Skip to main content

Advertisement

Log in

In vivo evaluation of the antiretroviral activity of Melia azedarach against small ruminant lentiviruses in goat colostrum and milk

  • Veterinary Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

This study aimed to evaluate in vivo the use of the extract from the leaves of Melia azedarach in the ethyl acetate fraction at a concentration of 150 µg/mL as an antiretroviral treatment against small ruminant lentiviruses (SRLV) in goat colostrum, and milk with a 90-min action. Two groups of six kids were treated with the extract. One group received three supplies of colostrum from does naturally positive for SRLV, treated with the ethyl acetate fraction of M. azedarach (EAF-MA) for three days, while the other group consumed milk from does also carrying the virus with the respective extract twice a day for five days. After undergoing treatment, all animals began to receive thermized milk until weaning (60 days) and were monitored for six months using nested polymerase chain reaction (nPCR) and western blot (WB) tests. The study revealed cumulative percentages of positive animals in WB or nPCR in the milk group of 66.66% on the seventh day, 83.33% in the following week, and 100% at 120 days, while the colostrum group showed values of 66.66% at 14 days, 83.33% at 90 days, and 100% at 120 days. Variation and intermittency were observed in viral detection, but all animals tested positive in WB or nPCR at some point. A potential delay in infection was observed, which was more significant in the colostrum group. The need for the combination of serological and molecular tests for a more efficient detection of the disease is also emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Pisoni G, Quasso A, Moroni P (2005) Phylogenetic analysis of small-ruminant lentivirus subtype B1 in mixed flocks: evidence for natural transmission from goats to sheep. Virology 339:147–152. https://doi.org/10.1016/j.virol.2005.06.013

    Article  CAS  PubMed  Google Scholar 

  2. Minardi da Cruz JC, Singh DK, Lamara A, Chebloune Y (2013) Small ruminant lentiviruses (SRLVs) break the species barrier to acquire new host range. Viruses 5:1867–1884. https://doi.org/10.3390/v5071867

    Article  PubMed  PubMed Central  Google Scholar 

  3. Azevedo DAA, Monteiro JP, Pinheiro RR, de Alvarenga MM, Andrioli A, Araújo JF, de Sousa ALM, Sider LH, Peixoto RM, da Silva Teixeira MF (2019) Molecular characterization of circulating strains of small ruminant lentiviruses in Brazil based on complete gag and pol genes. Small Rumin Res 177:160–166. https://doi.org/10.1016/j.smallrumres.2019.06.011

    Article  Google Scholar 

  4. Olech M, Kuźmak J (2023) Genetic diversity of the ltr region of polish srlvs and its impact on the transcriptional activity of viral promoters. Viruses 15:302. https://doi.org/10.3390/v15020302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Olech M, Bomba A, Kuźmak J (2021) Quasispecies Composition of Small Ruminant Lentiviruses Found in Blood Leukocytes and Milk Epithelial Cells. Viruses 13:2497. https://doi.org/10.3390/v13122497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Minguijón E, Reina R, Pérez M, Polledo L, Villoria M, Ramírez H, Leginagoikoa I, Badiola JJ, García-Marín JF, de Andrés D, Luján L, Amorena B, Juste RA (2015) Small ruminant lentivirus infections and diseases. Vet Microbiol 181:75–89. https://doi.org/10.1016/j.vetmic.2015.08.007

    Article  PubMed  Google Scholar 

  7. Souza TS de, Pinheiro RR, Lima CCV de, Costa JN (2012) Transmissão interespécie dos lentivírus de pequenos ruminantes: revisão e desafios. Acta Veterinaria Brasilica 6:23–34. https://doi.org/10.21708/avb.2012.6.1.2810

  8. Pinheiro RR, Gouveia AMG, Alves FSF (2001) Prevalência da infecção pelo vírus da artrite encefalite caprina no estado do Ceará, Brasil. Cienc Rural 31:449–454. https://doi.org/10.1590/S0103-84782001000300014

    Article  Google Scholar 

  9. Pisoni G, Bertoni G, Manarolla G, Vogt H-R, Scaccabarozzi L, Locatelli C, Moroni P (2010) Genetic analysis of small ruminant lentiviruses following lactogenic transmission. Virology 407:91–99. https://doi.org/10.1016/j.virol.2010.08.004

