RT-HR (m = 3); (iv) 
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C-H-N-O, Ash, T-RT-HR (m = 4); (v) C-H-N-O, Ash-
FC-VM, T-RT-HR (m = 5); (vi) C-H-N-O, Ash-FC-VM, 
Cel-Hem-Lig-Ext, T-RT-HR (m = 6). A total of 42 data-
sets were split, and correspondingly, 42 ML prediction 
tasks were conducted.

In all datasets, the S content in biomass was not con-
sidered as input in ML prediction because S content is 
either very low compared to the contents of other ele-
ments (basically negligible) or is not provided in the 
collected data. Proximate analysis was unified based on 
a dry basis, while the elemental composition was uni-
fied based on ash-free and dry basis, and O was cal-
culated by difference (Eqs.  1–3). The Yield-char, and 
SSA-char collected were on dry basis, while N-char was 
on ash-free basis.

To confirm input and output parameters obey nor-
mal distribution and are on a proper scale, the collected 
datasets were normalized before training the ML model 
based on Eq. (4):

where xi indicates the value of input value i ; x∗i  is the nor-
malized value of origin xi ; s and µ represent the stand-
ard deviation and the mean value of input variable xi , 
respectively.

The linear correlation between two variables was 
measured through Pearson correlation coefficient 
(PCC) calculated according to Eq. (5):

where ρxy is the value of PCC for two variables; −x and 
−

y are the mean of input variable x and output variable 
y . The value of ρxy is between 1 and −1, where a posi-
tive or negative number means positive or negative cor-
relation, and 0 means no linear correlation. The PCC 
was applied to detect collinearity relationship between 
any two input variables and linear correlation between 
input variables and target variables in this study (Were 
et al. 2015).

(1)O=100 − C − H − N − S (if available)

(2)Ash+ FC +VM= 100

(3)Cel +Hem+ Lig +Ext= 100

(4)x∗i =
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2.2  ML models and hyper‑parameters
Two classical predictive models based on ML algorithms, 
including random forest (RF) and gradient boosting 
regression (GBR), were applied to explore the relation-
ship between the characteristics of biomass and bio-
char and predict the yield and properties of biochar. 
RF, a ML algorithm building and combining decision 
trees, can deal with the nonlinear regression problems 
between variables (Li et al. 2020a). GBR algorithm is one 
of the ensemble learning algorithms, which is trained by 
adopting boosting strategy (Tan et al. 2021). The typical 
conception of boosting is to integrate a bunch of weak 
learning algorithms to form a strong model with good 
predictive performance through an iterative method, in 
which every learning algorithm learns from the mistakes 
of the previous one (Cai et al. 2020; Rzychoń et al. 2020). 
Compared to other ML models, these two ML models 
showed many advantages, including strong model inter-
pretability, strong generalization ability, fast convergence 
during training, great adaptability for multiple feature 
data, etc. (Li et  al. 2021b). Moreover, some of the pub-
lished literatures have indicated that these two algo-
rithms have extraordinary potential in predicting biochar 
(Zhu et al. 2019a; Li et al. 2020b, 2021a).

The 5-fold cross-validation method was applied to 
optimize hyper-parameters of two kinds of ML models, 
which would improve model’s prediction ability dur-
ing training. A detailed description about 5-fold cross-
validation can be found in the link (https:// scikit- learn. 
org/ stable/ modul es/ cross_ valid ation. html# multi metric- 
cross- valid ation). Two important hyper-parameters in 
RF, namely the numbers of trees ranging from 2 to 150 
and the max depth of each tree varying from 2 to 128, 
were adjusted to train the model. The two hyper-parame-
ter  ranges of GBR were the same as those of RF. Besides, 
the learning rate of the GBR model is noteworthy, which 
shrinks the contribution of each tree by learning rate. The 
most appropriate learning rate of 0.1 was determined 
through testing and adjustment. Too small a learning 
rate will slow down the convergence rate, while too high 
a learning rate causes the gradient to vibrate around the 
minimum, or even fail to converge.

2.3  Model training and evaluation
ML algorithms are to solve the minimization of loss 
function for the training dataset, which evaluates the 
quality of the model through repeated cross-valida-
tion. Every dataset was randomly split into a train-
ing dataset and a test dataset. 80% of the total data 
points were identified as the training dataset to train 
the model using the 5-fold cross-validation method, 
which avoids the overfitting of the trained model in the 

https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation
https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation
https://scikit-learn.org/stable/modules/cross_validation.html#multimetric-cross-validation
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hyper-parameter optimization process. And the test 
dataset (20% of data points) is suitable for measuring 
the accuracy of the model.

The correlation coefficient  (R2) is used as a statistical 
measure to evaluate the degree of fitness. In general,  R2 
shows the relationship between the independent vari-
able and dependent variable. The root mean squared 
error (RMSE) indicates the deviation between the 
experimental value and predictive value. The evaluation 
index of the regression model performance is based on 
 R2 and RMSE, as shown in Eqs. (6) and (7):

where Y exp
i  and Y pred

i  represent the experimental 
value and the predicted value, respectively. Y exp

ave  means 
the average of the experimental values.

2.4  Feature importance analysis
ML models could deal with the complex relationship 
between the dependent variable and independent varia-
ble, and feature importance analysis can explain the con-
tributions of input parameters in the prediction task, for 
any “black-box” (Islam et  al. 2019). Feature importance 
analysis for models obtained with better predictive per-
formance (GBR models for this study) was conducted. 
Based on the model prediction, it is feasible to verify 
the importance of the feature parameters and obtain the 
score of each feature. The principle is to change the value 
of a feature variable into a random number and calculate 
its influence on the accuracy of the model. The impor-
tance of all input parameters is measured in terms of the 
average drop precision value calculated multiple times. 
The higher the value, the higher importance the variable 
shows (Genuer et al. 2010). The value of the feature closer 
to zero indicates the feature parameter under considera-
tion has a weak effect on the model prediction. The big 
positive value means that the feature is so important that 
a small change of the value would have a significant influ-
ence on the model prediction result. The feature impor-
tance only presents the influence of a certain feature on 
model prediction in a numerical value way, while par-
tial dependent plots (PDP) could reflect how the feature 
affects the prediction, and therefore, the PDP of impor-
tant features were provided.

