Skip to main content
Log in

Genomic characterization of Staphylococcus aureus from Canastra Minas Artisanal Cheeses

  • Food Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Canastra Minas Artisanal Cheese is produced in the Brazilian State of Minas Gerais using raw milk, rennet, and pingo, a natural endogenous starter culture (fermented whey) collected from the previous day’s production. Due to the use of raw milk, the product can carry microorganisms that may cause foodborne diseases (FBD), including Staphylococcus aureus. Genomic characterization of S. aureus is an important tool to assess diversity, virulence, antimicrobial resistance, and the potential for causing food poisoning due to enterotoxin production. This study is aimed at exploring the genomic features of S. aureus strains isolated from Canastra Minas Artisanal Cheeses. Multilocus sequence typing (MLST) classified these strains as ST1, ST5, and a new profile ST7849 (assigned to the clonal complex CC97). These strains belonged to four spa types: t008, t127, t359, and t992. We identified antimicrobial resistance genes with phenotypic correlation against methicillin (MRSA) and tetracycline. Virulome analysis revealed genes associated with iron uptake, immune evasion, and potential capacity for adherence and biofilm formation. The toxigenic potential included cyto- and exotoxins genes, and all strains presented the genes that encode for Panton-Valentine toxin and hemolysin, and two strains encoded 4 and 8 Staphylococcal enterotoxin (SE) genes. The results revealed the pathogenic potential of the evaluated S. aureus strains circulating in the Canastra region, representing a potential risk to public health. This study also provides useful information to monitor and guide the application of control measures to the artisanal dairy food production chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The assembled genome sequences were deposited in GenBank under BioProject number PRJNA803870 and accession numbers JAKNRH000000000, JAKNRI000000000, JAKNRJ000000000, JAKNRK000000000, and JAKNRL000000000.

References

  1. Schelin J, Wallin-Carlquist N, Cohn MT, Lindqvist R, Barker GC, Rådström P (2011) The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence 2(6):580–592. https://doi.org/10.4161/viru.2.6.18122

    Article  PubMed  PubMed Central  Google Scholar 

  2. Le Loir L, Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2(1):63–76

  3. Baran A, Erdogan A, Turgut T, Adıgüzel M (2017) A review on the presence of Staphylococcus aureus in cheese. Turkish Journal of Nature and Science 6(2):100–105

    Google Scholar 

  4. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK (2016) Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 8(1):12–24. https://doi.org/10.1039/c5ay02550h

    Article  Google Scholar 

  5. Campos GZ, Lacorte GA, Jurkiewicz C, et al. (2021) Microbiological characteristics of Canastra cheese during manufacturing and ripening. Food Control 121. https://doi.org/10.1016/j.foodcont.2020.107598

  6. Pineda APA, Campos GZ, Pimentel-Filho NJ, Franco BDG de M, Pinto UM (2021) Brazilian artisanal cheeses: diversity, microbiological safety, and challenges for the sector. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.666922

  7. Brasil. Ministério da Saúde. Surtos de Doenças de Transmissão Hídrica e Alimentar no Brasil Informe 2022. [WWW Document], n.d.  https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/dtha/publicacoes/surtos-de-doencas-de-transmissao-hidrica-e-alimentar-no-brasil-informe-2022/view (accessed 22.2.23).

  8. das Dores MT, Dias RS, Arcuri EF, da Nobrega JE, de Ferreira CLLF (2013) Enterotoxigenic potential of Staphylococcus aureus isolated from Artisan Minas cheese from the Serra da Canastra – MG, Brazil. Food Sci Technol 33(2):271–275. https://doi.org/10.1590/S0101-20612013005000033

    Article  Google Scholar 

  9. Johler S, Giannini P, Jermini M, Hummerjohann J, Baumgartner A, Stephan R (2015) Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins (Basel) 7(3):997–1004. https://doi.org/10.3390/toxins7030997

    Article  CAS  PubMed  Google Scholar 

  10. da Silva Cândido TJ, da Silva AC, de Matos LG, et al. (2020) Enterotoxigenic potential and molecular typing of Staphylococcus sp. isolated from organic and conventional fresh minas cheese in the state of São Paulo, Brazil. Int Dairy J 102. https://doi.org/10.1016/j.idairyj.2019.104605

