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Long‑term biochar addition significantly 
decreases rice rhizosphere available phosphorus 
and its release risk to the environment
Hao Chen1,2†, Jiahui Yuan5†, Guanglei Chen1, Xu Zhao1,2, Shenqiang Wang1,2, Dengjun Wang3, Lei Wang4, 
Yujun Wang1,2 and Yu Wang1,2* 

Abstract 

Phosphorus (P) availability, diffusion, and resupply processes can be altered by biochar addition in flooded rice rhizo-
sphere, which controls the risk of P release to the environment. However, there are few in-situ investigations of these 
rhizospheric processes and effects. To explore the effects of biochar addition on soil P availability, high-resolution 
dialysis (HR-Peeper), diffusive gradients in thin films (DGT), and zymography techniques were used to provide direct 
evidence in the rice rhizosphere at the sub-millimeter scale. Long-term (9-years) field and greenhouse pot experi-
ments demonstrated that biochar addition notably decreased the soluble/labile P and Fe concentrations in rice 
rhizosphere (vs. no biochar addition; CK) based on the results of Peeper, DGT, and two-dimensional imaging of labile P 
fluxes. DGT-induced fluxes in the soil/sediment (DIFS) model and sediment P release risk index (SPRRI) further indi-
cated that biochar addition decreased the diffusion and resupply capacity of P from soil solid to the solution, thereby 
decreasing P release risk to the environment. These processes were dominated by Fe redox cycling and the hydrolysis 
of Al (hydro)oxides that greatly increased the unavailable P (Ca-P and residual-P). Additionally, greenhouse pot experi-
ments (without additional biochar) showed that the previous long-term biochar addition significantly increased soil 
phosphatase activity, due to an adaptive-enhancing response to P decrease in the rhizosphere zone. The in-situ study 
on the biogeochemical reactions of P in the rice rhizosphere may provide a new and direct perspective to better 
evaluate the biochar addition and potential benefits to agricultural soils.

Highlights 

•	 Long-term (9-years) biochar amendment field and greenhouse pot experiments were conducted.
•	 DGT/DIFS/SPRRI were used to in-situ assess P availability, resupply, and release risk to the environment.
•	 Long-term biochar addition significantly decreased rice rhizosphere available P and its release risk to the envi-

ronment.
•	 Fe/Al-P and unavailable P dominated the mobility and resupply of P.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Biochar

†Hao Chen and Jiahui Yuan contributed equally to this study.

*Correspondence:  wangyu@issas.ac.cn

1 State Key Laboratory of Soil and Sustainable Agriculture, Changshu National 
Agro‑Ecosystem Observation and Research Station, Institute of Soil Science, 
Chinese Academy of Sciences, Nanjing 210008, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s42773-022-00178-7&domain=pdf


Page 2 of 15Chen et al. Biochar            (2022) 4:54 

1  Introduction
Phosphorus (P) is essential for crop growth, however, high 
inputs and low utilization efficiency of P fertilizers exac-
erbate the risk of their loss to open waters (Liu et al. 2016; 
Powers et  al. 2016). Currently, P flow from fertilizers to 
erodible soils to avert the widespread eutrophication of 
freshwater systems has been proposed as a regional P plan-
etary boundary (Steffen et  al. 2015). Moreover, biochar 
is seen as an amendment in agricultural soil with growing 
attention, since it has great potential to increase soil carbon 
storage and improve soil fertility (Jeffery et al. 2011; Omondi 
et al. 2016), reduce greenhouse gas emission (Borchard et al. 
2019), and amend the contaminated soil (Olmo et al. 2015). 
However, the effect of biochar addition on the release risk of 
P remains largely underexplored, especially in paddy fields 
that show a more serious P release risk to the environment 
compared to other arable soils (Zhang et al. 2007).