(6)R2=1-
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2.5  Forward optimization (biochar engineering) 
and experimental verification

The forward optimization to engineer target biochar 
(e.g., biochar of high yield, high N content and high SSA) 
from three given feedstocks (namely rice husk, sawdust, 
and corn stalk) with known characteristics (Additional 
file  1: Table  S1) was carried out based on the optimum 
model (model based on dataset #7_5). Specifically, only 
the pyrolysis conditions need to be optimized during for-
ward optimization, therefore, iteration step size of 50 °C 
for T from 200 to 800  °C, of 30  min for RT from 30 to 
120  min, and step size of 2  °C   min–1 for HR from 2 to 
10 °C   min–1 according to the pyrolysis conditions of the 
dataset and engineering implementation considerations. 
The result of these iterations will result in vast results of 
Yield-char, N-char, and SSA-char corresponding to dif-
ferent pyrolysis conditions and feedstocks, from which 
the optimal solutions will be screened by comparing con-
tours of pyrolysis conditions (T, RT, and HR) against the 
three targets.

Then, the optimal conditions to achieve the targets 
were verified by pyrolysis experiments. In brief, the 
pyrolysis experiments were conducted in a tube furnace, 
and the T, RT, and HR were selected and set according 
to the screened optimal solutions, with 99.999%  N2 purge 
gas of flow rate 100  ml   min–1. The yield of biochar was 
calculated based on the solid in a pyrolysis vessel before 
and after pyrolysis. N-char was measured by elemental 
analyzer (Elementar, Vario, Germany), in which the tem-
perature of the combustion tube of which was 1150  °C 
with  O2 gas flow rate 15 ml  min–1 and He purge gas flow 
rate 200  ml   min–1. The Brunauer–Emmett–Teller (BET) 
SSA-char was determined by the  N2 adsorption method 
with 120  °C of degassing temperature and 6 h of degas-
sing time using a Quantasorb SI instrument (Quan-
tachrone, USA).

3  Results and discussions
3.1  Statistical analysis of datasets
Table  1 shows all the data collected, which is the data-
set before splitting into datasets  #1-#7). The data size 
for each variable ranged from 148 (for biochemical com-
position) to 400 (for pyrolysis conditions). The mean 
values and the standard deviations (SD) were used to 
reflect the dispersion degree of each variable, while the 
minimum and maximum values displayed the scope 
of each variable, with quartile ranges being provided to 
show additional measures of location. Both lignocel-
lulosic biomasses, such as wheat straw, polar wood, and 
husk which own relatively high contents of cellulose, 
hemicellulose, and lignin, and other biomasses, such 
as algae and animal manure which have  a high content 
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of extractives such as protein, were included. Pyroly-
sis temperatures  ranged from 150 to 800  °C with most 
between 400 and 600  °C, and residence times varied 
from 6 to 480 min, with most in the range of 30–120 min. 
Meanwhile, 75% of the heating rate values were below 
20  °C   min–1 (mostly 10–20  °C   min–1), although  a heat-
ing rate of up to  300  °C   min–1 was collected. Biochar 
yields  varied from 9.6% to 93.5%, with most being in 
the range of 26–48%. Meanwhile, the N content in bio-
char fluctuated between 0.09% and 9.20% (mostly in the 
range of 0.7–3.2%), and the much high N content existed 
in biochar from Chlorella Vulgaris and penicillin myce-
lial dreg. The SSA of biochar ranged more sparsely from 
0.02 to 525.86  m2  g–1, although most values concentrated 
within 5–94  m2  g–1 (Table 1). The high SSA values were 
mainly found for biochar from the softwood and hard-
wood (Hassan et  al. 2020). The detailed information for 
each of datasets  #1-#7 was shown in Additional file  1: 
Table  S2. And the range of data distribution (datasets 
#1-#3 from Additional files 2, 3, and 4) was performed by 
box plots (Additional file 1: Fig. S1). As can be seen from 
the box plots, only a few outliers existed in these datasets, 
which were within the normal range of biomass proper-
ties and pyrolysis conditions. Therefore, it is not neces-
sary to delete these outliers.

3.2  Pearson correlation coefficient
Pearson correlation coefficient (PCC) matrix, which 
was applied to describe the relationship between 

variables, is shown in Fig.  1. The magnitude of the 
coefficient indicates the degree to which one param-
eter impacts the other. Input parameters, including N 
content (p < 0.01, p-value), Ash (p < 0.01), FC (p < 0.01), 
and HR (p < 0.01), had high correlations with three tar-
get parameters, while RT showed   weak correlation or 
irrelevancy to three targets. Other inputs showed var-
ied correlations with the outputs. According to the 
PCC matrix, the Yield-char  showed  a negative cor-
relation with T (p < 0.01, r = −  0.523). The previous 
research also proved that the high temperature would 
contribute to the rapid decomposition of lignocellu-
losic ingredients, leading to a decrease in biochar con-
tent (Hassan et al. 2020). The HR showed   a tendency 
similar to T, indicating a negative correlation between 
HR and Yield-char (p < 0.01, r = −  0.220) or N-char 
(p < 0.01, r = −  0.164) but with lower correlation coef-
ficients than those between T and Yield-char. At a high 
HR, biomass is more likely to depolymerize into vola-
tile fractions, leading to lower Yield-char and N-char 
(Tripathi et  al. 2016). Besides, it was found that the 
Yield-char was positively correlated with C (p < 0.05, 
r = 0.123) and N (p < 0.01, r = 0.332), Ash (p < 0.01, 
r = 0.399) as well as Lig (p < 0.01, r = 0.444). Higher Lig 
leads to higher Yield-char due to the high thermal sta-
bility of the aromatic monomers which are resistant to 
volatilization (Yang et al. 2020; Hassan et al. 2020). And 
the Ash of biomass is generally treated as part of bio-
char (not for ash-free Yield-char, this study collected 

