Skip to main content

Advertisement

Log in

Development of the straw biochar returning concept in China

  • Review
  • Published:
Biochar Aims and scope Submit manuscript

Abstract

Biochar produced from straw has been shown to improve soil physicochemical properties. This review introduces the fundamental concepts, the broad applications, and underlying theory of straw biochar returning. Current developments in biochar industry and the production practices prevalent among enterprises in China are critiques. This review analyzes current knowledge gaps, challenges, and opportunities in the industrial application of straw biochar returning. Biochar standards, the quantitative and qualitative analysis methods for biochar, and high-value-added products that are based on biochar are critically examined with goal of providing recommendations for future studies. We propose production and modification of biochar that is application oriented to enhance its fitness for purpose as well as long-term and large-space–scale field study to better understand its impact on soil properties and ecotoxicology. Finally, we make prospects for the future development of SBR, including constructing a standard system about straw biochar returning and promoting self-discipline of biochar industry and the establishment of a biochar-based agricultural production model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abiven S, Schmidt M, Lehmann J (2014) Biochar by design. Nat Geosci 7(5):326–327

    Article  CAS  Google Scholar 

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118(8):536–544

    Article  CAS  Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Burney J, Davis S, Lobell D (2010) Greenhouse gas mitigation by agricultural intensification. Proc Natl Acad Sci USA 107(26):12052–12057

    Article  CAS  Google Scholar 

  • Burrell L, Zehetner F, Rampazzo N, Wimmer B, Soja G (2016) Long-term effects of biochar on soil physical properties. Geoderma 282:96–102

    Article  CAS  Google Scholar 

  • Chen K, Pan G, Tian Y (2009) Changes in topsoil organic carbon of China’s cropland evidenced from the national soil fertility monitoring network. J Agro-Environ Sci 28(12):2476–2481 (In Chinese with English abstract)

    Google Scholar 

  • Chen W, Zhang W, Meng J (2013) Advances and prospects in research of biochar utilization in agriculture. Sci Agric Sin 46(16):3324–3333

    CAS  Google Scholar 

  • Chen J, Li S, Liang C, Xu Q, Li Y, Qin H (2017) Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate. Sci Total Environ 574:24–33

    Article  CAS  Google Scholar 

  • Chen W, Meng J, Han X, Lan Y, Zhang W (2019) Past, present, and future of biochar. Biochar 1(1):75–87

    Article  Google Scholar 

  • Clutton-Brock T, Sheldon B (2010) Individuals and populations: the role of long-term individual-based studies of animals in ecology and evolutionary biology. Trends Ecol Evol 25(10):562–573

    Article  Google Scholar 

  • Dai Z, Wang Y, Muhammad N, Yu X, Xiao K, Meng J (2014) The effects and mechanisms of soil acidity changes following incorporation of biochars in three soils differing in initial pH. Soil Sci Soc Am J 78(5):1606–1614

    Article  CAS  Google Scholar 

  • de Figueiredo C, Farias W, Melo B, de Chaga J, Vale A, Coser T (2019) Labile and stable pools of organic matter in soil amended with sewage sludge biochar. Arch Agron Soil Sci 65:770–781

    Article  CAS  Google Scholar 

  • Deb D, Kloft M, Lässig J, Walsh S (2016) Variable effects of biochar and p solubilizing microbes on crop productivity in different soil conditions. Agroecol Sustain Food Syst 40(2):145–168

    Article  Google Scholar 

  • Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrol 72(2):243–248

    Article  CAS  Google Scholar 

  • Department of Science and Technology of Liaoning Province, Liaoning Development and Reform Commission, Liaoning Economic and Informatization Commission, Liaoning Provincial Department of Environmental Protection (2014) Technical catalog of key energy saving and emission reduction technologies in Liaoning Province (Emission reduction section) (Second batch). http://www.ln.gov.cn/qmzx/jnjpjsml/20141/201410/t20141014_1456484.html (in Chinese)