The release of P from biochar-containing soils involves 
complex biogeochemical processes. Almost all studies 
have focused on changes in soil P fractions, especially 
soil available P, but with different results. For instance, 
several recent review articles (Hossain et  al. 2020; Tes-
faye et  al. 2021; Yang et  al. 2021) summarized that bio-
char could increase soil available P, which might be due 

to: (1) the release of P from biochar (Zhai et  al. 2014), 
(2) promoting the desorption and dissolution of P from 
metal (Fe, Al) (hydro)oxides (Cui et  al. 2011), and (3) 
stimulating the mineralization of organic P (Po) by 
increasing phosphatase activities (Jin et  al. 2016). The 
observed increased amount of P was relatively lower in 
longer duration (> 1  year) or field experiments than in 
short term (< 1 year) or pot experiments (Gao et al. 2019). 
However, some studies reported that biochar addition 
had no significant effect (Ahmed and Schoenau 2015; 
Amendola et al. 2017), and even decreased the soil avail-
able P (Li et  al. 2017; Xu et  al. 2014). The ineffective or 
declined effects can be explained by the strong adsorp-
tion for P through electrostatic or binding adsorption (Xu 
et  al. 2014), along with the formation of P precipitates 
by increasing soil pH (Mahmoud et  al. 2020). However, 
the current literature on soil P cycling ignores many very 
important processes in the rhizosphere, which is a highly 
complex environment with limited information available 
(Jacob and Otte 2004; Yin et al. 2020). Therefore, in-situ 
and dynamic mapping technologies that can decipher 
these rhizospheric processes are vital to get direct infor-
mation on the change in soil available P after biochar 
application in agricultural soils.
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Recently, the diffusion gradients in thin films (DGT) 
technique has been successfully and widely applied to 
measure labile metals and metalloids to predict plant 
availability in flooded soils (Li et al. 2020; Qin et al. 2021; 
Santner et  al. 2015; Williams et  al. 2014). Additionally, 
Fang et  al. (2021b) adopted DGT and conducted rhizo-
bag experiments, which revealed that biochar addition 
reduced the bioavailability of toxic trace elements (As, 
Cd, and Pb) in the rice rhizosphere. However, there are 
relatively few in-situ studies on P in flooded paddy soils. 
Previous studies have only suggested that the DGT tech-
nique can be used for the in-situ distribution and vari-
ability of soil labile P around rice roots (Six et al. 2012). 
On this basis, we further elucidated that the availability 
of P in the rice rhizosphere was dominated by Fe redox 
cycling (Wang et  al. 2019, 2021). Fang et  al. (2021a) 
combined three high-resolution in-situ techniques and 
reported that P depletion around rice roots was accom-
panied by the stimulation of phosphatase activity and 
mineralization of organic P. However, direct evidence for 
the effect of long-term biochar addition on the distribu-
tion of available P in rice rhizosphere remains unclear.

The availability of P is influenced by both its diffu-
sion in soil solution and its release from soil solid. These 
dynamic processes can be analyzed by a model of DGT-
induced fluxes in sediments and soils (DIFS) (Harper 
et al. 1998), which has been used to accurately delineate 
the diffusion kinetics and resupply of metals and organic 
in soils and sediments (Guan et al. 2017; Li et al. 2021b; 
Pan et  al. 2021; Xu et  al. 2018). Additionally, Menezes-
Blackburn et al. (2016) combined DGT and DIFS model 
and found that desorption rates and resupply of P form 
solid were significantly correlated with FeO-P, Olsen-P, 
and NaOH-EDTA-P. Likewise, Wu et al. (2018) observed 
that, in Zizania latifolia and Myriophyllum verticiilatur 
rhizosphere, P availability was dominated by P release 
from Fe–P and NH4Cl-P. Phosphorus loss from paddy 
soils into open waters has been regarded as an impor-
tant factor for global eutrophication (Zhang et al. 2007). 
The conventional assessments of P mobility and potential 
release risk are based on the adsorption/desorption abil-
ity (Freundlich or Langmuir) (An and Li 2009) and the 
quantity of TP leaching, yet showing mixed results (Brad-
ley et al. 2015; Laird et al. 2010; Li et al. 2021a). However, 
the reported studies neglected the underlying mecha-
nisms of the phenomena observed after biochar addi-
tion. Wu et al. (2019) developed a sediment P release risk 
index (SPRRI) to evaluate the in-situ P release risk, which 
is based on the DIFS model and sediment chemical prop-
erties (P, Fe, and Al) and combining the labile P pool, P 
desorption and resupply, and Al-P. However, to date, little 
is known on the in-situ P release risk to the environment 
in long-term biochar-added paddy fields. Therefore, it is 

important to understand the capacity and mechanism 
of the environmental impact of P release from biochar-
added soils.