    Article  CAS  PubMed  Google Scholar 

  10. Pépin M, Vitu C, Russo P, Mornex JF, Peterhans E (1998) Maedi-visna virus infection in sheep: a review. Vet Res 29:341–367

    PubMed  Google Scholar 

  11. Rowe JD, East NE, Thurmond MC, Franti CE, Pedersen NC (1992) Cohort study of natural transmission and two methods for control of caprine arthritis-encephalitis virus infection in goats on a California dairy. Am J Vet Res 53:2386–2395

    Article  CAS  PubMed  Google Scholar 

  12. Herrmann-Hoesing LM, Palmer GH, Knowles DP (2007) Evidence of proviral clearance following postpartum transmission of an ovine lentivirus. Virology 362:226–234. https://doi.org/10.1016/j.virol.2006.12.021

    Article  CAS  PubMed  Google Scholar 

  13. Peixoto RM, Andrioli A, Pinheiro RR, de Souza KC, Araújo JF, de Sousa ALM, Lopes AKC, Souza SCR (2023) Immune response dynamics of recent and chronic small ruminant lentivirus infection in the male reproductive system. Semin: Ciên Agrárias 44:185–202. https://doi.org/10.5433/1679-0359.2023v44n1p185

    Article  Google Scholar 

  14. Ramírez H, Reina R, Amorena B, de Andrés D, Martínez HA (2013) Small ruminant lentiviruses: genetic variability, tropism and diagnosis. Viruses 5:1175–1207. https://doi.org/10.3390/v5041175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomez-Lucia E, Barquero N, Domenech A (2018) Maedi-Visna virus: current perspectives. Vet Med (Auckl) 9:11–21. https://doi.org/10.2147/VMRR.S136705

    Article  PubMed  Google Scholar 

  16. Arcangeli C, Torricelli M, Sebastiani C, Lucarelli D, Ciullo M, Passamonti F, Giammarioli M, Biagetti M (2022) Genetic Characterization of Small Ruminant Lentiviruses (SRLVs) Circulating in Naturally Infected Sheep in Central Italy. Viruses 14:686. https://doi.org/10.3390/v14040686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sousa ALM, Pinheiro RR, Araújo JF, Santos VWS, Azevedo DAA, Peixoto RM, Souza V, Andrioli A, Damasceno EM, Dantas TVM, Teixeira MFS (2018) In vitro and in vivo evaluation of sodium dodecyl sulfate (SDS) as an inactivator of caprine lentivirus (CLV) in colostrum and milk. Arq Bras Med Vet Zootec 70:1459–1467. https://doi.org/10.1590/1678-4162-9556

    Article  Google Scholar 

  18. Reina R, Andrés D, Amorena B (2013) Immunization against Small Ruminant Lentiviruses. Viruses 5:1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reina R, Berriatua E, Luján L, Juste R, Sánchez A, de Andrés D, Amorena B (2009) Prevention strategies against small ruminant lentiviruses: An update. Vet J 182:31–37. https://doi.org/10.1016/j.tvjl.2008.05.008

    Article  PubMed  Google Scholar 

  20. de Araújo SAC, Teixeira MFS, Dantas TVM, Melo VSP, Lima FES, Ricarte ARF, Costa EC, Miranda AM (2009) Usos potenciais de melia azedarach l. (meliaceae): um levantamento. Arq Inst Biol 76:141–148. https://doi.org/10.1590/1808-1657v76p1412009

    Article  Google Scholar 

  21. Behl T, Rocchetti G, Chadha S, Zengin G, Bungau S, Kumar A, Mehta V, Uddin MS, Khullar G, Setia D, Arora S, Sinan KI, Ak G, Putnik P, Gallo M, Montesano D (2021) Phytochemicals from plant foods as potential source of antiviral agents: An overview. Pharmaceuticals 14:381. https://doi.org/10.3390/ph14040381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bueno CA, Lombardi MG, Sales ME, Alché LE (2012) A natural antiviral and immunomodulatory compound with antiangiogenic properties. Microvasc Res 84:235–241. https://doi.org/10.1016/j.mvr.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  23. Alché LE, Ferek GA, Meo M, Coto CE, Maier MS (2003) An antiviral meliacarpin from leaves of Melia azedarach L. Zeitschrift für Naturforschung C 58:215–219. https://doi.org/10.1515/znc-2003-3-413