  11. Macori G, Bellio A, Bianchi DM, et al. (2020) Genome-wide profiling of enterotoxigenic Staphylococcus aureus strains used for the production of naturally contaminated cheeses. Genes (Basel) 11(1). https://doi.org/10.3390/genes11010033

  12. Chacón RD, Ramírez M, Rodríguez-Cueva CL, et al. (2023) Genomic characterization and genetic profiles of Salmonella gallinarum strains isolated from layers with fowl typhoid in Colombia. Genes (Basel) 14(4). https://doi.org/10.3390/genes14040823

  13. Igbinosa EO, Beshiru A, Akporehe LU, Oviasogie FE, Igbinosa OO (2023) Prevalence of methicillin-resistant Staphylococcus aureus and other Staphylococcus species in raw meat samples intended for human consumption in Benin City, Nigeria: implications for public health. Int J Environ Res Public Health 13(10). https://doi.org/10.3390/ijerph13100949

  14. Clinical and Laboratory Standards Institute (CLSI) (2022) M100—performance standards for antimicrobial susceptibility testing, 32nd edn. Clinical and Laboratory Standards Institute, Wayne, PA

    Google Scholar 

  15. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29(8):1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19):3210–3212. https://doi.org/10.1093/bioinformatics/btv351

    Article  CAS  PubMed  Google Scholar 

  18. Jolley KA, Bray JE, Maiden MCJ (2018) Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; referees: 2 approved]. Wellcome Open Res 3. https://doi.org/10.12688/wellcomeopenres.14826.1

  19. Jia B, Raphenya AR, Alcock B et al (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45(D1):D566–D573. https://doi.org/10.1093/nar/gkw1004

    Article  CAS  PubMed  Google Scholar 

  20. Liu B, Zheng D, Jin Q, Chen L, Yang J (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47(D1):D687–D692. https://doi.org/10.1093/nar/gky1080

    Article  CAS  PubMed  Google Scholar 

  21. Xie Z, Tang H (2017) ISEScan: automated identification of insertion sequence elements in prokaryotic genomes. Bioinformatics 33(21):3340–3347. https://doi.org/10.1093/bioinformatics/btx433

    Article  CAS  PubMed  Google Scholar 

  22. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12. https://doi.org/10.1186/1471-2164-12-402

  23. Silva NCC, Guimarães FF, Manzi MP et al (2013) Molecular characterization and clonal diversity of methicillin-susceptible Staphylococcus aureus in milk of cows with mastitis in Brazil. J Dairy Sci 96(11):6856–6862. https://doi.org/10.3168/jds.2013-6719

    Article  CAS  PubMed  Google Scholar 

  24. Bonsaglia ECR, Silva NCC, Rossi BF et al (2018) Molecular epidemiology of methicillin-susceptible Staphylococcus aureus (MSSA) isolated from milk of cows with subclinical mastitis. Microb Pathog 124:130–135. https://doi.org/10.1016/j.micpath.2018.08.031

    Article  CAS  PubMed  Google Scholar 

  25. Mama OM, Aspiroz C, Lozano C et al (2021) Penicillin susceptibility among invasive MSSA infections: a multicentre study in 16 Spanish hospitals. J Antimicrob Chemother 76(10):2519–2527. https://doi.org/10.1093/jac/dkab208

    Article  CAS  PubMed  Google Scholar 

  26. Aires-de-Sousa M, Parente CESR, Vieira-da-Motta O, Bonna ICF, Silva DA, De Lencastre H (2007) Characterization of Staphylococcus aureus isolates from buffalo, bovine, ovine, and caprine milk samples collected in Rio de Janeiro State, Brazil. Appl Environ Microbiol 73(12):3845–3849. https://doi.org/10.1128/AEM.00019-07

    Article  CAS  PubMed  Google Scholar 

  27. Pereira-Franchi EPL, Barreira MRN, de Costa NSLM et al (2019) Molecular epidemiology of methicillin-resistant Staphylococcus aureus in the Brazilian primary health care system. Trop Med Int Health 24(3):339–347. https://doi.org/10.1111/tmi.13192