In this study, based on 9-years successive biochar 
amendment field and greenhouse pot experiments, we 
combined HR-Peeper, ZrO-Chelex DGT, Zr-oxide DGT, 
and zymography techniques to measure the P availability 
and identify mechanisms involved in the rice rhizosphere 
zone. Our objectives were to (1) investigate the direct 
evidence and involved mechanisms of the availability of 
P in rice rhizosphere induced by biochar addition on a 
millimeter-scale, and (2) determine the diffusion, resup-
ply, and release risk of P from long-term biochar-added 
agriculture soils to the environment.

2 � Materials and methods
2.1 � Field experiments
2.1.1 � Field experimental design
The field experiments were conducted at the Yixing 
Base for Non-point Source Pollution Control, Changshu 
National Agro-Ecosystem Observation and Research Sta-
tion, Chinese Academy of Sciences (119°54′E, 31°16′N), 
which were established in June 2010, namely, the rice-
growth season. This base typically follows rice–wheat 
rotation and is close to Taihu Lake, with an average 
annual temperature and rainfall of 14.7 °C and 1174 mm, 
respectively. In the experiments, the biochar was pre-
pared from rice straw by pyrolysis at 500 °C for 8 h and 
mixed thoroughly with the upper soil (0–20 cm) for each 
season. The detailed characteristics of the biochar are 
presented in Additional file  1: Table  S1, specially, the 
concentration of total P and available P of biochar was 
2.28 g kg−1 and 221.0 mg kg−1. Four biochar treatments, 
including no biochar (control; CK), 2.25 t ha−1 biochar 
(0.1%BC), 11.25 t ha−1 biochar (0.5%BC), and 22.5 t ha−1 
biochar (1%BC) per each rice and wheat season, respec-
tively, were arranged in a completely randomized design 
with three replications (n = 3). Each plot was designed 
with an area of 4 × 5 m2 separated by a 30 cm wide earth 
ridge. Biochar addition in each plot per season was 
equivalent to adding 11.8, 58.8, and 117.5 kg P2O5 ha−1 in 
0.1%BC, 0.5%BC, and 1%BC treatments. In addition, the 
chemical P fertilizers were added at 60 kg P2O5 ha−1 and 
the urea fertilizers were added at 240 kg N ha−1 (at tiller-
ing stage and jointing stage, basal fertilizer was applied at 
a ratio of 3:4:3). The basic addition rate of potassium fer-
tilizers was 60 kg K2O ha−1.

2.1.2 � DGT and HR‑Peeper deployment
Two types of DGT probes (an exposure window of 
2  cm × 15  cm) and HR-Peeper (an exposure window of 
4  cm × 20  cm) were provided by Easysensor Ltd. (Nan-
jing, China). The purposes of these probes are as follows: 
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HR-Peeper is used to simultaneously measure soluble 
reactive P (Peeper-P) and soluble Fe (Peeper-Fe) concen-
trations in soil pore water; ZrO-Chelex probe is applied 
to simultaneously measure soil labile P and Fe (DGT-P/
Fe) concentrations (one-dimensional DGT); and Zr-oxide 
DGT probe is applied to measure soil labile P fluxes (two-
dimensional DGT imaging) (Wang et al. 2019).

DGT probes and HR-Peeper were applied at the seed-
ling stage (July 18, 2018, days 14 after rice transplanta-
tion) in the 2018 rice-growth season (the 9-year of the 
field experiments) with three replicates. Specifically, the 
HR-Peeper was manually inserted into the rice root zone 
with the least possible disturbance, and the DGT probes 
were inserted 24 h later. The DGT probes and HR-Peeper 
were taken out carefully after further stabilization for 
24  h and then transported to the laboratory for further 
analysis. The soil temperature of each plot was 29 °C. The 
detailed steps of HR-Peeper and DGT sample analyses 
are presented in Additional file 1: Text S1.