    Article  Google Scholar 

  24. Wachsman MB, Damonte EB, Coto CE, de Torres RA (1987) Antiviral effects of Melia azedarach L. leaves extracts on Sindbis virus-infected cells. Antiviral Res 8:1–12. https://doi.org/10.1016/0166-3542(87)90083-0

    Article  CAS  PubMed  Google Scholar 

  25. Petrera E, Coto CE (2013) Effect of the potent antiviral 1-cinnamoyl-3,11-dihydroxymeliacarpin on cytokine production by murine macrophages stimulated with HSV-2. Phytother Res 28:104–109. https://doi.org/10.1002/ptr.4974

    Article  CAS  PubMed  Google Scholar 

  26. Nerome K, Shimizu K, Zukeran S, Igarashi Y, Kuroda K, Sugita S, Shibata T, Ito Y, Nerome R (2018) Functional growth inhibition of influenza A and B viruses by liquid and powder components of leaves from the subtropical plant Melia azedarach L. Arch Virol 163:2099–2109. https://doi.org/10.1007/s00705-018-3830-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dinda B, Dinda S, Dinda M (2023) Therapeutic potential of green tea catechin, (-)-epigallocatechin-3-O-gallate (EGCG) in SARS-CoV-2 infection: Major interactions with host/virus proteases. Phytomed Plus 3:100402. https://doi.org/10.1016/j.phyplu.2022.100402

    Article  PubMed  Google Scholar 

  28. Sousa ALM, Rizaldo Pinheiro R, Furtado Araujo J, Mesquita Peixoto R, de Azevedo DAA, Cesar Lima AM, Marques Canuto K, Vasconcelos Ribeiro PR, de Queiroz Souza AS, Rocha Souza SC, de Amorim SL, Paula Amaral G, de Souza V, de Morais SM, Andrioli A, da Silva Teixeira MF (2023) In vitro antiviral effect of ethanolic extracts from Azadirachta indica and Melia azedarach against goat lentivirus in colostrum and milk. Sci Rep 13:4677. https://doi.org/10.1038/s41598-023-31455-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Parida MM, Upadhyay C, Pandya G, Jana AM (2002) Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. J Ethnopharmacol 79:273–278. https://doi.org/10.1016/S0378-8741(01)00395-6

    Article  CAS  PubMed  Google Scholar 

  30. Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverría J (2019) The signaling pathways, and therapeutic targets of antiviral agents: focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Front Pharmacol 10:1–23. https://doi.org/10.3389/fphar.2019.01207

  31. Younus I, Ashraf M, Fatima A, Altaf I, Javeed A (2017) Evaluation of cytotoxic and antiviral activities of aqueous leaves extracts of different plants against foot and mouth disease virus infection in farming animals. Pak J Pharm Sci 30:2165–2172

    PubMed  Google Scholar 

  32. Moradi M-T, Karimi A, Rafieian-Kopaei M, Fotouhi F (2017) In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microb Pathog 110:42–49. https://doi.org/10.1016/j.micpath.2017.06.014

    Article  CAS  PubMed  Google Scholar 

  33. Chang F-R, Yen C-T, Ei-Shazly M, Lin W-H, Yen M-H, Lin K-H, Wu Y-C (2012) Anti-human coronavirus (anti-HCoV) triterpenoids from the leaves of Euphorbia neriifolia. Nat Prod Commun 7:1415–1417

    CAS  PubMed  Google Scholar 

  34. Diniz LRL, Perez-Castillo Y, Elshabrawy HA, Filho CDSMB, de Sousa DP (2021) Bioactive terpenes and their derivatives as potential sars-cov-2 proteases inhibitors from molecular modeling studies. Biomolecules 11:74. https://doi.org/10.3390/biom11010074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sharma P, Tyagi A, Bhansali P, Pareek S, Singh V, Ilyas A, Mishra R, Poddar NK (2021) Saponins: Extraction, bio-medicinal properties and way forward to anti-viral representatives. Food Chem Toxicol 150:112075. https://doi.org/10.1016/j.fct.2021.112075

