Skip to main content

Advertisement

Log in

Biochar and sugar cane filter cake interaction on physical and hydrological soil properties under tropical field conditions

  • Original Article
  • Published:
Biochar Aims and scope Submit manuscript

Abstract

Biochar is known for its effects on carbon sequestration and soil fertility. However, there is a lack of information about its effects on soil physical and hydraulic properties for tropical soils. We assessed the effects of biochar (BC) plus sugar cane filter cake (FC) rate, and time of interaction on soil physical and hydraulic properties under humid tropical conditions. For this purpose, a field experiment was installed at a loamy sandy soil with five treatments and four replicates: control (only soil), 25 Mg ha−1 sugar cane filter cake, and 25 Mg ha−1 sugar cane filter cake plus 6.25, 12.5, and 25 Mg ha−1Miscanthus biochar, respectively, two soil depths (0–10 and 10–20 cm) and two times of interaction (9 and 18 months). Physical properties (aggregate stability, bulk density, total porosity, pores size distribution) and hydraulic properties (soil water holding capacity, hydraulic conductivity, plant-available water holding capacity) were measured after nine and eighteen months. The bulk density decreased slightly, and the porosity increased after nine months, for the biochar plus sugar cane filter cake (both 25 Mg ha−1). After 18 months, biochar plus filter cake interaction increase micropores, aggregate stability, and plant-available water content. Saturated hydraulic conductivity was not influenced by sugar cane filter cake. However, biochar significantly reduced saturated hydraulic conductivity when combined with sugar cane filter cake after 18 months. We concluded that sugar cane filter cake in combination with biochar modified the pore size distribution, slightly increased plant-available water holding capacity, and significantly decreased saturated hydraulic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atkinson CJ, Atkinson JD, Fitzgerald NA (2010) Hipps Potential mechanisms for achieving agricultural benefits from biochar application to temperature soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Alghamdi AG (2018) Biochar as a potential soil additive for improving soil physical properties—a review. Arab J Geosci. https://doi.org/10.1007/s12517-018-4056-7

    Article  Google Scholar 

  • Andrenelli MC, Maienza A, Genesio L, Miglietta F, Pellegrini S, Vaccari FP, Vignozzi N (2016) Field application of pelletized biochar: short term effect on the hydrological properties of a silty clay loam soil. Agric Water Manag 163:190–196. https://doi.org/10.1016/j.agwat.2015.09.017

    Article  Google Scholar 

  • ASTM (2007) Standard test method for the analysis of wood charcoal ASTM D17, pp 62–84

  • Barnes RT, Gallagher ME, Masiello CA, Liu Z, Dugan B (2014) Biochar-induced changes in soil hydraulic conductivity and dissolved nutrient fluxes constrained by laboratory experiments. PLoS ONE. https://doi.org/10.1371/journal.pone.0108340

    Article  Google Scholar 

  • Blanco-Canqui H (2017) Biochar and soil physical properties. Soil Sci Soc Am J 84:687. https://doi.org/10.2136/sssaj2017.01.0017

    Article  CAS  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis, part 1—physical and mineralogical methods, agronomy monograph, vol 9, 2nd edn. American Society of Agronomy—Soil Science Society of America, Madison, pp 363–382

    Google Scholar 

  • Basso AS, Miguez FE, Laird DA, Horton R, Westgate M (2013) Assessing potential of biochar for increasing water-holding capacity of sandy soils. Glob Chang Biol Bioenergy 5:132–143. https://doi.org/10.1111/gcbb.12026

    Article  CAS  Google Scholar 

  • Cardozo CON, Benedini MS, Penna MJ (1988) Viabilidade técnica do uso do composto no plantio comercial de cana de açúcar. Boletim Técnico Copersucar 41/88. São Paulo, pp 13–17

  • Carvalho MTM, Maia AHN, Madari BEM, Bastiaans L, van Oort PAJ, Heinemann AB, Da Silva MAS, Petter FA, Meinke H (2014) Biochar increases plant available water in a sandy soil under an aerobic rice cropping system. Solid Earth 5:939–952

    Article  Google Scholar 

  • Cerato AB, Lutenegger AJ (2002) Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotech Test J 25:1–7

    Google Scholar 

  • Chan KY, Bowman A, Oates A (2001) Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under different pasture leys. Soil Sci 166:61–67

    Article  CAS  Google Scholar 

  • Chen Q, Qin J, Sun P, Cheng Z, Shen G (2018a) Cow dung-derived engineered biochar for reclaiming phosphate from aqueous solution and its validation as slow-release fertilizer in soil-crop system. J Clean Prod 172:2009–2018