2.2 � Greenhouse pot experiments
2.2.1 � Greenhouse pot experimental design
The greenhouse pot experiments were conducted in the 
greenhouse from July 27, 2020 to August 25, 2020, span-
ning 30 days of the rice seedling stage. Soil samples were 
collected at a depth of 0–20 cm during the wheat harvest 
season in 2020 and pre-aired, dried, and sieved. Each of 
12 specifically designed Perspex rhizobox (10 × 8 × 20 
cm3 with a detachable plate) was filled with 1 kg of soil 
and flooded for a week before use. Two young rice seed-
lings of similar size were transferred into the center of 
each detachable plate. Then the rhizoboxes were kept 
inclined at an angle of 45° to make sure the root grew 
along with the detachable plate. Four treatments were 
basally fertilized with 200  mL of urea-containing solu-
tion (1 g L−1) and potassium chloride (0.877 g L−1), then 
top-dressed with 100  mL urea-containing solution after 
2 weeks. P fertilizer was not applied this time. The soils 
were flooded at a depth of 3 to 5  cm during the whole 
experiment.

2.2.2 � DGT and HR‑Peeper deployment
The HR-Peeper was manually inserted into the rice root 
zone on days 1, 14, and 28 after rice transplantation for 
simultaneous in-situ measurement of soluble reactive P 
(Peeper-P) and soluble Fe (Peeper-Fe) concentrations in 
soil pore water. The ZrO-Chelex DGT probe was deployed 
adjacent to the rice roots at the same time the next day after 
inserting HR-Peeper to simultaneously measure soil labile 
P and Fe (DGT-P/Fe) concentrations (Wang et  al. 2019). 
Both probes were taken out carefully after further stabiliza-
tion for 24 h and transported to the laboratory for further 

analysis. The detailed steps of HR-Peeper and DGT sample 
analyses are presented in Additional file  1: Text S1. After 
transferring the samples of two probes, the devices were 
returned to the rhizobox during the subsequent zymogra-
phy determination to prevent changes in soil location. Sub-
sequently, direct zymography was performed on days 3, 16, 
and 30 as a non-destructive technique to capture the spatial 
and temporal variation characteristics of enzyme activities.

2.2.3 � Soil zymography and image processing
The in-situ measurements of soil acid and alkaline phos-
phatase distribution were performed according to the pro-
tocols described by Spohn and Kuzyakov (2013) and Razavi 
et al. (2016). The detailed steps are presented in Additional 
file 1: Text S2.

2.3 � Soil P fraction and sample analyses
A sequential extraction scheme was used for P fractions 
according to Kopacek et al. (2005). Five P fractions include 
(1) H2O-P; (2) BD-P (Fe–P); (3) NaOH25-P (Al-P); (4) 
HCl-P (Ca-P); (5) residual-P. The detailed steps are pre-
sented in Additional file 1: Text S3.

2.4 � DIFS model simulation
The exchange of labile P between soil solid and solution 
accords with the first-order kinetic equation consisting 
of two partial differential equations (Eqs.  1, 2) (Harper 
et al. 2000). Parameters of the DIFS models include diffu-
sion layer thickness (Δg), deployment time (T), diffusion 
layer porosity (φd), soil porosity (φs), diffusion layer diffu-
sion coefficient (Do), soil diffusion coefficient (Ds), and soil 
particle concentration (Pc). R denotes the ratio of DGT-P 
and Peeper-P (Eq.  3) that describes the capacity of soil 
solid to resupply the labile P to pore water. Kd is the ratio 
of Cs (soil Olsen-P) and Peeper-P (Eq. 4), representing the 
distribution coefficient of labile P between the solid phase 
and solution phase. Tc denotes the response time of DGT 
deployment (Eq. 5).

(1)∂C

∂t
= −kC+ k−1PcCs + Ds

∂2C

∂x2

(2)
∂Cs

∂t
=

k1C

Pc
− k−1Cs

(3)R =
DGT− P

Peeper− P

(4)Kd =
Cs

Peeper− P
=

1

Pc
×

k1

k−1
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where DGT-P and Peeper-P are the concentrations of soil 
labile P and the soil solution P determined using DGT 
and HR-Peeper. K1 and K-1 are sorption rate constant and 
desorption rate constant of soil particles for P, respec-
tively. Dspt rate is the desorption rate in nmol of P per 
milliliter of soil solution per day.