    Article  CAS  PubMed  Google Scholar 

  36. Xu J, Xu Z, Zheng W (2017) A review of the antiviral role of green tea catechins. Molecules 22:1337. https://doi.org/10.3390/molecules22081337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zakaryan H, Arabyan E, Oo A, Zandi K (2017) Flavonoids: promising natural compounds against viral infections. Arch Virol 162:2539–2551. https://doi.org/10.1007/s00705-017-3417-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M (2021) Antiviral activities of flavonoids. Biomed Pharmacother 140:111596. https://doi.org/10.1016/j.biopha.2021.111596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwarz S, Sauter D, Wang K, Zhang R, Sun B, Karioti A, Bilia AR, Efferth T, Schwarz W (2014) Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med 80:177–182. https://doi.org/10.1055/s-0033-1360277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Di Petrillo A, Orrù G, Fais A, Fantini MC (2022) Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytother Res 36:266–278. https://doi.org/10.1002/ptr.7309

    Article  CAS  PubMed  Google Scholar 

  41. Seo DJ, Jeon SB, Oh H, Lee B-H, Lee S-Y, Oh SH, Jung JY, Choi C (2016) Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus. Food Control 60:25–30. https://doi.org/10.1016/j.foodcont.2015.07.023

    Article  CAS  Google Scholar 

  42. Zandi K, Teoh B-T, Sam S-S, Wong P-F, Mustafa MR, Abubakar S (2011) Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J 8:560. https://doi.org/10.1186/1743-422X-8-560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pizzolatti MG, Cunha A Jr, Szpoganicz B, de Sousa E, Braz-Filho R, Schripsema J (2003) Flavonóides glicosilados das folhas e flores de Bauhinia forficata (Leguminosae). Quím Nova 26:466–469. https://doi.org/10.1590/S0100-40422003000400003

    Article  CAS  Google Scholar 

  44. Paredes PFM, de Morais SM, Brito FCR, Moura LFWG, Rodrigues PDA, Benjamin SR, Magalhães FEA, Florean EOPT, Guedes MIF (2018) Characterization of Cnidoscolus quercifolius Pohl bark root extract and evaluation of cytotoxic effect on human tumor cell lines. Asian Pac J Trop Biomed 8:345. https://doi.org/10.4103/2221-1691.237077

    Article  Google Scholar 

  45. Marinho RC, Martins GR, Souza KC, Sousa ALM, Silva STC, Nobre JA, Teixeira MFS (2018) Duplex nested-PCR for detection of small ruminant lentiviruses. Braz J Microbiol 49:83–92. https://doi.org/10.1016/j.bjm.2018.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Saltarelli M, Querat G, Konings DAM, Vigne R, Clements JE (1990) Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 179:347–364. https://doi.org/10.1016/0042-6822(90)90303-9

    Article  CAS  PubMed  Google Scholar 

  47. Rodrigues AS, Brito RLL, Pinheiro RR, Dias RP, Alves SM, Souza TS, Souza KC, Azevedo DAA, Andrioli A, Magalhães DCT, Teixeira MFS (2014) Padronização do Elisa indireto e Western Blot para diagnóstico da artrite-encefalite caprina. Arq Bras Med Vet Zootec 66:417–424. https://doi.org/10.1590/1678-41626303

    Article  Google Scholar 

  48. Dantas TVM (2008) Desenvolvimento e padronização de um ELISA indireto para Diagnóstico de Maedi Visna em ovinos. Ciênc Anim Bras 9:181–187

    Google Scholar 

  49. Hartmann K, Wooding A, Bergmann M (2015) Efficacy of antiviral drugs against feline immunodeficiency virus. Vet Sci 2:456–476. https://doi.org/10.3390/vetsci2040456

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rana AC, Rana AC, Rana AC (2008) Melia azedarach: a phytopharmacological review. Pharmacogn Rev 2:173–179

    Google Scholar 

  51. Cornelio VE, Forim MR, Perlatti B, Fernandes JB, Vieira PC, Napolitano MP, Yost RA, da Silva MFGF (2017) Identification of Meliatoxins in Melia azedarach Extracts Using Mass Spectrometry for Quality Control. Planta Med 83:312–317. https://doi.org/10.1055/s-0042-115773

