Skip to main content

Advertisement

Log in

Development of antibody to virulence factor flagellin and its evaluation in screening Ralstonia pseudosolanacearum

  • Soil and Agricultural Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The bacterial wilt disease caused by Ralstonia pseudosolanacearum presents a notable economic risk to a variety of crucial crops worldwide. During preliminary isolation of this phytopathogen, several colonies of other saprophytic bacteria may be mistaken with it. So, the present study aims to address this issue by proposing the application of immunogenic proteins, particularly flagellin (FliC), to enable a rapid and early identification of bacterial wilt. In this study, a novel approach is unveiled for the early detection of R. pseudosolanacearum. The study exploits the immunogenic attributes of flagellin (FliC), by generating polyclonal antibodies against recombinant FliC within model organisms—rabbits and mice. The efficacy of these antibodies is meticulously assessed through discerning techniques, including DAS-ELISA and Western blot analyses, which elucidate their remarkable specificity in identifying various R. pseudosolanacearum strains. Furthermore, the introduction of antibody-coated latex agglutinating reagents offers an additional layer of confirmation, substantiating the feasibility of establishing a laboratory-based toolkit for swift screening and unambiguous identification of the bacterial wilt pathogen. This study presents a significant stride toward enhancing early diagnostic capabilities, potentially revolutionizing agricultural practices by safeguarding crop yield and quality through proactive pathogen detection and mitigation strategies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CFU:

Colony-forming unit

CPG:

Casamino acid-peptone-glucose

DAB:

3,3′-Diaminobenzidine

DAS-ELISA:

Double-antibody sandwich enzyme-linked immunosorbent assay

DVC:

Direct viable count

EDAC:

1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide

ELISA:

Enzyme-linked immunosorbent assay

FliC:

Flagellin

FP:

Forward primer

His:

Histidine

HRP:

Horseradish peroxide

H202:

Hydrogen peroxide

IgG:

Immunoglobulin G

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

LAT:

Latex agglutination test

MES:

2-morpholino ethane sulfonic acid

mSMSA:

Modified semi-selective medium South Africa

Ni-NTA:

Nickel-nitrilotriacetic acid

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

PVDF:

Ppolyvinylidene difluoride

RP:

Reverse primer

RPS:

Ralstonia pseudosolanacearum

RS:

Ralstonia solanacearum

RSSC:

Ralstonia solanacearum species complex

RPM:

Revolutions per minute

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

WC:

Whole cell

References

  1. Prameela TP, Suseela Bhai R (2020) Bacterial wilt of ginger (Zingiber officinale Rosc.) incited by Ralstonia pseudosolanacearum - a review based on pathogen diversity, diagnostics and management. J Plant Pathol 102:709–719

    Google Scholar 

  2. Peeters N, Guidot A, Vailleau F, Valls M (2013) Ralstonia solanacearum , a widespread bacterial plant pathogen in the post-genomic era. Mol Plant Pathol 14:651–662

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gonçalves OS, Campos KF, de Assis JCS, Fernandes AS et al (2020) Transposable elements contribute to the genome plasticity of Ralstonia solanacearum species complex. Microb Genom 6:1–12

    Google Scholar 

  4. Sharma P, Johnson MA, Mazloom R, Allen C, Heath LS, Lowe-Power TM, Vinatzer BA (2022) Meta-analysis of the Ralstonia solanacearum species complex (RSSC) based on comparative evolutionary genomics and reverse ecology. Microb Genom 8:000791

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Greenrod STE, Stoycheva M, Elphinstone J, Friman VP (2022) Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex. BMC Genomics 23:1–19

    Google Scholar 

  6. Safni I, Cleenwerck I, de Vos P, Fegan M et al (2014) Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. s. Int J Syst Evol Microbiol 64:3087–3103

    CAS  PubMed  Google Scholar 

  7. Lee I, Kim YS, Kim JW, Park DH (2020) Genetic and pathogenic characterization of bacterial wilt pathogen, Ralstonia pseudosolanacearum (Ralstonia solanacearum Phylotype I), on Roses in Korea. Plant Pathol J 36:440

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Goncalves OS, de Queiroz MV, Santana FM (2020) Potential evolutionary impact of integrative and conjugative elements (ices) and genomic islands in the Ralstonia solanacearum species complex. 10:12498