2.5 � SPRRI (sediment P release risk index) analysis

where, SPRRI [lg (nmol cm−3 d−1)] is an assessment 
index, including three parts (sub-indexes) as follows: 
part 1 is the lg (1000 × LAP/TP) and represents the rela-
tive reactive P in soil phase, where LAP is the soil labile P 
pool (Olsen-P) and TP is soil total P; part 2 is the R × lg 
(Dspt rate) and demonstrates P release from soil solid 
and desorption kinetics, where R is the ratio of DGT-P 

(5)Tc =
1

k1 + k−1

(6)
Dsptrate(Desorptionrate) = Olsen− P × Pc × K−1

(7)
SPRRI = 10 × lg(1000 × LAP/TP)

× [R × lg(Dspt rate)]

× BD(Fe)/Al[NaOH25]

and Peeper-P and Dspt rate is desorption rate; part 3 is 
the BD(Fe)/Al[NaOH25] (Fe/Al), which reflects the effect 
of Al on P release. The risk of P release index (SPRRI val-
ues) includes 5 levels: “light” (0–5), “moderate” (5–15), 
“relative high” (15–30), “high” (30–45), and “very high” 
(> 45).

2.6 � Statistical analysis
One-way ANOVA and the Duncan test (p < 0.05 and 
p < 0.01) were used to analyze the influence of biochar 
addition on soluble P/Fe, labile P/Fe, and P fractions 
among different treatments. Line regression was used to 
analyze the relationship between DGT P and Fe. In addi-
tion, the above statistical analyses were performed using 
the IBM SPSS Statistics 26.0.

3 � Results and discussion
3.1 � The variation of P availability and phosphatase activity 

in the rice rhizosphere
As revealed by HR-Peeper and DGT, biochar addition 
significantly reduced the concentrations of Peeper P and 
Fe in pore water, as well as DGT P and Fe in soil com-
pared to CK (without biochar). The reduction was more 
significant at higher biochar addition rates, including 
both field and greenhouse pot experiments (Fig. 1a, b, d, 
and e, 2). For instance, in the field experiments, the aver-
age Peeper-P and DGT-P concentrations were reduced 
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by 35.4% and 57.5%, 78.9% and 86.7%, and 79.6% and 
82.5% for the 0.1%BC, 0.5%BC, and 1%BC treatments, 
respectively, compared to CK. Furthermore, 2D visu-
alization of labile P (represented as DGT labile P flux) 
(Fig.  1c) showed a highly uneven distribution of labile 
P in all treatments. The average flux of labile P showed 
similar results with Peeper-P and DGT-P (Fig.  1f ), 

significantly decreasing from 290  pg  cm−1  s−1 in CK 
treatment to 185, 82.8, and 66.9 pg cm−1 s−1 in 0.1%BC, 
0.5%BC, and 1%BC treatments (36.2%, 71.4%, and 76.9%, 
respectively). P depletion in rice rhizosphere has been 
confirmed in previous studies by DGT and 2D visuali-
zation imaging (Fang et al. 2021a; Wang et al. 2019; Yin 
et  al. 2020). However, it is not clear whether biochar 
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addition can enhance or offset P depletion in the rice 
rhizosphere, especially in long-term experiments. Addi-
tionally, different experimental types and durations of 
biochar addition can cause huge differences in soil P 
availability. For example, short-term pot and incuba-
tion experiments mainly increased P availability, while 
there was no significant difference in field experiments 
(Gao et al. 2019). Hong et al. (2018) reported an increase 
in DGT-P content in a pot experiment with 0.6% bio-
char addition. In contrast, Jin et  al. (2019) conducted a 
5-year biochar addition field experiment—the results 
showed no significant change in soil P availability by bio-
char addition on the 5th year. In this study, the greatly 
decreased biochar addition on the P availability in rice 
rhizosphere is likely due to the decreased P diffusion and 
resupply from bulk soil. Moreover, biochar with a high 
specific surface area and alkaline cations (Fe2+, Fe3+, 
Al3+, and Ca2+) increased the adsorption and precipita-
tion of soil P, which further decreased the availability of 
P (Ghodszad et al. 2021).