    Article  CAS  PubMed  Google Scholar 

  28. Dabul ANG, Camargo ILBC (2014) Clonal complexes of Staphylococcus aureus: all mixed and together. FEMS Microbiol Lett 351(1):7–8. https://doi.org/10.1111/1574-6968.12358

    Article  CAS  PubMed  Google Scholar 

  29. Kaatz GW, McAleese F, Seo SM (2005) Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein. Antimicrob Agents Chemother 49(5):1857–1864. https://doi.org/10.1128/AAC.49.5.1857-1864.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mores CR, Montelongo C, Putonti C, Wolfe AJ, Abouelfetouh A (2021) Investigation of plasmids among clinical Staphylococcus aureus and Staphylococcus haemolyticus isolates from Egypt. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.659116

  31. Asante J, Hetsa BA, Amoako DG, Abia ALK, Bester LA, Essack SY (2021) Genomic analysis of antibiotic-resistant Staphylococcus epidermidis isolates from clinical sources in the Kwazulu-Natal Province, South Africa. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.656306

  32. Phillips-Jones MK, Harding SE (2018) Antimicrobial resistance (AMR) nanomachines—mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation. Biophys Rev 10(2):347–362. https://doi.org/10.1007/s12551-018-0404-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fournier B, Klier A, Rapoport G (2001) The two-component system ArlS-ArlR is a regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol 41(1):247–261. https://doi.org/10.1046/j.1365-2958.2001.02515.x

    Article  CAS  PubMed  Google Scholar 

  34. Lekshmi M, Ammini P, Adjei J et al (2018) Modulation of antimicrobial efflux pumps of the major facilitator superfamily in <em>Staphylococcus aureus</em>. AIMS Microbiol 4(1):1–18. https://doi.org/10.3934/microbiol.2018.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu Z, Liu Y, Chen C, et al. (2016) Characterization of fosfomycin resistance gene, fosB, in methicillin-resistant Staphylococcus aureus isolates. PLoS One 11(5). https://doi.org/10.1371/journal.pone.0154829

  36. Fowler PW, Cole K, Gordon NC et al (2018) Robust prediction of resistance to trimethoprim in Staphylococcus aureus. Cell Chem Biol 25(3):339-349.e4. https://doi.org/10.1016/j.chembiol.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  37. Ito T, Hiramatsu K (1998) Acquisition of methicillin resistance and progression of multiantibiotic resistance in methicillin-resistant Staphylococcus aureus. Yonsei Med J 39:526–533. https://doi.org/10.3349/ymj.1998.39.6.526

    Article  CAS  PubMed  Google Scholar 

  38. da Silva Abreu AC, Matos LG, da Silva Cândido TJ, et al. (2021) Antimicrobial resistance of Staphylococcus spp. isolated from organic and conventional Minas Frescal cheese producers in São Paulo, Brazil. J Dairy Sci 104(4). https://doi.org/10.3168/jds.2020-19338

  39. Kateete DP, Bwanga F, Seni J, et al. (2019) CA-MRSA and HA-MRSA coexist in community and hospital settings in Uganda. Antimicrob Resist Infect Control 8(1). https://doi.org/10.1186/s13756-019-0551-1

  40. Foster TJ, Höök M (1998) Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 6(12):484–488. https://doi.org/10.1016/s0966-842x(98)01400-0

    Article  CAS  PubMed  Google Scholar 

  41. Harraghy N, Hussain M, Haggar A et al (2003) The adhesive and immunomodulating properties of the multifunctional Staphylococcus aureus protein Eap. Microbiology (N Y) 149(10):2701–2707. https://doi.org/10.1099/mic.0.26465-0

    Article  CAS  Google Scholar 

  42. Soltani E, Farrokhi E, Zamanzad B, et al. (2019) Prevalence and distribution of adhesins and the expression of fibronectin-binding protein (FnbA and FnbB) among Staphylococcus aureus isolates from Shahrekord Hospitals 06 Biological Sciences 0604 Genetics. BMC Res Notes 12(1). https://doi.org/10.1186/s13104-019-4055-0