  9. Salanoubat M, Genin S, Artiguenave F, Gouzy Mangenot S, Arlat M, Billault A, Brottier P, Camus JC, Cattolico L, Chandler M, Choisne N, Claudel-Renard C, Cunnac S, Demange N, Gaspin C, Lavie M, Moisan A, Robert C, Saurin W, Schiex T, Siguier P, Thébault P, Whalen M, Wincker P, Levy M, Weissenbach J, Boucher CA (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502

    CAS  PubMed  Google Scholar 

  10. Catara V, Bella P (2020) Bacterial diseases. In: Integrated Pest and Disease Management in Greenhouse Crops. Plant Pathology in the 21st Century. 9:33–54. Switzerland, AG: Springer Nature

  11. Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum Species Complex. Annu Rev Phytopathol 50:67–89

    CAS  PubMed  Google Scholar 

  12. EPPO standards (2018) PM 7/21 (2) Ralstonia solanacearum, R. pseudosolanacearum and R. syzygii (Ralstonia solanacearum species complex). EPPO Bulletin 48:32–63

    Google Scholar 

  13. Robinson-Smith A, Jones P, Elphinstone JG, Forde SMD (1995) Production of antibodies to pseudomonas solanacearum the causative agent of bacterial wilt. Food Agric Immunol 7:67–79

    Google Scholar 

  14. Behiry SI, Mohamed AA, Younes HA, Salem MZM, Salem AZM (2018) Antigenic and pathogenicity activities of Ralstonia solanacearum race 3 biovar 2 molecularly identified and detected by indirect ELISA using polyclonal antibodies generated in rabbits. Microb Pathog 115:216–221

    CAS  PubMed  Google Scholar 

  15. Bellstedt DU (2009) Enzyme-linked immunosorbent assay detection of Ralstonia solanacearum in potatoes: the South African experience. Methods Mol Biol 508:51–62

    CAS  PubMed  Google Scholar 

  16. Griep RA, van Twisk C, van Beckhoven JRCM, van der Wolf JM, Schots A (1998) Development of specific recombinant monoclonal antibodies against the lipopolysaccharide of Ralstonia solanacearum Race 3. Phytopathology 88:795–803

    CAS  PubMed  Google Scholar 

  17. Caruso P, Llop P, Palomo JL, Garcia P, Morente C, López MM. Evaluation of methods for detection of potato seed contamination by Ralstonia solanacearum. InBacterial Wilt Disease: Molecular and Ecological Aspects. 128-132. Berlin, Heidelberg: Springer Berlin Heidelberg.

  18. Rajeshwari N, Shylaja M, Krishnappa M, Shetty HS et al (1998) World J Microbiol Biotechnol 14:697–704

    Google Scholar 

  19. Han Y, Zhang XH, Chen Y, Li Y, Chen H, Fang L (2011) High-level expression, purification, polyclonal antibody preparation against recombinant OprD from Pseudomonas aeruginosa. Afr J Biotechnol 10:1246–1251

    CAS  Google Scholar 

  20. Hotinger JA, May AE (2020) Antibodies inhibiting the type III secretion system of Gram-negative pathogenic bacteria. Antibodies 9:35

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Landry D, González-Fuente M, Deslandes L, Peeters N (2020) The large, diverse, and robust arsenal of Ralstonia solanacearum type III effectors and their in planta functions. Mol Plant Pathol 21:1377–1388

    PubMed  PubMed Central  Google Scholar 

  22. Suraby EJ, Sruthi KB, Antony G (2022) Genome-wide identification of type III effectors and other virulence factors in Ralstonia pseudosolanacearum causing bacterial wilt in ginger (Zingiber officinale). Mol Genet Genomics 297:1371–1388

    CAS  PubMed  Google Scholar 

  23. Denny TP (1991) Genetic evidence that extracellular polysaccharide is a virulence factor of Pseudomonas solanacearum. Mol Plant Microbe Interact 3:293–300

    Google Scholar 

  24. Hayashi K, Senuma W, Kai K, Kiba A, Ohnishi K, Hikichi Y (2019) Major exopolysaccharide, EPS I, is associated with the feedback loop in the quorum sensing of Ralstonia solanacearum strain OE1-1. Mol Plant Pathol 20:1740–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Tans-Kersten J, Huang H, Allen C (2001) Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 183:3597–3605

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Corral J, Sebastià P, Coll NS, Barbé J, Aranda J, Valls M (2020) Twitching and swimming motility play a role in Ralstonia solanacearum pathogenicity. MSphere 5:e00740-19