Table 1 The parameter distribution and parameter scale in the whole dataset

a On dry ash-free basis
b On dry basis

Item Count Mean SD Min 25% 50% 75% Max

Elemental  compositiona C (%) 371 51.52 9.58 33.77 47.17 48.91 53.04 87.62

H (%) 371 6.69 1.47 3.42 6.00 6.35 7.11 13.67

N (%) 371 1.76 1.82 0.05 0.51 1.17 1.99 9.78

O (%) 371 39.75 10.31 0.87 37.84 42.62 45.54 52.86

Proximate  compositionb VM (%) 299 74.30 8.55 29.86 70.78 75.82 79.80 94.16

Ash (%) 375 8.94 9.41 0.30 2.33 5.31 12.00 45.54

FC (%) 284 17.06 5.77 3.37 13.20 17.15 20.90 37.77

Biochemical composition Cel (%) 148 35.24 11.29 11.87 28.00 32.05 44.40 66.25

Hem (%) 148 28.84 11.07 10.21 17.22 29.70 40.39 55.42

Lig (%) 148 20.30 11.39 2.11 13.20 22.40 27.18 54.23

Ext (%) 148 15.62 13.15 2.19 7.35 12.12 24.99 72.12

Pyrolysis conditions T (°C) 400 489 150 150 400 500 600 800

RT (min) 400 88 82 6 30 60 120 480

HR (°C  min–1) 400 25 47 1 10 10 20 300

Properties of biochar Yield-char (%) 296 37.99 14.57 9.60 26.86 35.53 48.81 93.50

N-char (%) 260 2.24 2.11 0.09 0.70 1.57 3.21 9.20

SSA-char  (m2  g–1) 284 77.20 108.24 0.02 5.55 25.89 94.00 525.86
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data of Yield-char with ash included), and thus it can 
increase Yield-char (Fahmi et  al. 2008; Li et  al. 2017). 
The Yield-char held negative correlation with O 
(p < 0.01, r = −  0.168), FC (p < 0.01, r = −  0.203), and 
Hem (p < 0.01, r = −  0.525). Hem in biomass contrib-
utes to oxygen-containing functional groups, and Hem 
is quite unstable and easy to decompose during pyroly-
sis, and thereby is negatively related to Yield-char (Has-
san et al. 2020).

In terms of N-char, the N and Ash of biomass showed 
significant positive correlations compared to other vari-
ables, with correlation coefficients being 0.840 (p < 0.01) 
and 0.759 (p < 0.01), respectively. This phenomenon 
indicates the initial N content in biomass feedstock 
plays a decisive role in the N-char (Xu et  al. 2021). 
Besides, the N-char  showed a positive correlation with 
the Ext (p < 0.01) since the content of protein (N source 
of N-char) was included in the Ext. And the N-char had 
a negative correlation with C (p < 0.01, r = − 0.210), VM 
(p < 0.01, r = −  0.542), FC (p < 0.01, r = −  0.429), Cel 
(p < 0.01, r = − 0.655), and HR (p < 0.01, r = − 0.164).

As for SSA-char, T was positively correlated (p < 0.01, 
r = 0.256). The increase in T would lead to more porous 
structures, which contributes to a greater SSA (Yang 
and Hanping Chen 2007). This may be due to the 
increased micropore volume from the removal of the 
volatilized residual material that blocked micropores 
upon heating at higher T (Lee et  al. 2010). In addi-
tion to T, the SSA-char had a positive correlation with 
FC (p < 0.01, r = 0.281), Cel (p < 0.01, r = 0.368), and 
HR (p < 0.01, r = 0.153), and FC and Cel should be the 
structures that are favorable to biochar surface and 
pores. It  had a negative correlation with N (p < 0.01, 
r = −  0.248), Ash (p < 0.01, r = −  0.297), as well as Ext 
(p < 0.01, r = − 0.279), and Ash may block pores of bio-
char while N and Ext either are easy to decompose or 
would form N-containing functional groups that may 
block pores of biochar as well.

However, not all correlations can be well explained 
by the current knowledge. To further explore the quan-
titative effects of biomass characteristics on the biochar 
yield, N-char and SSA-char, it is important to establish 
suitable prediction models by different machine learning 
algorithms.

3.3  ML predictions
3.3.1  Hyper‑parameter tuning
Figures  2a and b show the average  R2 based on RF and 
GBR models, respectively, for hyper-parameter tun-
ing regarding the single-target prediction of Yield-char 
after 5-fold cross-validations. When the max_depth of 
RF was less than 4, the average  R2 showed no improve-
ment with the increasing n_estimators (Fig.  2a). How-
ever, when the max_depth of RF  was over 4, the average 
 R2 had a remarkable increase with the n_estimators ris-
ing from 4 to 32. The n_estimators and max_depth of 
32 and 16, respectively, afforded the maximum average 
 R2 value (Fig. 2a). For GBR, the average  R2 of the model 
increased considerably when the n_estimators  increased 
from 2 to 16 irrespective of the max_depth (Fig. 2b). The 
further increase of n_estimators and decrease of max_
depth  increased the  R2, with the optimal n_estimators 
and max_depth being 150 and 2, respectively. The ten-
dencies for the effect of hyper-parameter on average  R2 
of multi-target prediction were similar to those of single-
target prediction, and the optimum hyper-parameters are 
noted in Fig.  2c, d. The optimum hyper-parameters for 
the other 80 ML models were obtained in the same way, 
and the values are provided in Additional file  1: Tables 
S3, S4, and S5.