  • Dong X, Singh B, Li G, Lin Q, Zhao X (2019) Biochar increased field soil inorganic carbon content five years after application. Soil Tillage Res. 186:36–41

    Article  Google Scholar 

  • EBC (2013) European biochar certificate, guidelines for a sustainable production of biochar, version 4.8. European Biochar Foundation (EBC), Arbaz, Switzerland. December13

  • Feng Y, Xu Y, Yu Y, Xie Z, Lin X (2012) Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biol Biochem 46(1):80–88

    Article  CAS  Google Scholar 

  • Feng D, Zhang Y, Zhao Y, Sun S, Gao J (2018) Improvement and maintenance of biochar catalytic activity for in situ biomass tar reforming during pyrolysis and H2O/CO2 gasification. Fuel Process Technol 172:106–114

    Article  CAS  Google Scholar 

  • Fidel R, Laird D, Parkin T (2017a) Impact of biochar organic and inorganic carbon on soil CO and NO emissions. J Environ Qual 46:505

    Article  CAS  Google Scholar 

  • Fidel R, Laird D, Thompson M, Lawrinenko M (2017b) Characterization and quantification of biochar alkalinity. Chemosphere 167:367–373

    Article  CAS  Google Scholar 

  • Gan Y, Liang C, Hamel C, Cutforth H, Wang H (2011) Strategies for reducing the carbon footprint of field crops for semiarid areas-a review. Agron Sustain Dev 31(4):643–656

    Article  Google Scholar 

  • General Office of the Ministry of Agriculture and Rural Affairs of the People’s Republic of China (2017) Notice on recommending and issuing ten models of straw farming utilization. http://www.moa.gov.cn/govpublic/KJJYS/201705/t20170503_5593248.htm (in Chinese)

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35(4):219–230

    Article  CAS  Google Scholar 

  • Gong L, Zhu M, Liu Z, Zhang X, Xie L (2016) Correlation among soil organic carbon, soil inorganic carbon and the environmental factors in a typical oasis in the southern edge of the Tarim basin. Environmental Science 37(4):1516–1522

    Google Scholar 

  • Graber E, Frenkel O, Jaiswal A, Elad Y (2014) How may biochar influence severity of diseases caused by soilborne pathogens? Carbon Management 5(2):169–183

    Article  CAS  Google Scholar 

  • Gwenzi W, Chaukura N, Noubactep C, Mukome F (2017) Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J Environ Manage 197:732–749

    Article  Google Scholar 

  • Heckrath G, Brookes PC, Poulton PR, Goulding K (1995) Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J Environ Qual 24(5):904–910

    Article  CAS  Google Scholar 

  • Hertwich E, Peters G (2009) Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 43(16):6414–6420

    Article  CAS  Google Scholar 

  • Hofer W (2011) A review of biochars’ potential role in the remediation revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282

    Article  CAS  Google Scholar 

  • Hossain M, Strezov V, Chan K, Ziolkowski A, Nelson P (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage 92(1):223–228

    Article  CAS  Google Scholar 

  • IBI (2013) Standardized product definition and product testing guidelines for biochar that is used in soil, IBI-STD-01.1. International Biochar Initiative (IBI), Washington, USA. http://www.biochar-international.org/characterizationstandard. Accessed August12

  • IBI (2015) Standardized product definition and product testing guidelines for biochar that is used in soil IBI-STD-2.1. International Biochar Initiative (IBI), Washington, USA. http://www.biochar-international.org/characterizationstandard. November 23

  • IBI (2017) State of the Biochar Industry Report. International Biochar initiative (IBI), Washington, USA. http://www.biochar-international.org/commercialization. March13

  • Ilan S (2013) Biochar use in forestry and tree-based agro-ecosystems for increasing climate change mitigation and adaptation. Int J Sustain Dev World Ecol 20(2):166–181

    Article  Google Scholar 

  • Information Office Ministry of Agriculture (2017) Green Agriculture development achieved more breakthroughs. http://www.moa.gov.cn/xw/zwdt/201712/t20171219_6105957.htm