    Article  CAS  Google Scholar 

  • Chen CR, Wang J, Shang K, Liu MK, Hu IK, Arthur E (2018b) Effect of biochar application on hydraulic properties of sandy soil under dry and wet conditions. Vadose Zone J 17:180101. https://doi.org/10.2136/vzj2018.05.0101

    Article  CAS  Google Scholar 

  • Donzelli JL, Penatti CP, Manejo do solo classificado como roxo acrico (1997) Centro de Tecnologia Copersucar. Rletório Técnico, PiracicabaSp

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann JL, Joseph JS (eds) Biochar for environmental management science and technology. Earthscan Publishers Ltd., London, pp 13–32

    Google Scholar 

  • Duarte SJ, Glaser B, Lima RP, Cerri CEP (2019a) Chemical, physical and hydrological properties as affected by one year of Miscanthus biochar interaction with sandy and loamy tropical soils. Soil Syst. https://doi.org/10.3390/soilsystems3020024

    Article  Google Scholar 

  • Duarte SJ, Glaser B, Lima RP, Cerri CEP (2019b) Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy 9:165. https://doi.org/10.3390/agronomy9040165

    Article  CAS  Google Scholar 

  • Elrick DE, Reynolds WD (1993) Methods for analyzing constant-head well permeameter data. Soil Sci Soc Am J Madison 56:320–323

    Article  Google Scholar 

  • Empresa Brasileira de desenvolvimento Agrícola (EMBRAPA) (2015) Guia Prático para interpretação de resultados de análises de solos. Embrapa Tabuleiros Costeiros, Aracaju. 13 p. (Documentos/Embrapa Tabuleiros Costeiros ISSN: 1678–1953; 206). https://www.bdpa.cnptia.embrapa.br

  • Empresa Brasileira de Pesquisa Agropecuária (EMPRAPA) (1997) Manual de Metodos de Análise de solo/Centro Nacional de Pesquisa de Solos, 2 ed. Revisado e ampliado, Rio de Janeiro, Brasília, 212 p. (EMBRAPA-CNPS. Documentos ; 1) ISBN 85-85864-03-6

  • Esmaeelnejad L, Shorafa M, Gorji M, Hosseini SM (2016) Enhancement of physical and hydrological properties of a sandy loam soil via application of different biochar particle sizes during incubation period. Span J Agric Res. https://doi.org/10.5424/sjar/2016142-9190

    Article  Google Scholar 

  • Leila E, Mehdi S, Manouchehr G, Seiyed MH (2017) Impacts of woody biochar particle size on porosity and hydraulic conductivity of biochar-soil mixtures: an incubation study. Commun Soil Sci Plant Anal 48(14):1710–1718

    Article  Google Scholar 

  • Feller C (1979) Une methode de fractionnement granulometrique de la matière organique des sots. Application aux sots tropicaux a textures grossiès très pauvres en humus. Cah ORSTOM Set Pédol 17:339–346

    Google Scholar 

  • Feola Conz R, Abbruzzini TF, de Andrade CAP, Milori DMB, Cerri EPC (2017) Effect of pyrolysis temperature and feedstock type on agricultural properties and stability of biochars. Agric Sci 08(09):914–933. https://doi.org/10.4236/as.2017.8906

    Article  Google Scholar 

  • Flint AL, Flint LE (2002) Particle density. In: Dane JH, Clarke TG (eds) Methods of soil analysis: physical methods, Pt 4. Soil Science Society of America, Madison, pp 229–40 (Book series, 5)

  • Głąb T, Palmowska J, Zaleski T, Gondek K (2016) Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281:11–20. https://doi.org/10.1016/j.geoderma.2016.06.028

    Article  CAS  Google Scholar 

  • Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678. https://doi.org/10.1016/S0146-6380(00)00044-9

    Article  CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The 'Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88(1):37–41

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35(4):219–230. https://doi.org/10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • Glaser B, Guggenberger G, Zech W (2002b) Past anthropogenic influence on the present soil properties of anthropogenic dark earths (Terra Preta) in Amazonia (Brazil). In: Glaser B, Woods W (eds) Amazônian dark earths (in press). Springer, Berlin, Heidelberg

  • Glaser B, Wiedner K, Seelig S, Schmidt HP, Gerber H (2015) Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron Sustain Dev 35:667–678. https://doi.org/10.1007/s13593-014-0251-4