3.3.2  Model evaluation
Based on the optimum hyper-parameters obtained from 
the hyper-parameter tuning of the 84 ML models, the 
whole dataset was retrained, and Additional file 1: Tables 
S3, S4, and S5 show each model’s performance, including 

Fig. 1 Heatmap about characteristics of biomass and biochar through Pearson coefficient analysis based on the whole data collection of 400 
pieces of data (* means p-value < 0.05 and ** means p-value < 0.01)
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input and output details as well as  R2 and RMSE, which 
can be used as the evaluation criteria of model accuracy. 
The  R2 value closer to 1 or the smaller RMSE value for 
the same single-target or multi-target means the higher 
accuracy of the prediction model. For comparison, the 
test  R2 and RMSE of the 84 models (dots in plots) are 
presented in Fig. 3, with the average test  R2 and the aver-
age test RMSE being presented as bars.

In the single-target predictions, the test  R2 values of RF 
and GBR models were in the range of 0.83–0.97 and aver-
aged at around 0.90 (test RMSE in the range of 2.32–6.68) 
for Yield-char from dataset #1 (Fig.  3a and  Additional 
file  1: Table  S3), indicating better performance than, if 
not comparable with, previously reported ML predictions 
for Yield-char (Table 2). For the single-target prediction 
of N-char and SSA-char, the test  R2 values were generally 
around 0.85, and the test RMSE for N-char was 0.56–0.97 
and that for SSA-char was 26–81 (Fig. 3a and Additional 
file 1: Table S3). There were several cases obtained with 
test  R2 values lower than 0.80 for single-target prediction 
of N-char and SSA-char, with four cases being even lower 
than 0.70 mainly because of small data sizes or deficient 

variables (Fig. 3a and Additional file 1: Table S3). On the 
other hand, the predictive performance of multi-target 
tasks (Fig.  3b)  was slightly better than the single-target 
ones (Fig. 3a); all multi-target models achieved  R2 higher 
than 0.70 (Fig.  3b). The co-prediction of Yield-char and 
N-char by GBR achieved the highest average test  R2 
(~ 0.92), while the co-prediction of N-char and SSA-char 
received the lowest average test  R2 of ~ 0.81 by RF, and 
the co-prediction of three target obtained average test  R2 
values of ~ 0.81 and ~ 0.84 by RF and GBR, respectively 
(Fig. 3b and Additional file 1: Tables S4 and S5).

Figure  3 shows that the predictive performance of 
GBR was generally better than RF when the average test 
 R2 was considered except for the single-target predic-
tion of N-char. When the test  R2 for each sub-dataset was 
considered, predictive performance for datasets #n_2 was 
generally better than datasets #n_1, meaning the use of 
proximate analysis of biomass as input is better than the 
elemental composition of biomass. The major difference 
between the sub-datasets in each of datasets #1-#7 is the 
input variables of biomass, namely the descriptors for 
biomass. The use of biochemical composition as inputs 

Fig. 2 Hyper-parameter tuning for the prediction of Yield-char from dataset #1_6 (a, b) and that of three targets from dataset #7_6 (c, d)
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(datasets #n_3, including datasets #1_3, #2_3, #3_3, #4_3, 
#5_3, #6_3, and #7_3) afforded better predictive perfor-
mance than the former two (datasets #n_1 and #n_2) for 
predicting Yield-char and SSA-char, but not for N-char. 
Nevertheless, the combination of proximate and elemen-
tal compositions of biomass (datasets #n_5) can obtain 
satisfactory test  R2 and RMSE values for all 7 tasks. The 
further incorporation of biochemical composition to the 
input variables (datasets #n_6) seemed also to improve 
the predictive performance except for the single-target 
task for the prediction of N-char. However, datasets 
#n_6 contain only limited data points, 118 for predicting 

Yield-char and 63–68 for the other predictions, and the 
models from datasets #n_6 may not be as reliable as the 
others.

Figures  4a–c and 5 depict the predicted values versus 
the actual experimental data derived from published lit-
erature in the form of scatter diagram based on the GBR 
models obtained from datasets #n_5 (i.e., #1_5, #2_5, 
#3_5, #4_5, #5_5, #6_5, and #7_5, red-line circled in 
Fig. 3). The input & output variables’ scales and the pre-
dictive performance of the 7 models (based on #n_5) for 
the single-target and multi-target predictions are shown 
in Table 3 and Table 4, respectively, and those for models 

Fig. 3 Test  R2 and RMSE of the 42 ML predictions and the average test  R2 of datasets #1-#7 for a single-target predictions and b multi-target 
predictions based on RF and GBR (Details refer to Additional file 1: Tables S3, S4, and S5)

Table 2 Comparison of predictive performance for biochar yield in this study and in previous studies

a Test  R2 based on Random Forest
b Test RMSE based on Random Forest
c Not available

PS Particle size of biomass

Input parameters Dataset points Model Test  R2 Test RMSE Refs.