    Article  CAS  PubMed  Google Scholar 

  52. Peixoto RM, Teixeira MF da S, Andrioli A, Pinheiro RR, Silva AA de S, Aguiar TD de F, Azevedo DAA de, Sousa ALM de (2018) Perspectivas do uso de fitoterápicos no tratamento do sêmen caprino infectado pelo vírus da Artrite Encefalite Caprina Medicina Veterinária (UFRPE) 12:193–201. https://doi.org/10.26605/medvet-v12n3-2395

  53. de Oliveira FP, Fernandes HJ, Rial AALDS, de Soutello RVG (2019) Atividade do dimetilsulfóxido (DMSO) e de dois extratos de magonia pubescens sobre rhipicephalus (BOOPHILUS) microplus/ Dimethylulphoxide (DMSO) and two activity pubescens extracts on rhipicephalus (BOOPHILUS) microplus. Braz J Dev 5:23724–23736. https://doi.org/10.34117/bjdv5n11-075

    Article  Google Scholar 

  54. Bona EAMD, Pinto FGDS, Fruet TK, Jorge TCM, de Moura AC (2014) Comparação de métodos para avaliação da atividade antimicrobiana e determinação da concentração inibitória mínima (cim) de extratos vegetais aquosos e etanólicos. Arq Inst Biol 81:218–225. https://doi.org/10.1590/1808-1657001192012

    Article  Google Scholar 

  55. Urbańska DM, Jarczak J, Czopowicz M, Kaba J, Horbańczuk K, Bagnicka E (2022) miRNA expression patterns in blood leukocytes and milk somatic cells of goats infected with small ruminant lentivirus (SRLV). Sci Rep 12:13239. https://doi.org/10.1038/s41598-022-17276-y

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Kalogianni AI, Bossis I, Ekateriniadou LV, Gelasakis AI (2020) Etiology, epizootiology and control of maedi-visna in dairy sheep: a review. Animals 10:616. https://doi.org/10.3390/ani10040616

    Article  PubMed  PubMed Central  Google Scholar 

  57. Araújo JF, Andrioli A, Pinheiro RR, Sider LH, de Sousa ALM, de Azevedo DAA, Peixoto RM, Lima AMC, Damasceno EM, Souza SCR, Teixeira MFDS (2020) Vertical transmissibility of small ruminant lentivirus. PLoS One 15:e0239916. https://doi.org/10.1371/journal.pone.0239916

    Article  CAS  Google Scholar 

  58. Furtado Araújo J, Andrioli A, Pinheiro RR, Peixoto RM, de Sousa ALM, de Azevedo DAA, Lima AMC, Nobre JA, Amaral GP, Brandão IS, da Silva Teixeira MF (2021) Detection and isolation of small ruminant lentivirus in the amniotic fluid of goats. Comp Immunol Microbiol Infect Dis 78:101693. https://doi.org/10.1016/j.cimid.2021.101693

    Article  CAS  PubMed  Google Scholar 

  59. Martins GR, Marinho RC, Junior RQB, Alves ADO, Câmara LMC, Albuquerque-Pinto LC, Teixeira MFDS (2017) Goat umbilical cord cells are permissive to small ruminant lentivirus infection in vitro. Braz J Microbiol 48:125–131. https://doi.org/10.1016/j.bjm.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  60. Blacklaws BA, Berriatua E, Torsteinsdottir S, Watt NJ, de Andres D, Klein D, Harkiss GD (2004) Transmission of small ruminant lentiviruses. Vet Microbiol 101:199–208. https://doi.org/10.1016/j.vetmic.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  61. Kaba J, Czopowicz M, Witkowski L, Szaluś-Jordanow O, Mickiewicz M, Markowska-Daniel I, Puchała R, Bagnicka E (2022) Longitudinal study on seroreactivity of goats exposed to colostrum and milk of small ruminant lentivirus–infected dams. Journal of Veterinary Research 66:511–521. https://doi.org/10.2478/jvetres-2022-0071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alché LE, Berra A, Veloso MJ, Coto CE (2000) Treatment with meliacine, a plant derived antiviral, prevents the development of herpetic stromal keratitis in mice. J Med Virol 61:474–480. https://doi.org/10.1002/1096-9071(200008)61:4%3c474:AID-JMV10%3e3.0.CO;2-K