  43. Cassat JE, Dunman PM, McAleese F, Murphy E, Projan SJ, Smeltzer MS (2005) Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J Bacteriol 187(2):576–592. https://doi.org/10.1128/JB.187.2.576-592.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ajayi C, Åberg E, Askarian F, Sollid JUE, Johannessen M, Hanssen AM (2018) Genetic variability in the sdrD gene in Staphylococcus aureus from healthy nasal carriers. BMC Microbiol 18(1). https://doi.org/10.1186/s12866-018-1179-7

  45. Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43(6):1367–1378. https://doi.org/10.1046/j.1365-2958.2002.02827.x

    Article  PubMed  Google Scholar 

  46. Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T (2016) The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2(1). https://doi.org/10.1038/nmicrobiol.2016.183

  47. Batool N, Shamim A, Chaurasia AK, Kim KK (2021) Genome-wide analysis of Staphylococcus aureus sequence type 72 isolates provides insights into resistance against antimicrobial agents and virulence potential. Front Microbiol 11:613800. https://doi.org/10.3389/fmicb.2020.613800

  48. Haupt K, Reuter M, Van Den Elsen J, et al. (2008) The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement factor H and C3b. PLoS Pathog 4(12). https://doi.org/10.1371/journal.ppat.1000250

  49. Chan YGY, Kim HK, Schneewind O, Missiakas D (2014) The capsular polysaccharide of Staphylococcus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes. J Biol Chem 289(22):15680–15690. https://doi.org/10.1074/jbc.M114.567669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rooijakkers SHM, Ruyken M, Roos A et al (2005) Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6(9):920–927. https://doi.org/10.1038/ni1235

    Article  CAS  PubMed  Google Scholar 

  51. De Haas CJC, Veldkamp KE, Peschel A et al (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199(5):687–695. https://doi.org/10.1084/jem.20031636

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jonsson IM, Mazmanian SK, Schneewind O, Bremell T, Tarkowski A (2003) The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes Infect 5(9):775–780. https://doi.org/10.1016/S1286-4579(03)00143-6

    Article  CAS  PubMed  Google Scholar 

  53. Johler S, Giannini P, Jermini M, Hummerjohann J, Baumgartner A, Stephan R (2015) Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins (Basel) 7(3):997–1004. https://doi.org/10.3390/toxins7030997

    Article  CAS  PubMed  Google Scholar 

  54. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661. https://doi.org/10.1128/CMR.00134-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fraser JD, Proft T (2008) The bacterial superantigen and superantigen-like proteins. Immunol Rev 225(1):226–243. https://doi.org/10.1111/j.1600-065X.2008.00681.x

    Article  CAS  PubMed  Google Scholar 

  56. Hall JW, Yang J, Guo H, Ji Y (2015) The AirSR two-component system contributes to Staphylococcus aureus survival in human blood and transcriptionally regulates sspABC operon. Front Microbiol 6:682. https://doi.org/10.3389/fmicb.2015.00682

  57. Nguyen LT, Vogel HJ. (2016) Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Sci Rep 6. https://doi.org/10.1038/srep31817

  58. Paharik AE, Salgado-Pabon W, Meyerholz DK, White MJ, Schlievert PM, Horswill AR (2016) The Spl serine proteases modulate Staphylococcus aureus protein production and virulence in a rabbit model of pneumonia. mSphere 1(5). https://doi.org/10.1128/msphere.00208-16

  59. Hennekinne JA, De Buyser ML, Dragacci S (2012) Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev 36(4):815–836. https://doi.org/10.1111/j.1574-6976.2011.00311.x

    Article  CAS  PubMed  Google Scholar 

  60. Filipello V, Bonometti E, Campagnani M et al (2020) Investigation and follow-up of a staphylococcal food poisoning outbreak linked to the consumption of traditional hand-crafted alm cheese. Pathogens 9(12):1–6. https://doi.org/10.3390/pathogens9121064

    Article  CAS  Google Scholar 

  61. Gonzalez AGM, Marques LMP, Da Silva Amorim Gomes M, et al. (2020) Methicillin-resistant Staphylococcus aureus in Minas Frescal cheese: evaluation of classic enterotoxin genes, antimicrobial resistance and clonal diversity. FEMS Microbiol Lett 364(23). https://doi.org/10.1093/femsle/fnx232