C, H, N, O, T, RT, and HR 282 GBR (RF) 0.89 (0.83)a 5.49 (6.68)b This study

Ash, FC, VM, T, RT, and HR 206 GBR (RF) 0.92 (0.90) 3.57 (4.07) This study

Cel, Hem, Lig, T, RT, and HR 133 GBR (RF) 0.92 (0.93) 3.84 (3.73) This study

C, H, N, O, Ash, T, RT, and HR 282 GBR (RF) 0.84 (0.84) 6.48 (6.48) This study

C, H, N, O, Ash, VM, FC, T, RT, and HR 196 GBR (RF) 0.90 (0.85) 4.66 (5.69) This study

C, H, N, O, Ash, VM, FC, Cel, Hem, Lig, T, RT, and HR 118 GBR (RF) 0.94 (0.97) 3.56 (2.32) This study

C, H, N, O, T, RT, and HR 91 XGB 0.73 –c (Pathy et al. 2020)

C, H, N, O, Ash, FC, VM, and T 91 XGB 0.77 – (Pathy et al. 2020)

C, H, N, O, Ash, FC, VM, T, RT, and HR 91 XGB 0.75 – (Pathy et al. 2020)

C, H, N, O, Ash, PS, T, RT, and HR 245 RF 0.80 3.97 (Zhu et al. 2019a)

Cel, Hem, Lig, PS, T, RT, and HR 245 RF 0.85 3.50 (Zhu et al. 2019a)

C, H, N, O, Ash, Cel, Hem, Lig, PS, T, RT, and HR 245 RF 0.85 3.40 (Zhu et al. 2019a)
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based on #n_6 are shown in Additional file  1: Table  S6 
(not detailed in the main body). The test data points 
around the 45-degree line (y = x) in Figs. 4 and 5 indicate 
that models based on datasets #n_5 are credible in the 
prediction of biochar yield and properties. The distribu-
tion of data points for the training dataset was relatively 
more concentrated compared to the test dataset. Besides, 
the  R2 of the training dataset was closer to 1 and the 
RMSE was smaller, as compared to that of the test data-
set. It indicates the predictive performance based on the 
GBR model presented a slight weakness in the test data-
set. Figure  4a–c present that the performance of GBR 
based on datasets #n_5 is appropriate for single-target 
prediction of Yield-char, N-char, and SSA-char without 
normalization, and test  R2 of 0.90, 0.92, and 0.93 and test 
RMSE of 4.66, 0.56, and 29.89 were obtained for these 
three targets, respectively. For multi-target, the normali-
zation was applied to map all output parameters to the 
same scale due to the order of magnitude differences of 
Yield-char, N-char, and SSA-char. Figure  5 provides the 
predictive performance for the two-target or three-target 
tasks under normalization, the test  R2 of 0.84–0.95 and 
RMSE of 0.24–0.38 were obtained for two-target tasks, 

while the test  R2 of 0.81 and RMSE of 0.41 were obtained 
for the three-target task.

3.4  Feature importance analysis of GBR models
The feature importance was applied to estimate the rela-
tive contribution of each feature parameter for GBR 
models predicting Yield-char (based on dataset #1_5), 
N-char (dataset #2_5), and SSA-char (dataset #3_5) indi-
vidually (Fig.  4d–f). The elemental & proximate com-
positions and the pyrolysis conditions were applied to 
analyze the feature importance of the three targets. The 
feature variables were ranked according to their respec-
tive importance, and the percentage of importance for 
different compositions was also shown. Among all the 
pyrolysis parameters, T was the most important, and 
it  accounted for 33.40% and 24.26% feature importance 
level during the prediction of Yield-char and SSA-char, 
respectively (Figs.  4d and f ). And other important vari-
ables  included  RT, N-biomass, and Ash (Figs. 4d–f).

Pyrolysis conditions were the most important param-
eters for predicting Yield-char (accounting for 58% of the 
importance level), and T  played the most important role 
in the prediction of Yield-char (Fig.  4d). The Yield-char 
decreased with increasing T, especially at 200–600  °C 

Fig. 4 Single-target prediction figures of a Yield-char, b N-char, and c SSA-char, and the relative contribution of each feature for d Yield-char, e 
N-char, and f SSA-char based on GBR model ((a and d), (b and e), (c and f) from dataset #1_5, #2_5, and #3_5, respectively)
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(the left plot of Fig.  6a), which is consistent with PCC. 
It is because a high T would lead to the heavier decom-
position of lignocellulosic components, which contrib-
utes to a lower Yield-char. T was also ranked as the first 
feature to predict biochar yield in previous ML studies 
(Zhu et al. 2019a; Li et al. 2020a). T was followed by RT; 
the Yield-char showed a slight increase when the RT was 
more than 100 min (the middle plot of Fig. 6a), although 
RT had no correlation with Yield-char in PCC (Fig. 1). In 
addition, RT showed very low importance and is negli-
gible in many previous studies about predicting biochar 
yield (Zhu et al. 2019a; Li et al. 2020a; Pathy et al. 2020). 
The third important feature was FC, the Yield-char would 
decrease with incremental FC in the range of 21- 23% 
(the right plot of Fig. 6a). However, HR and C were the 
second and third features to biochar yield prediction in 
the aforementioned two ML studies (Zhu et  al. 2019a; 
Li et  al. 2020a). One of the reasons may be due to the 

differences in input variables, for example, FC was not 
included in the study carried out by Zhu et al. (Zhu et al. 
2019a). In addition, the data difference can be another 
important reason since the data between this study and 
the previous ones are totally different.

Elemental composition dominated  the prediction of 
N-char (accounting for 89% of the importance level), 
among which the N content of biomass was the dominant 
one (Fig. 4e). N-char  increased with the incremental bio-
mass N content (the left plot of Fig. 6b); this is because 
N-char only comes from biomass N (Hassan et al. 2020; 
Xu et  al. 2021). The N-char slightly decreased as the O 
content of biomass rises (the middle plot of Fig. 6b), and 
O content also showed a low negative correlation with 
N-char in PCC analysis (Fig.  1). The N content of bio-
char decreased during pyrolysis of the biomass with high 
O content owning to decarboxylation and dehydration 
process (Gascó et  al. 2018). N-char slightly  decreased 

Fig. 5 Multi-target prediction figures based on GBR model for a Yield-char and N-char, b Yield-char and SSA-char, c N-char and SSA-char, and d 
Yield-char, N-char, and SSA-char from dataset #4_5, #5_5, #6_5, #7_5, respectively
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(Ash < 2%) and then increased (Ash > 2%) with the incre-
mental Ash (the right plot of Fig.  6b). Interestingly, T 
only ranked fourth in the model, and it seems negligible 
to predict N-char.