    Article  PubMed  Google Scholar 

  63. Schaer J, Cvetnic Z, Sukalic T, Dörig S, Grisiger M, Iscaro C, Feliziani F, Pfeifer F, Origgi F, Zanoni RG, Abril CE (2022) evaluation of serological methods and a new real-time nested pcr for small ruminant lentiviruses. Pathogens 11:129. https://doi.org/10.3390/pathogens11020129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kalogianni AI, Stavropoulos I, Chaintoutis SC, Bossis I, Gelasakis AI (2021) Serological, molecular and culture-based diagnosis of lentiviral infections in small ruminants. Viruses 13:1711. https://doi.org/10.3390/v13091711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Peterson K, Brinkhof J, Houwers DJ, Colenbrander B, Gadella BM (2008) Presence of pro-lentiviral DNA in male sexual organs and ejaculates of small ruminants. Theriogenology 69:433–442. https://doi.org/10.1016/j.theriogenology.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  66. Adjadj NR, Vicca J, Michiels R, De Regge N (2019) (Non-)Sense of Milk Testing in small ruminant lentivirus control programs in goats. comparative analysis of antibody detection and molecular diagnosis in blood and milk. Viruses 12:3. https://doi.org/10.3390/v12010003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mselli-Lakhal L, Guiguen F, Fornazero C, Favier C, Durand J, Grezel D, Moussa A, Mornex JF, Chebloune Y (2001) Immortalized goat milk epithelial cell lines replicate CAEV at high level. Vet Res 32:429–440. https://doi.org/10.1051/vetres:2001135

    Article  CAS  PubMed  Google Scholar 

  68. de Souza TS, Pinheiro RR, Costa JN, de Lima CCV, Andrioli A, de Azevedo DAA, dos Santos VWS, Araújo JF, de Sousa ALM, Pinheiro DNS, Fernandes FMC, Costa Neto AO (2015) Interspecific transmission of small ruminant lentiviruses from goats to sheep. Braz J Microbiol 46:867–874. https://doi.org/10.1590/S1517-838246320140402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nascimento VS de O, Pinheiro G de O, Lima E da S (2020) The Importance of Artificial Breastfeeding in Goat Breeding – Literature Review. Revista Electronica de Veterinaria 21:62–71. https://www.veterinaria.org/index.php/REDVET/article/view/43

  70. Di Cera E (2009) Serine proteases. IUBMB Life 61:510–515. https://doi.org/10.1002/iub.186

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. Guzmán-Mejía F, Godínez-Victoria M, Molotla-Torres DE, Drago-Serrano ME (2023) lactoferrin as a component of pharmaceutical preparations: An experimental focus. Pharmaceuticals 16:214. https://doi.org/10.3390/ph16020214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nunes NM, Coelho YL, Castro JS, Vidigal MCTR, Mendes TAO, da Silva LHM, Pires ACS (2020) Naringenin-lactoferrin binding: Impact on naringenin bitterness and thermodynamic characterization of the complex. Food Chem 331:127337. https://doi.org/10.1016/j.foodchem.2020.127337

    Article  CAS  PubMed  Google Scholar 

  73. Sun Y, Wang C, Sun X, Guo M (2020) Proteomic analysis of whey proteins in the colostrum and mature milk of Xinong Saanen goats. J Dairy Sci 103:1164–1174. https://doi.org/10.3168/jds.2019-17159

    Article  CAS  PubMed  Google Scholar 

  74. Lopes BRP, da Silva GS, de Lima MG, de Oliveira J, Watanabe ASA, Porto BN, da Silva RA, Toledo KA (2022) Serine proteases in neutrophil extracellular traps exhibit anti-Respiratory Syncytial Virus activity. Int Immunopharmacol 106:108573. https://doi.org/10.1016/j.intimp.2022.108573