  • Kim K, Kim J, Cho T, Choi (2012) Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida) Bioresour Technol 118(8) 158-162

  • Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi JM, Riha S (2008) Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11(5):726

    Article  CAS  Google Scholar 

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41(4):990–1000

    Article  CAS  Google Scholar 

  • Kołodyńska D, Krukowska J, Thomas P (2017) Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem Eng J 307:353–363

    Article  CAS  Google Scholar 

  • Kuśmierz M, Oleszczuk P, Kraska P, Pałys E, Andruszczak S (2016) Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere 146:272–279

    Article  CAS  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B 363(1492):815–830

    Article  CAS  Google Scholar 

  • Lashari M, Liu Y, Li L, Pan W, Fu J, Pan G (2013) Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from central china great plain. Field Crop Res 144:113–118

    Article  Google Scholar 

  • Li H, Ye X, Geng Z, Zhou H, Guo X, Zhang Y (2016a) The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. J Hazard Mater 304:40–48

    Article  CAS  Google Scholar 

  • Li S, Gu X, Zhuang J, An T, Pei J, Xie H, Li H, Fu S, Wang J (2016b) Distribution and storage of crop residue carbon in aggregates and its contribution to organic carbon of soil with low fertility. Soil Tillage Res 155:199–206

    Article  Google Scholar 

  • Liang BQ, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41(2):206–213

    Article  CAS  Google Scholar 

  • Liu Y, Yang M, Wu Y, Wang H, Chen Y, Wu W (2011) Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar. J Soils Sediments 11(6):930–939

    Article  CAS  Google Scholar 

  • Liu S, Zhang Y, Zong Y, Hu Z, Wu S, Zhou J (2016) Response of soil carbon dioxide fluxes soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenergy 8(2):392–406

    Article  CAS  Google Scholar 

  • Lu K, Yang X, Gielen G, Bolan N, Ok YS, Niazi NK (2017) Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manage 186:285–292

    Article  CAS  Google Scholar 

  • Ma Y, Liu W, Zhang N, Li Y, Jiang H, Sheng G (2014) Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresour Technol 169(5):403–408

    Article  CAS  Google Scholar 

  • McHenry MP (2011) Soil Organic Carbon, Biochar, and Applicable Research Results for Increasing Farm Productivity under Australian Agricultural Conditions. Commun Soil Sci Plant Anal 42(10):1187–1199

    Article  CAS  Google Scholar 

  • Ministry of Agriculture, Ministry of Housing and Urban Rural Development, Ministry of Environmental Protection, Ministry of Science and Technology of the People’s Republic of China (2016) Circular on issuing and issuing the “pilot Program for promoting the Utilization of Agricultural wastes into Resources”. http://www.moa.gov.cn/govpublic/FZJHS/201609/t20160919_5277846.htm (in Chinese)

  • Ministry of Agriculture, National Development and Reform Commission, Ministry of Science and Technology, Ministry of Finance, Ministry of Land and Resources, Ministry of Environmental Protection, Ministry of Water Resources of the People’s Republic of China (2015) National Agricultural Sustainable Development Plan (2015–2030). http://jiuban.moa.gov.cn/zwllm/ghjh/201505/t20150527_4620031.htm (in Chinese)

  • Mohan D, Pittman C, Steele P (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889

    Article  CAS  Google Scholar 

  • Moss S, Storkey J, Cussans J, Hewitt P (2004) The broadbalk long-term experiment at Rothamsted: what has it told us about weeds? Weed Sci 52(5):864–873

    Article  CAS  Google Scholar 

  • National Energy Administration and Ministry of Environmental Protection of the People’s Republic of China (2017) Notification of pilot reform of coal-fired coupled biomass power generation technology. http://zfxxgkneagovcn/auto84/201712/t20171204_3065htm

  • NDRC (2014) National catalog of key promoted low-carbon technologies. National Development and Reform Commission of the People’s Republic of China (NDRC). http://www.ndrcgovcn/gzdt/201409/t20140905_625018html