On the other hand, the proximate composition  was 
more important than elemental composition and pyrol-
ysis conditions (accounting for 56% of the importance 
level) (Fig.  4f ) to SSA-char. Ash and T showed high 
importance to the prediction of SSA-char (Fig.  4f ). 
Ash  was more significant, and it  showed a prominent 
negative effect on SSA-char when the ash content was 
smaller than 2% (the left plot of Fig. 6c). The major reason 
is that the pore formation is closely related to the release 
of volatile matter (interestingly, VM and HR were the 
least important features, Fig.  4f ), while high Ash would 
result in blocking of a large number of pores, and ash 
itself is not porous structure and makes less contribution 

to SSA-char. The SSA data collected are dry basis and 
thus the dry basis SSA of char can be much higher than 
the collected SSA for high-ash biochar samples. A recent 
study reported that the addition of ash to biomass during 
pyrolysis decreased SSA-char considerably, which was 
mainly a result from the dilution effect of ash (Grafmüller 
et al. 2022). The washing of biochar to remove ash com-
ponent (from ~ 16% to ~ 6.5%) can significantly increase 
SSA-char, for example from 81–201 to 311–493  m2   g–1 
(Thomas Klasson et al. 2014). However, Ash higher than 
2% resulted in only limited influence on SSA-char. This 
means the dominant role of Ash is mainly because a cer-
tain couple of biomass samples with ash yield < 2% result-
ing in the production of biochar with very high SSA. For 
example, wood hybrid poplar and douglas fir wood with 
ash yield of 1.0% and 0.3% produced biochar with SSA of 
181–223  m2   g–1 and 478–526  m2   g–1, respectively (Suli-
man et al. 2016). In another study, poplar wood (Populus 
alba) with ash yield of 1.13% was pyrolyzed and pro-
duced SSA-char of 200–400  m2  g–1 depending on pyroly-
sis conditions (Chen et  al. 2016). Nevertheless, low ash 
yield does not necessarily mean high SSA-char; for exam-
ple, biochar from water oak has SSA-char of 2.9–52.9 
 m2  g–1 (Li et al. 2018). That is because other parameters 
such as T and H would also affect SSA-char considerably 
(Fig.  4f ). SSA-char experienced   a significant increase 
when T increased from 400 °C to 700 °C (the middle plot 
of Fig. 6c). During the conversion of amorphous carbon 
to crystalline carbons, more volatiles are removed, form-
ing sparse regions, which bring about cracks in biochar, 
thus promoting formation of more pores with incremen-
tal T (Fu et al. 2009; Keiluweit et al. 2010). Hydrogen con-
tent in biomass had a slightly negative effect on SSA-char, 
corresponding to PCC (Fig. 1). However, the mechanism 
of the effect of the H element on SSA-char is unclear and 
needs to be further explored. The value of importance for 
the multi-target prediction model based on dataset #7_5 
followed  the trend of N > Ash > T > RT > FC, and other 
variables were less important (Additional file 1: Fig. S2a).

Feature importance analysis of GBR models based on 
datasets #1_6, #2_6, and #3_6 was also conducted. After 
adding biochemical compositions as inputs, all the top 
features changed, from T to H for Yield-char, N to C 
for N-char, and from Ash to FC for SSA-char (compar-
ing Figs.  4d-f and S2b-d). However, that H, C, and FC 
became   the top features  is more likely to be a result 
from several particular samples according to the par-
tial dependence plots shown in Additional file  1: Fig. 
S3. And the small data size of datasets #n_6 enables 
data from particular samples to affect the model trends 
considerably. Lig    became the third feature, after H and 
T, in the prediction of Yield-char. The high content of 
lignin, which is the most stable component of biomass, 

Table 3 The parameter scale of the elemental composition, the 
proximate composition and the pyrolysis conditions for single-
target cases in GBR models

a On dry ash-free basis
b On dry basis
c Not available

Item Dataset #1_5 Dataset #2_5 Dataset #3_5

Elemental  compositiona

 C (%) 40.02–61.57 33.77–61.57 33.77–61.57

 H (%) 4.00–10.76 4.00–13.67 4.00–13.67

 N (%) 0.23–9.78 0.10–8.21 0.23–8.21

 O (%) 27.36–52.86 27.36–52.86 27.36–52.86

Proximate  compositionb

 VM (%) 49.36–94.16 49.36–94.16 49.36–94.16

 Ash (%) 0.40–42.02 0.40–42.02 0.44–42.02

 FC (%) 3.37–32.03 3.37–32.03 3.37–32.03

Pyrolysis conditions

 T (°C) 150–800 200–800 150–800

 RT (min) 6–180 6–180 10–180

 HR (°C  min–1) 1–300 1–300 1–300

Properties of biochar 
(outputs)

 Yield-char (%) 13.50–81.66 – –

 N-char (%) –c 0.26–9.20 –

 SSA-char  (m2  g–1) – – 0.02–418.73

Data size

 Number of data 
points

196 161 183

Hyper-parameter

 N_estimators, max_
depth

150, 4 150, 2 150, 4

Predictive performance

 Train  R2 (Test  R2) 1.00 (0.90) 0.97 (0.92) 1.00 (0.93)

 Train RMSE (Test 
RMSE)