    Article  CAS  PubMed  Google Scholar 

  75. Awad E, Awaad AS, Esteban MA (2015) Effects of dihydroquercetin obtained from deodar (Cedrus deodara) on immune status of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 43:43–50. https://doi.org/10.1016/j.fsi.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  76. Biradar SK, Tyagi CK (2021) Phytochemical screening and immunomodulatory activities of methanolic extract of eclipta alba and centella asiatica. Research Journal of Pharmacology and Pharmacodynamics 13:5–8. https://doi.org/10.5958/2321-5836.2021.00002.1

  77. Kamboh AA, Hang S-Q, Khan MA, Zhu W-Y (2016) In vivo immunomodulatory effects of plant flavonoids in lipopolysaccharide-challenged broilers. Animal 10:1619–1625. https://doi.org/10.1017/S1751731116000562

    Article  CAS  PubMed  Google Scholar 

  78. Indrati R, Ihsan N, Sofjan O, Suyadi S (2019) Ethanol extraction of Sambiloto leaves (Andrographis paniculata Nees) and evaluation of its immunomodulatory activity towards gastrointestinal nematode infestation in Ettawah Crossbred goats. Livest Res Rural Dev 31. http://www.lrrd.org/lrrd31/12/rosit31191.html

  79. Yuandani Jantan I, Rohani AS, Sumantri IB (2021) Immunomodulatory Effects and Mechanisms of Curcuma Species and Their Bioactive Compounds: A Review. Front Pharmacol 12:643119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yuliasmi S, Satria D, Dongoran RF, Sinaga MS, Marpaung NHA (2019) Correlation between the phytochemical constituents of curcuma mangga and its immunomodulatory effect. RJC 12:01–06. https://doi.org/10.31788/RJC.2019.1215050

    Article  Google Scholar 

  81. Sibeko L, Johns T, Cordeiro LS (2021) Traditional plant use during lactation and postpartum recovery: Infant development and maternal health roles. J Ethnopharmacol 279:114377. https://doi.org/10.1016/j.jep.2021.114377

    Article  PubMed  Google Scholar 

  82. Jiao J, Wu J, Wang M, Zhou C, Zhong R, Tan Z (2018) Rhubarb Supplementation Promotes Intestinal Mucosal Innate Immune Homeostasis through Modulating Intestinal Epithelial Microbiota in Goat Kids J. Agric Food Chem 66:1047–1057 https://doi.org/10.1021/acs.jafc.7b05297.

  83. Petrera E (2015) Antiviral and immunomodulatory properties of meliaceae family. J Biol Act Prod Nat 5:241–254. https://doi.org/10.1080/22311866.2015.1081569

    Article  CAS  Google Scholar 

  84. Lee JS, Sun KH, Park Y (2022) Evaluation of Melia azedarach extract-loaded poly (vinyl alcohol)/pectin hydrogel for burn wound healing. PLoS ONE 17:e0270281. https://doi.org/10.1371/journal.pone.0270281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nethmini NAN, Kim MS, Chathuranga K, Ma JY, Kim H, Lee J-S (2020) Melia azedarach extract exhibits a broad spectrum of antiviral effect in vitro and in vivo. J Biomed Transl Res 21:125–136. https://doi.org/10.12729/jbtr.2020.21.3.125

    Article  Google Scholar 

  86. Darshani P, Sen Sarma S, Srivastava AK, Baishya R, Kumar D (2022) Anti-viral triterpenes: a review. Phytochem Rev 21:1761–1842. https://doi.org/10.1007/s11101-022-09808-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ninfali P, Antonelli A, Magnani M, Scarpa ES (2020) Antiviral properties of flavonoids and delivery strategies. Nutrients 12:2534. https://doi.org/10.3390/nu12092534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Silva FC, Rodrigues VG, Duarte LP, Lula IS, Sinisterra RD, Vieira-Filho SA, Rodrigues RAL, Kroon EG, Oliveira PL, Farias LM, Magalhães PP, Silva GDF (2017) Antidiarrheal activity of extracts from Maytenus gonoclada and inhibition of Dengue virus by lupeol. An Acad Bras Ciênc 89:1555–1564. https://doi.org/10.1590/0001-3765201720160046