  62. Stephens C, Cho PJY, de Araujo VA, et al. (2015) Draft genome sequence of a community-associated methicillin-resistant Panton-Valentine leukocidin-positive Staphylococcus aureus sequence type 30 isolate from a pediatric patient with a lung infection in Brazil. Genome Announc 3(4). https://doi.org/10.1128/genomeA.00907-15

  63. Wang L, Si W, Xue H, Zhao X (2018) Characterization of a functional insertion sequence ISSau2 from Staphylococcus aureus. Mob DNA 9(1).https://doi.org/10.1186/s13100-018-0108-5

  64. McCarthy AJ, Lindsay JA (2013) Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study. Infect Genet Evol 19:7–14. https://doi.org/10.1016/j.meegid.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  65. Pietrocola G, Nobile G, Rindi S, Speziale P (2017) Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Front Cell Infect Microbiol 7:166. https://doi.org/10.3389/fcimb.2017.00166

  66. Peacock SJ, Moore CE, Justice A et al (2002) Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun 70(9):4987–4996. https://doi.org/10.1128/IAI.70.9.4987-4996.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Davis RW, Brannen AD, Hossain MJ, et al. (2016) Complete genome of Staphylococcus aureus Tager 104 provides evidence of its relation to modern systemic hospital-acquired strains. BMC Genomics 17(1). https://doi.org/10.1186/s12864-016-2433-8

  68. Pinchuk IV, Beswick EJ, Reyes VE (2010) Staphylococcal enterotoxins. Toxins (Basel) 2(8):2177–2197. https://doi.org/10.3390/toxins2082177

    Article  CAS  PubMed  Google Scholar 

  69. Chambers HF, DeLeo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7(9):629–641. https://doi.org/10.1038/nrmicro2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Sao Paulo Research Foundation (FAPESP, Brazil) for the financial support (grant #2013/07914-8) to the Food Research Center. We thank Fabiana da Silva Lima, Loredana d’Ovidio, and Luciano Queiroz for technical assistance during library preparation for WGS. We also thank Christian Hoffmann for the helpful discussions and critical review of the manuscript. We extend our special gratitude to each cheese producer who actively participated in this study, demonstrating eagerness to contribute not only to this research but also to the various other studies we undertake.

Funding

This work was supported by “Fundação de Amparo a Pesquisa de Sao Paulo (FAPESP-Brazil-grant #2013/07914–8).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Gustavo Lacorte and Uelinton M. Pinto; methodology: Ana P.A. Pineda, Carmen L.R. Cueva, Ruy D. Chacón, Manuel Ramírez, Débora P. Oliveira, and Gustavo Lacorte; formal analysis and investigation: Ana P.A. Pineda, Carmen L.R. Cueva, Ruy D. Chácon, Manuel Ramírez, Otávio G.G. Almeida, Débora P. Oliveira, Gustavo Lacorte, and Nathalia C.S. Silva; writing—original draft preparation: Ana P.A. Pineda, Carmen L.R. Cueva, and Ruy D. Chácon; writing—review and editing: Manuel Ramírez, Otávio G.G. Almeida, Bernadette D.G.M. Franco, Nathalia C.S. Silva, and Uelinton M. Pinto; funding acquisition: Bernadette D.G.M. Franco, Mariza Landgraf, and Uelinton M. Pinto; resources: Bernadette D.G.M. Franco, Mariza Landgraf, and Uelinton M. Pinto; supervision: Bernadette D.G.M. Franco, Gustavo Lacorte, Mariza Landgraf, Nathalia C.S. Silva, and Uelinton M. Pinto.

Corresponding author

Correspondence to Uelinton Manoel Pinto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Luis Augusto Nero

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda, A.P.A., Cueva, C.L.R., Chacón, R.D. et al. Genomic characterization of Staphylococcus aureus from Canastra Minas Artisanal Cheeses. Braz J Microbiol 54, 2103–2116 (2023). https://doi.org/10.1007/s42770-023-01099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-023-01099-8

Keywords

Navigation