0.39 (4.66) 0.30 (0.56) 4.49 (29.89)
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improved Yield-char, which has been reported in previ-
ous studies (Yang et al. 2007; Tripathi et  al. 2016). The-
oretically, Cel and Hem can help capture N by char or 
oil products by Maillard reaction during pyrolysis, and 
their effects can be different (Leng et al. 2020b, a). When 
Hem  was more than 40%, the N-char would increase 
with the incremental Hem (Additional file  1: Fig. S3b), 
although it  had no prominent correlation with N-char 
in PCC (Fig. 1). On the contrary, Cel had a slightly nega-
tive effect on the N-char (Additional file 1: Fig. S3b), and 
it was consistent with PPC (Fig. 1). Note that the test  R2 
for dataset #2_6 is only 0.65 (Fig. 3a and Additional file 1: 
Table  S3), the effects of inputs on N-char may not be 
credible. Overall, the feature importance analysis of GBR 
models based on datasets #n_6 is not as reliable as that of 
datasets #n_5 because of data size limitations (only 7, 9, 
and 11 kinds of biomasses, and a total of 67, 68, and 118 
data points because of varied pyrolysis conditions, are 
available for use to predict N-char, SSA-char, and Yield-
char, respectively, Additional file  1: Table  S3). A similar 

phenomenon  was observed for GBR models from data-
sets #1_3, #2_3, and #3_3 (with biochemical composition 
of biomass and pyrolysis conditions as inputs) although 
the data points for these datasets were slightly more than 
#1_6, #2_6, and #3_6, respectively (Additional file 1: Fig. 
S4 and Table S3).

However, the feature importance results for GBR 
models from other datasets (#n_m, n = 1, 2, 3, m = 1, 2, 
4, Additional file 1: Fig. S4) echoed those from datasets 
#1_5, #2_5, and #3_5 (Figs. 4d-f ): T, RT, and FC  were the 
top three features to predict Yield-char unless the fea-
ture was not included as input (i.e., FC is not in dataset 
#1_1 and FC is not in #1_4); N and ash were among the 
top three features to predict N-char (Ash is not in data-
set #2_1 and N is not in #2_2); Ash and T were the top 
features to predict SSA-char (Ash is not in dataset #3_1, 
and T ranks third, after N and RT in dataset #3_1). The 
feature importance analysis results from the two- and 
three-target models are similar to those from single-tar-
get models and are not reported here. In summary, the 

Table 4 The parameter scale of the elemental composition, the proximate composition and the pyrolysis conditions for multi-target 
cases in GBR models

a On dry ash-free basis
b On dry basis
c Not available

Item Dataset #4_5 Dataset #5_5 Dataset #6_5 Dataset #7_5

Elemental  compositiona

 C (%) 40.02–61.57 40.02–61.57 33.77–61.57 40.02–61.57

 H (%) 4.00–10.76 4.00–10.76 4.00–13.67 4.00–10.76

 N (%) 0.23–8.21 0.23–8.21 0.23–8.21 0.23–8.21

 O (%) 27.36–52.86 27.36–52.86 27.36–52.86 27.36–52.86

Proximate  compositionb

 VM (%) 49.36–94.16 49.36–94.16 49.36–94.16 49.36–94.16

 Ash (%) 0.40–42.02 0.44–42.02 0.44–42.02 0.44–42.02

 FC (%) 3.37–32.03 3.37–32.03 3.37–32.03 3.37–32.03

Pyrolysis conditions

 T (°C) 200–800 200–800 200–800 200–800

 RT (min) 6–180 10–180 10–180 10–180

 HR (°C  min–1) 1–300 1–300 1–300 1–300

Properties of biochar (outputs)

 Yield-char (%) 13.50–81.66 15.38–81.66 – 15.38–81.66

 N-char (%) 0.24–8.48 – 0.24–9.20 0.24–8.48

 SSA-char  (m2  g–1) –c 0.49–418.73 0.56–418.73 0.73–418.73

Data size

 Number of data points 136 131 134 120

Hyper-parameter

 N_estimators, max_depth 150, 2 150, 4 150, 4 150, 2

Predictive performance

 Train  R2 (Test  R2) 0.98 (0.91) 1.00 (0.95) 1.00 (0.84) 0.98 (0.81)

 Train RMSE (Test RMSE) 0.15 (0.28) 0.02 (0.24) 0.02 (0.38) 0.15 (0.41)
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feature importance results analyzed according to datasets 
#n_m (m = 1, 2, 4, 5) are credible and may be used to help 
engineer Yield-char, N-char, and/or SSA-char individu-
ally or simultaneously.

3.5  Biochar engineering and experimental validations
Based on the optimal GBR model from dataset #7_5, T, 
RT, and HR were optimized to obtain the optimal pyroly-
sis conditions for producing the desired biochar, namely 
biochar with high N content or low N content and high 
SSA. Figures 7a, b, and c show the contours of the itera-
tion to find optimal pyrolysis conditions (i.e., T, RT, and 

HR). When T, HR and RT were 600  °C, 6  °C   min–1 and 
90  min, biochar from rice husk (Run 1) showed high N 
content and high SSA (Yield-char of 32.69%, N-char of 
1.12, and SSA-char of 98.56, Figs.  7 a-c). And When T, 
HR and RT were 800 °C, 8 °C  min–1 and 30 min, biochar 
from rice husk (Run 2) showed low N content and high 
SSA (Yield-char of 32.17%, N-char of 0.75% and SSA-char 
of 185.07  m2  g–1, Figs. 7a-c). The optimal schemes of saw-
dust and corn stalk are shown in Additional file 1: Fig. S5.