  • Oelkers E (2008) Mineral carbonation of CO2. Elements 4(5):333–337

    Article  CAS  Google Scholar 

  • Pan G, Zhao Q (2005) Study on evolution of organic carbon stock in agricultural soils of China: facing the challenge of global change and food security. Advances in Earth Sciences 20(4):384–393 (In Chinese with English abstract)

    Google Scholar 

  • Peng X, Ye L, Wang C, Zhou H, Sun B (2011) Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an ultisol in southern China. Soil Tillage Res 112(2):159–166

    Article  Google Scholar 

  • Prapagdee S, Tawinteung N (2017) Effects of biochar on enhanced nutrient use efficiency of green bean, Vigna radiatal. Environ Sci Pollut Res 24(10):9460–9467

    Article  CAS  Google Scholar 

  • Qureshi K, Kay Lup A, Khan S, Abnisa F, Wan M (2018) A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil. J Anal Appl Pyrolysis 131:52–75

    Article  CAS  Google Scholar 

  • Richardson Y, Motuzas J, Julbe A, Volle G, Blin J (2018) Catalytic investigation of in situ generated Ni metal nanoparticles for tar conversion during biomass pyrolysis. J Phys Chem C117(45):23812–23831

    Google Scholar 

  • Rondon M, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43(6): 699-708

  • Ronsse F, Van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5(2):104–115

    Article  CAS  Google Scholar 

  • Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Plant Nutr Soil Sci 175(3):410–422

    Article  CAS  Google Scholar 

  • Singh B, Cowie A (2014) Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep 4(3):3687

    Google Scholar 

  • Smil V (1999) Crop Residues: Agriculture’s Largest Harvest. Bioscience 49:299–308

    Article  Google Scholar 

  • Song K, Zheng X, Lv W, Qin Q, Sun L, Zhang H, Xue Y (2019a) Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil. Sci Rep 9:4586

    Article  CAS  Google Scholar 

  • Song X, Li Y, Yue X, Hussain Q, Zhang J, Liu Q, Jin S, Cui D (2019b) Effect of cotton straw-derived materials on native soil organic carbon. Sci Total Environ 663:38–44

    Article  CAS  Google Scholar 

  • Thrush S, Lawrie S, Hewitt J, Cummings V (1999) The problem of scale: uncertainties and implications for soft-bottom marine communities and the assessment of human impacts. In: Gray JS, Ambrose W, Szaniawska A (eds) Biogeochemical cycling and sediment ecology. NATO ASI Series (Series E: Applied Sciences), vol 59 pp. 195-210. Springer, Dordrecht, Netherlands

  • Tilman D (1989) Ecological experimentation: strengths and conceptual problems. In: Likens GE (ed) Long-term studies in ecology: approaches and alternatives. Springer, New York, NY, pp 136–157

    Chapter  Google Scholar 

  • Uzoma K, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manage 27(2):205–212

    Article  Google Scholar 

  • Vaccari F, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34(4):231–238

    Article  CAS  Google Scholar 

  • Wang G, Xu Z (2013) The effects of biochar on germination and growth of wheat in different saline-alkali soil. Asian J Agric Res 05(11):116–119

    CAS  Google Scholar 

  • Wang J, Zhang M, Xiong Z, Liu P, Pan G (2011) Effects of biochar addition on N2O and CO2 emissions from two paddy soils. Biol Fertil Soils 47(8):887–896

    Article  CAS  Google Scholar 

  • Wang Y, Zhang L, Yang H, Yan G, Xu Z, Chen C (2016) Biochar nutrient availability rather than its water holding capacity governs the growth of both C3 and C4 plants. J Soils Sediments 16(3):801–810

    Article  CAS  Google Scholar 

  • Wang C, Liu J, Shen J, Chen D, Li Y, Jiang B (2018) Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: a 4-year field experiment. Agric Ecosyst Environ 262:83–96

    Article  CAS  Google Scholar 

  • Wu W, Li J, Lan T, Müller K, Niazi NK, Chen X (2017) Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: a microscopic and spectroscopic investigation. Sci Total Environ 576:766–774