Additionally, there is a close relationship between P 
availability and phosphatase activities. In-situ 2D visu-
alized zymography of phosphatase activities showed 
a trend opposite to P availability (Fig.  3). Soil acid 

phosphatase (ACP) and alkaline phosphatase (ALP) 
activities in BC treatments were both up to 1.60–6.15 
and 1.66–5.23 folds higher than those in CK (the 
increased effect of activity was greater with higher 
biochar addition rates). The spatial distribution of 
phosphatase hotpots was consistent with P decrease, 
suggesting that phosphatase has an adaptive increase 
reaction to combat P depletion in the lower P rhizos-
phere zone. P depletion in rice rhizosphere promoted 
the synthesis of phosphatase to supplement the availa-
ble P with mineralized organic P. Previous studies (Fang 
et  al. 2021a; Ma et  al. 2017) used 2D in-situ zymogra-
phy to visually verify the concept of a negative correla-
tion between extracellular phosphatase activity and soil 
P availability (Sinsabaugh et  al. 2008). Furthermore, 
the zones with increased ALP had further expanded 
away from the root surface, while ACP mainly clus-
tered on the root surface, becausesoil ACP is mainly 
derived from plants and microorganisms, while soil 
ALP is mainly derived from microorganisms (Spohn 
and Kuzyakov 2013). The high diversity of microbes in 
soils could be one of the main reasons responsible for 
the wider distribution of ALP (Liu et al. 2017) (Table 1).

Fig. 3  Examples of in-situ zymography for soil acid and alkaline phosphatase activities in the paddy soil around rice roots at rice seedling stage 
under four biochar treatments under greenhouse pot experiments on days 1, 14, and 28. Four rows represent response of activities to four biochar 
amendment treatments: (1) CK, (2) 0.1%BC, (3) 0.5%BC, and (4) 1%BC. Figures from left to right are the measurements on days 1, 14, and 28. The 
color bar corresponds to phosphatase activities (nmol cm−2 h−1). CK, 0.1%BC, 0.5%BC, and 1%BC are referred as biochar addition rates at 0, 2.25, 
11.25, and 22.5 t ha−1, respectively
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3.2 � The mechanisms of the decrease in P availability 
and release in rice rhizosphere

3.2.1 � The mobility and resupply of P evaluated according 
to DIFS model

In this study, the DIFS model was adopted to analyze 
the diffusion and resupply of P in paddy soils with 
long-term biochar addition (Table  2). Both the dif-
fusion of P in the soil solution and the resupply from 
soil solids to the solution contributed to the R value. 
Kd reflects the ability of soil solid in retaining P. In 
the field experiments, biochar addition decreased the 
R values from 0.701 in CK to 0.461, 0.445, and 0.601, 
and increased the Kd values from 25.8 cm3  g−1 in CK 
to 31.8, 117, and 138 cm3  g−1, respectively, in 0.1%BC, 
0.5%BC, and 1%BC treatments. These findings sug-
gest that biochar addition could increase the soil solid 
P while weakening the P resupply ability. In the DIFS 
model, Tc values were sensitive to the change in the R 
values (Lehto et al. 2008) and increased after the addi-
tion of biochar. Lower R values together with higher Tc 
values indicate that soil solids cannot timely and per-
sistently provide enough P to soil solution (Yuan et al. 
2021). After biochar addition, both K1 and K-1 values 
decreased significantly, but K1/K-1 values increased 
significantly (Fig.  4a). These results showed that the 
sorption rather than desorption was dominated in con-
trolling P exchange between soil solid and solution, and 
biochar addition reduced the desorption and resup-
ply of labile P from soil solid to the solution (Xu et al. 
2019). Therefore, the Dspt rate was significantly lower 
with biochar treatments compared to CK (Fig. 4b). As 
shown in Fig. 5, Peeper-P exhibited a significantly nega-
tive relationship with K1/K-1 values (p < 0.01), whereas 
a significantly positive relationship with K-1 values and 
Dspt rate (p < 0.01), and DGT-P was also negatively cor-
related with K1/K-1 values (p < 0.01). The DIFS model 
confirmed that biochar addition reduced the P diffu-
sion in soil solution and the P resupply from soil solid 
to soil solution, which further explained our previous 
findings on the decreased availability of P in rice rhizo-
sphere. Similarly, a decrease in the values of R, K1, 
and K-1 was also reported by Yang and Lu (2022) in a 
pot experiment with 1% biochar added at the seedling 
stage of rice, indicating a reduced ability of soil solids 
to replenish P into soil solutions. Conversely, Hong 
et al. (2018) conducted a pot experiment at the tillering 
stage of rice, and the results showed that the addition 
of 0.6% biochar promoted P release from soil solids to 
pore water due to the increased R and K-1 values. The 
reported discrepancy is likely due to the differences 
in the rate of biochar addition, soil physicochemical 
parameters such as pH, and P fractions in soil solids.