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Zhang S, Schell MA, Denny TP (2005) Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol Plant Microbe Interact 18:1296–1305

    CAS  PubMed  Google Scholar 

  28. Xavier AD, de Melo AG, Hendrich CG, Tremblay DM, Rousseau GM, Plante PL, Forest KT, Alfenas-Zerbini P, Allen C, Moineau S (2022) In through the out door: a functional virulence factor secretion system is necessary for phage infection in Ralstonia solanacearum. MBio 13:e01475-22

    PubMed  PubMed Central  Google Scholar 

  29. Huang Q, Allen C (1997) An exo-poly-alpha-D-galacturonosidase, PehB, is required for wild-type virulence of Ralstonia solanacearum. J Bacteriol 179:7369–7378

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lowe-Power TM, Khokhani D, Allen C (2018) How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol 26:929–942

    CAS  PubMed  Google Scholar 

  31. Umrao PD, Kumar V, Kaistha SD (2021) Study of pathogenic traits of bacterial wilt-causing phytopathogens around Kanpur and Fatehpur regions, Uttar Pradesh, India. J Appl Biol Biotechnol 9:45–55

    CAS  Google Scholar 

  32. Armitage JP, Berry RM (2020) Assembly and dynamics of the bacterial flagellum. Annu Rev Microbiol 74:181–200

    CAS  PubMed  Google Scholar 

  33. Jindal G, Tewari R, Gautam A, Pandey SK, Rishi P (2012) Immunological characterization of recombinant Salmonella enterica serovar Typhi FliC protein expressed in Escherichia coli. AMB Express 2:55–63

    PubMed  PubMed Central  Google Scholar 

  34. Okamura M, Matsumoto W, Seike F, Tanaka Y et al (2012) Efficacy of soluble recombinant FliC protein from Salmonella enterica Serovar Enteritidis as a potential vaccine candidate against homologous challenge in chickens. Avian Dis 56:354–358

    PubMed  Google Scholar 

  35. Mirhosseini SA, Fooladi AAI, Amani J, Sedighian H (2017) Production of recombinant flagellin to develop ELISA-based detection of Salmonella Enteritidis. Braz J Microbiol 48:774–781

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Elphinstone JG, Hennessy J, Wilson JK, Stead DE (1996) Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. EPPO Bulletin 26:663–678

    Google Scholar 

  37. Kelman A (1954) The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 44:693–695

    Google Scholar 

  38. Opina N, Tavner F, Hollway G, Wang JF, Li TH, Maghirang R, Fegan M, Hayward A, Krishnapillai V, Hong W, Holloway B (1997) A novel method for development of species and strain-specific DNA probes and PCR primers for identifying Burkholderia solanacearum (formerly Pseudomonas solanacearum). Asia Pac J Mol Biol Biotechnol 5:19–30

    Google Scholar 

  39. Umesha S, Avinash P (2015) Multiplex PCR for simultaneous identification of Ralstonia solanacearum and Xanthomonas perforans. 3 Biotech 5:245–252

    CAS  PubMed  Google Scholar 

  40. Thomas P, Upreti R (2014) Significant effects due to peptone in Kelman Medium on colony characteristics and virulence of Ralstonia solanacearum in tomato. Open Microbiol J 8:95–113

    ADS  PubMed  PubMed Central  Google Scholar 

  41. Nakahara H, Mori T, Matsuzoe N (2021) Screening of phenotypic conversion mutant strains of Ralstonia solanacearum for effective biological control of Verticillium wilt in eggplant. Crop Prot 142:105530

    CAS  Google Scholar 

  42. Sambrook J, Russell D, Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, vol 1, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  43. Wingfield PT (2015) Overview of the purification of recombinant proteins. Curr Protoc Protein Sci 80:6–1

    PubMed Central  Google Scholar 

  44. Classen DC, Morningstar JM, Shanley JD (1987) Detection of antibody to murine cytomegalovirus by enzyme-linked immunosorbent and indirect immunofluorescence assays. J Clin Microbiol 25:600–604

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    ADS  CAS  PubMed  Google Scholar 

  46. Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L, Kappler U (2014) Polyphasic taxonomic revision of the ......sp.nov. Int J Syst Evol Microbiol 64:3087–3103