    Article  CAS  Google Scholar 

  • Gray M, Johnson MG, Dragila MI, Kleber M (2014) Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass Bioenerg 61:196–205. https://doi.org/10.1016/j.biombioe.2013.12.010

    Article  CAS  Google Scholar 

  • Hardie M, Clothier B, Bound S, Oliver G, Close D (2014) Does biochar influence soil physical properties and soil water availability? Plant Soil 376:347–361. https://doi.org/10.1007/s11104-013-1980-x

    Article  CAS  Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley M (2013) Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209–210:188–197. https://doi.org/10.1016/j.geoderma.2013.06.016

    Article  CAS  Google Scholar 

  • Hina K, Bishop P, Arbestain MC, Calvelo-Pereira R, Macia-Agullo JA, Hindmarsh J, Hanly JA, Macias F, Hedley MJ (2010) Producing biochars with enhanced surface activity through alkaline pretreatment of feedstocks. Aust J Soil Res 48(6–7):606–617

    Article  CAS  Google Scholar 

  • Hua L, Lu Z, Ma H, Jin S (2013) Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil. Environ Progress Sustain Energy 33(3):941–946. https://doi.org/10.1002/ep.11867

    Article  CAS  Google Scholar 

  • International Biochar Initiative (IBI) (2015) Standardized product definition and product testing guidelines for biochar that is used in soil. International Biochar Initiative https://www.biocharinternational.org/characterizationstandard

  • Jien SH, Wang CS (2013) Effects of biochar on soil properties and erosion potential in a highly weathered soil. CATENA 110:225–233

    Article  CAS  Google Scholar 

  • Joseph SDA, Lin YA, Munroe PA, Chia CHA, Hook JC (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515. https://doi.org/10.1071/SR100090004-9573/10/070501

    Article  CAS  Google Scholar 

  • Kameyama K et al (2012) Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J Environ Qual 41:1131–1137

    Article  CAS  Google Scholar 

  • Kameyama K et al (2016) Effects of applying a wood bark derived biochar to sand dune soil on water and nutrient retention properties in a field experiment. Trans Jpn Soc Irrig Drain Rural Eng 84:65–74 (in Japanese with English abstract)

    Google Scholar 

  • Kishimoto S, Sugiura G (1985) Charcoal as a soil conditioner. Int Achieve Future 5:12–23

    Google Scholar 

  • Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: laboratory methods. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd edn., vol 9. Agronomic Monograph ASA, Madison, pp 687–7349

  • Koorevar P, Menelik G, Dirksen C (1983) Elements of soil physics. Elsevier, Amsterdam

    Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Lehmann J, Silva Junior JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249(2):343–357

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjem stad JO, Luizao FJTJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils, soil. SciSoc Am J 70:1719–1730

  • Liu J, Schulz H, Brandl S, Miehtke H, Huwe B, Glaser B (2012) Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J Plant Nutr Soil Sci 175:698–707. https://doi.org/10.1002/jpln.201100172

    Article  CAS  Google Scholar 

  • Liu Z, Dugan B, Masiello CA, Gonnermann HM (2017) Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE. https://doi.org/10.1371/journal.pone.0179079

    Article  Google Scholar 

  • Lugo-López MA, Hernández-Medina E, Cibes-Viade HR, Vicente-Chandler J (1954) Influence of filter-press cake on pineapple yields and soil properties. Soil Sci 78(4):257–266. https://doi.org/10.1097/00010694-195410000-00002

    Article  Google Scholar 

  • Misra AK (2014) Climate change and challenges of water and food security Int. J Sustain Built Environ 3:153–165

    Article  Google Scholar 

  • Moragues-Saitua L, Arias-González A, Gartzia-Bengoetxea N (2017) Effects of biochar and wood ash on soil hydraulic properties: a field experiment involving contrasting temperate soils. Geoderma 305:144–152. https://doi.org/10.1016/j.geoderma.2017.05.041

    Article  CAS  Google Scholar 

  • Moberly PK, Meyer JH (1978) Filter cake—a field and glasshouse evaluation. Proc South Afr Sugar Technol Assoc 52:131–136

    CAS  Google Scholar 

  • Nardin RR (2007) Torta de filtro aplicada em Argissolo e seus efeitos agronômicos em duas variedades de cana-de-acúcar colhidas em duas épocas. Dissertação de mestrado. Instituto Agronômico de Campinas

  • Novak JM, Busscher WJ, Watts DW, Amonette JE, Ippolito JA, Lima IM, Schomberg H (2012) Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Sci 177(5):310–320. https://doi.org/10.1097/ss.0b013e31824e5593