3.2.2 � Fe/Al/Ca bound P dominated the mobility and resupply 
of P

Table  3 shows the concentration and variation of bulk 
soil P fractions in both field and greenhouse pot experi-
ments. As shown in the table, biochar addition signifi-
cantly altered the distribution of P fractions, indicating 
that P has different mobility and resupply potentials in 
soil solids and solutions, thereby altering the availability 
of P in the rice rhizosphere. This was mainly due to the 
changes in soil pH induced by biochar addition (Fig.  5) 
(Biederman and Harpole 2013). The variation of soil pH 
significantly affected the biogeochemical processes of soil 
P such as adsorption–desorption, dissolution, precipita-
tion and complexation (Eduah et al. 2019).

In this study, biochar addition decreased the concen-
tration of Fe–P (BD-P), which indicates that biochar 
addition stimulated the release of Fe (hydro)oxides bound 
P (Kamran et al. 2019). With increasing amounts of bio-
char addition, the concentration of Fe (BD-Fe) decreased 
continuously, whereas Fe–P concentration kept increas-
ing. This is an interesting and important observation; a 
possible explanation for this phenomenon may be the 
enhanced adsorption of Fe by biochar. Simultaneously, 
the increase in Fe–P might be due to the enhanced trans-
formation of crystalline Fe oxides (goethite and hema-
tite) to ferrihydrite (amorphous) (Eduah et al. 2019). This 
is because ferrihydrite (amorphous) has a much greater 
adsorption intensity and capacity for P than crystalline 
Fe oxides (goethite and hematite) and is more difficult to 
desorb (Ruttenberg and Sulak 2011; Zhang et  al. 2003). 
What’s more, P solubility, adsorption, and release were 
strongly influenced by Fe (hydro)oxides in rice ecosys-
tems (Hossain et al. 2008). The concentrations of Fe and 
Fe–P showed significantly positive relationships with K1, 
K-1, and Dspt rate (Fig. 5). In addition, DGT-Fe was highly 
positively correlated with DGT-P (Additional file  1: Fig. 
S2), indicating that Fe redox cycling significantly affects 
the release of P in paddy soils. A significant decrease of 
Al-P (NaOH-P) and Al (NaOH-Al) concentrations was 
also observed in biochar addition treatments compared 
to CK. This effect became more significant at higher 
biochar addition rates, suggesting that biochar addition 
promoted the hydrolysis of Al (hydro)oxides, simultane-
ously stimulating the release of P which bounded to Al 
(hydro)oxides (Kamran et al. 2019). The concentration of 
Al and Al-P showed significantly positive relationships 
with K1, K-1, Peeper-P, DGT-P, and Dspt rate, whereas 
showed a significantly negative relationship with K1/K-

1 values (Fig.  5). These results indicated that Al-P also 
played an important role in P release in biochar-added 
paddy soils. It is worth noting that the change of Fe/Al 
value induced by biochar addition is one of the important 
factors controlling the release of P. Fe/Al value exhibited 
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significantly negative relationships with K-1, Dspt rate, 
Peeper-P, and DGT-P (Fig. 5). Furthermore, biochar addi-
tion greatly increased the concentrations of Ca-P (HCl-P) 
and residual-P, the proportion of which to TP increased 
from 20.6% in CK to 37.8%, 45.4%, and 49.5% in 0.1%BC, 
0.5%BC, and 1%BC, respectively. Ca-P and residual-P 
are regarded as unavailable P forms in soils since they 
are locked in minerals and essentially “unavailable” 
once formed. The release of P from Fe–P and Al-P may 
be captured by Ca-minerals to form unavailable P due 
to the increase in pH induced by biochar addition (Zhai 
et al. 2014), thereby reducing the availability of P in the 
rice rhizosphere and the risk of P release to the environ-
ment (Fig. 6). Furthermore, compared to CK, the notable 
positive P balance in soil–plant system in biochar addi-
tion treatments was driven by P input induced by biochar 
addition and a slight decrease in crop uptake P (Addi-
tional file 1: Fig S3).