A total of four optimal solutions for the desired bio-
char were conducted according to N-char and SSA-char 
(Additional file  1: Table  S1). Differences between the 

Fig. 6 Partial dependence plots of the top-three inputs to the prediction of a Yield-char b N-char, and c SSA-char based on improved GBR model 
developed from dataset #1_5, #2_5, #3_5, respectively
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experimental verification and GBR predicted values of 
the three targets were analyzed. The experimental vali-
dations  were acceptable but not completely satisfactory. 
The experimental and predicted values for Yield-char 
or N-char  were similar, meaning good validation per-
formance, while those for SSA were considerably dif-
ferent for some cases (Fig.  7d). The large variation may 
be because of the large RMSE of the prediction model 
(should be similar to RMSE of model based on dataset 
#3_5, which is 29.89, Fig.  4c). Besides, the good valida-
tion for Yield-char and N-char may lead to a bad perfor-
mance of SSA-char due to weight coefficients of the three 
targets (equal weight for the three in this study), and vice 
versa, and the trade-offs (weight coefficients) optimiza-
tion needs further investigation.

3.6  Implications
The N-char and SSA-char are important properties for 
biochar as a carbonaceous material in a wide range of 
applications. The prediction model and the use of the 
model for experimentally engineering biochar proper-
ties can facilitate the screening of biomass feedstock and 
pyrolysis parameters for the production of target biochar 

materials. This study provides a new way, instead of the 
trial-and-error method which is time-, cost-, and labor-
consuming and ineffective, to material engineering and 
biomass (biowaste) valorization. Other properties of bio-
char, such as cation exchange capacity, which is the dom-
inant property of biochar contributing to heavy metal 
adsorption (Zhu et al. 2019b), and total pore volume and 
pore distribution, which are the most important features 
to predict  CO2 capture capacity (Zhang et al. 2019; Zhu 
et  al. 2020), may also be predicted and optimized in a 
similar manner.

Adding more input variables does not necessarily 
improve predictive performance. Some inputs may be 
redundant and can lower the predictive performance 
and weaken the model generalization ability and robust-
ness. Therefore, feature importance and PCC or other 
techniques may be used to screen only meaningful vari-
ables to improve predictive performance and reduce the 
calculation cost (more variables mean higher cost). In 
addition, data availability has a great influence on the 
predictive performance and the ranking of feature impor-
tance. Input variables with small data size or limited cov-
erage (e.g., the biochemical composition of biomass in 

Fig. 7 The optimal schemes of three target parameters derived from a–c rice husk and d the experimental verification of four optimal solutions
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this study) may bias the model prediction and the feature 
importance level of variables, and result in a model with 
low generalization ability, and such variables should be 
considered seriously.

ML-basis multi-target prediction and optimization can 
deal with trade-off problems effectively. The functional 
relationship between multiple targets and the weight 
coefficient for each target can help find the optimum rec-
ipe by ML algorithms to achieve the prediction of multi-
ple targets and find the complementary points (optimal 
solutions) to obtain favorable trade-offs. For example, the 
trade-offs between high Yield-char (negatively correlated 
with T, Fig. 6a) and high SSA-char (positively correlated 
with T, Fig.  6c) can be balanced by weight coefficient 
mediation. Using equal weight coefficients for the three 
targets in this study did not yield with completely satis-
factory results, and more studies should be carried out in 
this direction.

This study also has other limitations:

i) The quantity and quality of the data collected are not 
completely satisfactory, and model bias may exist due 
to the fact that the limited available particular cases 
may have a significant influence on model prediction, 
e.g., the biochemical composition of biomass in this 
study.

ii) The dataset differences between different models 
make it hard to compare the predictive performance 
of models strictly, and datasets with full and uniform 
information can help increase the model comparabil-
ity in addition to the model accuracy.

iii) The input variables should be expanded (e.g., 
molecular ratio H/C and O/C and particle size of 
biomass feed, pyrolysis method (Meyer et  al. 2011; 
Cha et  al. 2016), and SSA analysis method (Mazi-
arka et  al. 2021)), and the target variables (output) 
may be replaced (e.g., daf-basis SSA and particular 
N-containing functional groups such as pyridinic-
N, pyrrolic-N, and quaternary-N/graphic-N Ebikade 
et  al. 2020; Xu et  al. 2021)) to obtain more closely 
correlated variables or more useful properties; on 
the other hand, other indicators or properties (e.g., 
elemental composition and molecular ratio as well as 
proximate composition and other properties such as 
pH) of biochar can be used to predict SSA-char with 
higher accuracy, although in this way, the model can-
not be used directly to instruct experimental studies.

iv) High SSA of biochar is generally obtained by physical 
and/or chemical activation either by adding activat-
ing agent during or after pyrolysis (Gao et al. 2020), 
but it was not considered in this study; future study 
should be exerted to predict and optimize SSA-char 
by including activation parameters.

4  Conclusions
The prediction of Yield-char, N-char, and SSA-char was 
conducted by using ML methods such as RF and GBR 
models. GBR outperformed RF for most predictions. 
When input parameters include elemental and proximate 
composition as well as pyrolysis conditions, the test  R2 
values for the single-target and multi-target GBR mod-
els are 0.90–0.95 except for the two-target prediction 
of Yield-char and SSA-char, which has a test  R2 of 0.84 
and the three-target prediction model, which has a test 
 R2 of 0.81. Taking into account of  R2 and RMSE values, 
the prediction accuracies of these models are accept-
able. PCC between variables and the feature importance 
of these models indicates that T, RT, and FC are the top 
three features to predict Yield-char; N and ash are the 
most important features to predict N-char; and Ash and 
T are the two significant features to predict SSA-char. 
Yield-char, SSA-char, and N-char were optimized and 
engineered simultaneously by a multi-target ML predic-
tion model with experimental verification. The experi-
mental and ML predicted values for Yield-char, N-char 
and SSA-char were close, meaning the success of using 
ML to aid the prediction and optimization of biochar 
properties. This study provided new insight into biochar 
designing and valorization of biomass or biowastes.
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