    Article  CAS  Google Scholar 

  • Nunes JRD, Morelli JL, Nelli EJ (1988) Comportamento de variedades de cana-de-açúcar na presença de torta de filtro e de mamona. Parte II. Boletim Técnico Copersucar 41/88. São Paulo, pp 3–12

  • Ojeda G, Mattana S, Avila A, Alcaniz JM, Volkmann M, Bachamann J (2015) Are soil-water functions affectedby biochar application? Geoderma 249–250:1–11. https://doi.org/10.1016/j.geoderma.2015.02.014

    Article  CAS  Google Scholar 

  • Pandis CA, Spanoudaki A, Kyritsis P, Pissis JC, Hernandez J, Ribelles L, Pradas MM (2011) Water sorption characteristics of poly (2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. J Polym Sci Part B Polym Phys 49:657–668

    Article  CAS  Google Scholar 

  • Petersen CT, Hansen E, Larsen HH, Hansen LV, Ahrenfeldt J, Hauggaard-Nielsen H (2016) Pore-size distribution and compressibility of coarse sandy. Eur J Soil Sci 67(6):726–736. https://doi.org/10.1111/ejss.12383

    Article  CAS  Google Scholar 

  • Philip JR (1992) Falling head ponded infiltration. Water Resour Res 28:2147–2148

    Article  Google Scholar 

  • Prado RM, Caione G, Campos CNS (2013) Filter cake and vinasse as fertilizers contributing to conservation agriculture. Soil Manag Sustain Agric 2013:8. https://doi.org/10.1155/2013/581984

    Article  CAS  Google Scholar 

  • van Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas, 285 p. ISBN: 85-85564-05-9

  • Ripperger S, Gosele W (2012) ALT. Wiley, Weinheim. https://doi.org/10.1002/14356007.b02_10.pub2

  • Rogovska N, Laird DA, Karlen DL (2016) Corn and soil response to biochar application and stover harvest. Field Crops Res 187:96–106

    Article  Google Scholar 

  • RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston. https://www.rstudio.com/

  • Six J, Elliott E, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32(14):2099–2103. https://doi.org/10.1016/s0038-0717(00)00179-6

    Article  CAS  Google Scholar 

  • Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. https://doi.org/10.1016/S0065-2113(10)05002-9

    Article  CAS  Google Scholar 

  • Steiner C, Melear N, Harris K, Das KC (2011) Biochar as bulking agent for poultry litter composting. Carbon Manag 2:227–230

    Article  Google Scholar 

  • Uzoma KC, Inoue M, Heninstoa A, Ahmad Z, Nishihara E (2011) Influence of biochar application on sandy soil hydraulic properties and nutrient retention. J Food Agric Environ 9(3):1137–1143

    CAS  Google Scholar 

  • Valentin C (2005) surface crusts of semi-arid sandy soils: types, functions and management. Session 4: physical properties of tropical sandy soils. Management of Tropical Sandy Soils for Sustainable Agriculture, Khon Kaen, pp 182–188

  • van Bavel CHM (1949) Mean weight-diameter of soil aggregates as a statistical index of aggregation. Soil Sci Soc Am J. https://doi.org/10.2136/sssaj1950.036159950014000C0005x

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J Madison 44:892–898

    Article  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Cowie A (2009) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327(1–2):235–246. https://doi.org/10.1007/s11104-009-0050-x

    Article  CAS  Google Scholar 

  • Wang D, Fonte SJ, Parikh SJ, Six J, Scow KM (2017) Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 303:110–117. https://doi.org/10.1016/j.geoderma.2017.05.027

    Article  CAS  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nat Commun 1:1–9. https://doi.org/10.1038/ncomms1053

    Article  CAS  Google Scholar 

  • Yoder RE (1936) A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Agron J 28:337–351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by CNPq (process number 404150/2013-6) and partially developed in University of Sao Paulo Brazil and in the Martin Luther University Halle (Saale), Germany and Fellowship were supported by Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

SJD was responsible for conducting experiments, wrote a draft of the manuscript and contributed the statistical analysis; BG contributed to the discussion of results and improved the manuscript; and CEPC contributed to the experimental design and conducting the experiment.

Corresponding author

Correspondence to Sara de Jesus Duarte.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesus Duarte, S., Glaser, B., Pano, B.L.P. et al. Biochar and sugar cane filter cake interaction on physical and hydrological soil properties under tropical field conditions. Biochar 2, 195–210 (2020). https://doi.org/10.1007/s42773-020-00045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42773-020-00045-3

Keywords

Navigation