    Article  CAS  Google Scholar 

  • Xie X (2004) Organic carbon density and storage in soils of China and spatial analysis Acta Pedol Sin 41(1): 35-43. (In Chinese with English abstract)

  • Yakov K, Irina S, Chen H, Irina B, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41(2):210–219

    Article  CAS  Google Scholar 

  • Yang G, Jiang H (2014) Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res 48(1):396–405

    Article  CAS  Google Scholar 

  • Yang H, Liu J, Wang Y, He C, Zhang L, Mu Y, Li W (2019) Bioelectrochemical decolorization of a reactive diazo dye: kinetics, optimization with a response surface methodology, and proposed degradation pathway. Bioelectrochemistry 128:9–16

    Article  CAS  Google Scholar 

  • Yin C, Huang X, Zhao J, Cheng L, Chang Z, Qian X (2016) Analysis of the willingness to accept for maize straw returned to field—based on farmer’s survey in Hebei and Shandong province. Chinese Journal of Agricultural Resources and Regional Planning 7:87–95 (In Chinese with English abstract)

    Google Scholar 

  • Ying Z, Qingbo Z, Shouwen G, Junming Z, Yanqin D (2018) Disparity between willingness to pay/accept for corn straw counter-field technology: a case study of farmer survey in Xushui district of Baoding city. Chinese Journal of Eco-Agriculture 5:780–790 (In Chinese with English abstract)

    Google Scholar 

  • Yu L, Lu X, He Y, Brookes P, Liao H, Xu J (2017) Combined biochar and nitrogen fertilizer reduces soil acidity and promotes nutrient use efficiency by soybean crop. J Soils Sediments 17(3):599–610

    Article  CAS  Google Scholar 

  • Zhang H, Li X, Shao X (2006) Impacts of china’s rural land policy and administration on rural economy and grain production. Rev Policy Res 23(2):18

    Article  CAS  Google Scholar 

  • Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain. China. Agric Ecosyst Environ 139(4):469–475

    Article  CAS  Google Scholar 

  • Zhang L, Liu Y, Hao L (2016) Contributions of open crop straw burning emissions to PM 2.5 concentrations in China. Environ Res Lett 11(1): 014014

  • Zhang P, Sun H, Min L, Ren C (2018) Biochars change the sorption and degradation of thiacloprid in soil: insights into chemical and biological mechanisms. Environ Pollut 236:158–167

    Article  CAS  Google Scholar 

  • Zhang J, Wei Y, Liu J, Yuan J, Liang Y, Ren J, Cai H (2019) Effects of maize straw and its biochar application on organic and humic carbon in water-stable aggregates of a mollisol in Northeast China: a five-year field experiment. Soil Tillage Res 190:1–94

    Article  CAS  Google Scholar 

  • Zhen W, Wang S, Zhang C, Ma Z (2009) Influence of maize straw amendment on soil-borne diseases of winter wheat. Front Agric China 3:7–12

    Article  Google Scholar 

  • Zhu X, Chen B, Zhu L, Xing B (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115

    Article  CAS  Google Scholar 

  • Zygourakis K (2017) Biochar soil amendments for increased crop yields: how to design a “designer” biochar. Aiche J 63(12):5425–5437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support provided by the: Earmarked Fund for “Modern Agro-industry Technology Research System” (CARS-01-46); National Key R & D Program “Research and Development of Biochar-Based Fertilizer and Microbial Fertilizer” (2017YFD0200800); Innovative Talents Promotion Plan of Ministry of Science and Technology (2017RA2211); Liaoning Revitalization Talents Program (No. XLYC1802094); and Shenyang Support Plan for Young & Middle-aged Scientific and Technological Innovation Talents (RC180204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., He, T., Sanganyado, E. et al. Development of the straw biochar returning concept in China. Biochar 1, 139–149 (2019). https://doi.org/10.1007/s42773-019-00019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42773-019-00019-0

Keywords

Navigation