    Article  CAS  PubMed  Google Scholar 

  89. Dwivedi VD, Tripathi IP, Mishra SK (2016) In silico evaluation of inhibitory potential of triterpenoids from Azadirachta indica against therapeutic target of dengue virus, NS2B-NS3 protease. J Vector Borne Dis 53:156–161

    CAS  PubMed  Google Scholar 

  90. Si L, Meng K, Tian Z, Sun J, Li H, Zhang Z, Soloveva V, Li H, Fu G, Xia Q, Xiao S, Zhang L, Zhou D (2018) Triterpenoids manipulate a broad range of virus-host fusion via wrapping the HR2 domain prevalent in viral envelopes. Sci Adv 4:eaau8408. https://doi.org/10.1126/sciadv.aau8408

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Dargan DJ, Subak-Sharpe JH (1985) The effect of triterpenoid compounds on uninfected and herpes simplex virus-infected cells in culture. I. Effect on cell growth, virus particles and virus replication. J Gen Virol 66(Pt 8):1771–1784. https://doi.org/10.1099/0022-1317-66-8-1771

    Article  CAS  PubMed  Google Scholar 

  92. Kazakova O, Tret’yakova E, Baev D (2021) Evaluation of A-azepano-triterpenoids and related derivatives as antimicrobial and antiviral agents. J Antibiot 74:559–573. https://doi.org/10.1038/s41429-021-00448-9

    Article  CAS  Google Scholar 

  93. Dinda B, Debnath S, Mohanta BC, Harigaya Y (2010) Naturally Occurring Triterpenoid Saponins. Chem Biodivers 7:2327–2580. https://doi.org/10.1002/cbdv.200800070

    Article  CAS  PubMed  Google Scholar 

  94. Souza TS de, Costa JN, Pinheiro RR, Melo FCC de, Lima CCV de, Andrioli A, Azevedo DAA de, Santos VWS dos, Oliveira EL de, Costa Neto A de O (2014) Duration of passive immunity to small ruminant lentiviruses in lambs. Semina Ci agr 49:845–856. https://doi.org/10.22456/1679-9216.109822

  95. Cavalcante FRA, Andrioli A, Pinheiro RR, de Souza KC, Veras AKA, Lopes TA, Sousa SD, da Silva PAF (2013) Detecção do vírus da Artrite Encefalite Caprina por nested PCR e nested RT-PCR em ovócitos e fluido uterino. Arq Inst Biol 80:381–386. https://doi.org/10.1590/S1808-16572013000400002

    Article  Google Scholar 

  96. Álvarez V, Daltabuit-Test M, Arranz J, Leginagoikoa I, Juste RA, Amorena B, de Andrés D, Luján LL, Badiola JJ, Berriatua E (2006) PCR detection of colostrum-associated Maedi-Visna virus (MVV) infection and relationship with ELISA-antibody status in lambs. Res Vet Sci 80:226–234. https://doi.org/10.1016/j.rvsc.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  97. Barquero N, Gomez-Lucia E, Arjona A, Toural C, las-Heras A, Fernández-Garayzabal JF, Domenech A (2013) Evolution of specific antibodies and proviral DNA in milk of small ruminants infected by small ruminant lentivirus. Viruses 5:2614–2623. https://doi.org/10.3390/v5102614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. de Andrés D, Klein D, Watt NJ, Berriatua E, Torsteinsdottir S, Blacklaws BA, Harkiss GD (2005) Diagnostic tests for small ruminant lentiviruses. Vet Microbiol 107:49–62. https://doi.org/10.1016/j.vetmic.2005.01.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financed by the National Council of Scientific and Technological Development (CNPq; Brazil) under code 312900/2019-8, Embrapa Goats & Sheep under code 40.19.00.150.00.00, and Ceará State Foundation Support for Scientific and Technological Development (FUNCAP) under codes DC8-0145-00042.01.00/18 and 9751533/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samara Cristina Rocha Souza.

Additional information

Responsible Editor: Maria Aparecida Scatamburlo Moreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, S.C.R., Pinheiro, R.R., Peixoto, R.M. et al. In vivo evaluation of the antiretroviral activity of Melia azedarach against small ruminant lentiviruses in goat colostrum and milk. Braz J Microbiol 55, 875–887 (2024). https://doi.org/10.1007/s42770-023-01174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01174-0

Keywords

Navigation