3.3 � P release risk assessment and relevant environmental 
implications

Preventing the migration of P from paddy fields to fresh-
water systems is of great significance for controlling and 
reducing eutrophication. One of the most necessary 
strategies is to reduce the release of P from soil solids to 
the solution. Consequently, the in-situ research on the 
ability and underlying mechanisms of the solid-solution 
exchange of soil P is a major advance in the environmental 

risk assessment of P release. In this study, SPRRI was first 
used to comprehensively assess the P release risk to the 
environment in the rice system, and it was found that 
biochar addition significantly decreased the soil P release 
risk to the environment (Fig.  4c and Additional file  1: 
Table S3). In field experiments, compared to CK, 0.1%BC, 
0.5%BC, and 1%BC treatments decreased the SPRRI val-
ues by 52.9%, 69.3%, and 37.9%, respectively. Indeed, the 
CK treatment, as the conventional and prevalent appli-
cation of P fertilizer, showed the highest SPRRI values, 
implying the most severe P release risk to the environ-
ment, at levels “very high” that even exceeded the risk of 
endogenous P release in lakes (Wu et  al. 2019). On the 
contrary, the lower SPRRI values in biochar-added soils 
meant a relatively lower P release risk. This may be due 
to the transformation of soil relative available P pool to 
unavailable P pool and the weakening of the diffusion and 
resupply capacity of P from soil solid (Fig. 6). The above 
could be confirmed by the significantly positive relation-
ships between SPRRI values and K1, K-1, Dspt rate, Peeper-
P, Fe–P, and Al-P (Fig.  5). Recently, biochar or modified 
biochar, as a novel material for environmental remedia-
tion, has been widely used to remove P from wastewater 
and eutrophic lakes (Hale et al. 2013; Zhang et al. 2020). 
This paper highlights the roles of biochar addition in reg-
ulating P diffusion, transformation, and release in soil, so 
as to comprehensively assess the P release risk to the envi-
ronment. With the increasing amount of biochar addition 
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Fig. 5  Pearson correlation diagram between pH, Fe (BD-Fe), Al 
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and the requirement for more sustainable utilization of 
P resources, there is an increasing demand for a better 
understanding of P biogeochemical behavior in biochar-
added soil, especially at the long-term field scale. Here, 
inconsistent with the most ex-situ studies, this paper 
applied DGT, DIFS model, and SPRRI as tools to inves-
tigate the fine-scale distributions and the solid-solution 
exchange kinetics of soil P, and further assess the P release 
risk to the environment. This systematic work provides a 
new perspective for understanding the P biogeochemical 
behavior in long-term biochar-added paddy soil, which 
helps us to better understand the P availability in rice 
rhizosphere, the mobility/retention of P in soils, and the 
environmental effects.

4 � Conclusions
In this study, we adopted in-situ DGT and HR-Peeper to 
investigate the P supply, while simultaneously observ-
ing the phosphatase activity in the rice rhizosphere under 
long-term biochar addition. Evidence that Peeper-P, DGT-
P, and labile P flux were notably decreased and phos-
phatase activity was remarkably increased indicated that 
biochar addition significantly reduced the rice rhizosphere 
P availability. The DIFS model coupled with SPRRI was 
used to derive the P transfer and P release risk. The results 

showed that biochar addition significantly decreased the 
diffusion and resupply of P and decreased the P release 
risk. Additionally, Fe redox cycling, hydrolysis of Al 
(hydro)oxides bound P, and the increase of unavailable P 
dominated the mobility and resupply of P. Research on 
the localized biogeochemical cycle of P and the assess-
ment of environmental release risk in the rice rhizosphere 
advances our understanding on the impact of biochar 
addition mode on the nutrient cycle in paddy soils.
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