    CAS  PubMed  Google Scholar 

  47. Zheng XF, Zhu YJ, Liu B, Zhou Y, Che JM, Lin NQ (2014) Relationship between Ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato fields in China. J Phytopathol 162:607–616

    Google Scholar 

  48. Rostand RC, Joel M, Viviene M, Steven R (2018) Isolation and characterization of Ralstonia solanacearum strains causing bacterial wilt of potato in Nakuru County of Kenya. Afr J Biotechnol 17:1455–1465

    Google Scholar 

  49. Seleim MAA, Abo-Elyousr KAM, Abd-El-Moneem KM, Saead FA (2014) First report of bacterial wilt caused by Ralstonia solanacearum biovar 2 race 1 on tomato in Egypt. Plant Pathol J 30:299–303

    PubMed  PubMed Central  Google Scholar 

  50. Kumar R, Barman A, Jha G, Kumar R (2013) Identification and establishment of genomic identity of Ralstonia solanacearum isolated from a wilted chilli plant at Tezpur, North East India. Curr Sci 106:1571

    Google Scholar 

  51. Pradhanang PM, Elphinstone JG, Fox RTV (2000) Sensitive detection of Ralstonia solanacearum in soil: a comparison of different detection techniques. Plant Pathol 49:414–422

    Google Scholar 

  52. Kelman A, Hruschka J (1973) The role of motility and aerotaxis in the selective increase of avirulent bacteria in still broth cultures of Pseudomonas solanacearum. J Gen Microbiol 76:177–188

    CAS  PubMed  Google Scholar 

  53. Kang Y, Liu H, Genin S, Schell MA, Denny TP (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46:427–437

    CAS  PubMed  Google Scholar 

  54. Clough SJ, Flavier AB, Schell MA, Denny TP (1997) Differential expression of virulence genes and motility in Ralstonia (Pseudomonas) solanacearum during exponential growth. Appl Environ Microbiol 63:844–850

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brumbley SM, Denny TP (1990) Cloning of wild-type Pseudomonas solanacearum phcA, a gene that when mutated alters expression of multiple traits that contribute to virulence. J Bacteriol 172:5677–5685

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stelzmueller I, Biebl M, Wiesmayr S, Eller M, Hoeller E, Fille M, Weiss G, Lass-Floerl C, Bonatti H (2006) Ralstonia pickettii—innocent bystander or a potential threat? Clin Microbiol Infect 12:99–101

    CAS  PubMed  Google Scholar 

  57. Ryan MP, Adley CC (2014) Ralstonia spp.: emerging global opportunistic pathogens. Eur J Clin Microbiol Infect Dis 33:291–304

    CAS  PubMed  Google Scholar 

  58. Fang Q, Feng Y, Feng P, Wang X, Zong Z (2019) Nosocomial bloodstream infection and the emerging carbapenem-resistant pathogen Ralstonia insidiosa. BMC Infect Dis 19:334–342

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the DIBER-DRDO, Haldwani, Uttarakhand, India, and PP Savani University, Surat, Gujarat, India, for providing all the necessary assistance during the study and compilation of the work. The authors are also thankful to Dr. Rakshit Pathak and Mr. Mayank Punetha for the graphics and technical support.

Author information

Authors and Affiliations

Authors

Contributions

Study conceptualization: Shalini Bhatt, S. Merwyn P. Raj; methodology: Shalini Bhatt, S. Merwyn P. Raj, Neha Faridi; formal analysis and investigation: Shalini Bhatt, S. Merwyn P. Raj, Shraddha Mishra; writing—original draft preparation: Shalini Bhatt; writing—review and editing: Shalini Bhatt; supervision: Ankur Agarwal, S. Merwyn.

Corresponding author

Correspondence to Shalini Bhatt.

Ethics declarations

Polyclonal antibodies used in the study were outsourced by Abgenex Private Limited, Bhubaneswar, India.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Admir Giachini

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(CSV 26 kb)

ESM 2

(CSV 26 kb)

ESM 3

(CSV 26 kb)

ESM 4

(CSV 26 kb)

ESM 5

(CSV 26 kb)

ESM 6

(CSV 21 kb)

ESM 7

(PDF 116 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, S., Raj, S.M.P., Faridi, N. et al. Development of antibody to virulence factor flagellin and its evaluation in screening Ralstonia pseudosolanacearum. Braz J Microbiol 55, 809–821 (2024). https://doi.org/10.1007/s42770-023-01235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01235-4

Keywords

Navigation