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Abstract
SARS-CoV-2 dynamics across different COVID-19 waves has been unclear in immunocompromised children. We aimed to 
compare the dynamics of SARS-CoV-2 RNA viral load (VL) during the first and third waves of COVID-19 in immunocom-
promised children. A retrospective and longitudinal cohort study was conducted in a pediatric referral hospital of Argentina. 
The study included 28 admitted immunocompromised children with laboratory confirmed SARS-CoV-2 infection. Thirteen 
acquired the infection during COVID-19 first wave (May to August 2020, group 1 (G1)) and fifteen in the third wave (January 
to March 2022, group 2 (G2)). RNA viral load measure and its dynamic reconstruction were performed in nasopharyngeal 
swabs by validated quantitative, real time RT-PCR, and linear mixed-effects model, respectively. Of the 28 children included, 
54% were girls, most of them had hemato-oncological pathology (57%), and the median age was 8 years (interquartile range 
(IQR): 3–13). The dynamic of VL was similar in both groups (P = 0.148), starting from a level of 5.34  log10 copies/mL (95% 
confidence interval (CI): 4.47–6.21) in G1 and 5.79  log10 copies/mL (95% CI: 4.93–6.65) in G2. Then, VL decayed with 
a rate of 0.059 (95% CI: 0.038–0.080) and 0.088 (95% CI: 0.058–0.118)  log10 copies/mL per day since diagnosis and fell 
below the limit of quantification at days 51 and 39 after diagnosis in G1 and G2, respectively. Our results evidenced a longer 
viral RNA persistence in immunocompromised pediatric patients and no difference in VL dynamic between COVID-19 first 
wave—attributed to ancestral infections—and third wave—attributed to Omicron infections.
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Introduction

The viral dynamics of SARS-CoV-2 is of paramount impor-
tance for the epidemiology of COVID-19 and infection control 
policies. The duration of test positivity influences infectiousness 
[1, 2] and isolation policies, test recommendations, and clinical 
care guidelines [3, 4]. Evidence on the persistence of SARS-
CoV-2 in pediatric immunocompromised patients has not been 
well established and gain relevance. There have been several 
case reports that found infectious SARS-CoV-2 beyond 20 days 
since symptoms onset in immunocompromised patients [5–11]. 
This prolonged duration of infection could accelerate the emer-
gence and spread of new variants [12–14]. Nevertheless, RNA 
viral load (VL) data in this population is limited and even more 
in immunocompromised pediatric patients. Also, most of the 
reports were conducted during the first two waves of COVID-
19, and it is unknown whether new variants of SARS-CoV-2 
favor prolonged VL and increase the risk of severe COVID-19 
in immunocompromised pediatric patients.
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In Argentina, first wave began during the end of autumn 
(March 2020) and ended at winter (August 2020). At that 
moment, most SARS-CoV-2 infections belonged to ances-
tral linage [15]. By the beginning of 2022 (in the middle 
of the summer), Argentina experienced their third wave 
of COVID-19, with absolutely predominance of Omicron 
variant (> 98% from the first week of January 2022) [16]. 
The aim of this study was to compare the dynamics of VL 
between immunocompromised infants, and children get 
infected during first and third waves of COVID-19.

Methods

Study design and population

This was a single-center, retrospective, and longitudinal 
cohort study conducted at the Hospital de Pediatría Garra-
han, the major high complexity referral pediatric hospital in 
Buenos Aires, Argentina. The study included all the admit-
ted immunocompromised patients having (i) SARS-CoV-2 
reverse transcription-polymerase chain reaction (RT-PCR) 
positive from May to August 2020 (COVID-19 first wave) 
or from January to March 2022 (COVID-19 third wave), (ii) 
age between 0 and 18 years old, and (iii) at least three naso-
pharyngeal swab samples available throughout two or more 
weeks since SARS-CoV-2 diagnosis. Out of 2,915 children 
and adolescents tested against SARS-CoV-2 during the first 
wave, 193 were positive (7%), and of them, thirteen met all 
the inclusion criteria. While, during the third wave 10,752, 
children and adolescents were tested, 2,130 resulted posi-
tive (20%), and fifteen of them were included in the study. 
Patients were stratified according to the wave they acquired 
SARS-CoV-2 infection: group 1 (G1) for the first wave and 
group 2 (G2) for the third one.

This study was approved by the Institutional Review 
Board (Comité Revisor y de Ética en la Investigación, Hos-
pital de Pediatría “Prof. Dr. Juan P. Garrahan” Protocol No. 
1359), and written informed consent was obtained from par-
ents or legal guardians.

RNA viral load of SARS‑CoV‑2

Viral RNA extraction and genomic VL were performed 
as previously described [17]. Briefly, RNA was isolated 
from 500 µL of nasopharyngeal swabs using the automated 
MagNA Pure 96 DNA and viral NA large volume kit (Roche, 
Germany), within 24 h since the sample was collected. The 
SARS-CoV-2 VL was measured by a quantitative, real-time 
RT-PCR targeting a region of the N gene of SARS-CoV-2 
on a QuantStudio 6 Flex Real-Time PCR System (Applied 
Biosystems). The assay had an efficacy of 99%, a specificity 
of 100%, a repeatability of 2.31% (coefficient of variation), 

and a dynamic range from 10 to 1 ×  108 copies per reaction 
(equivalent to a range from 400 to 4 ×  109 copies per mL).

Statistical analysis

The trajectories of SARS-CoV-2 VL during the first and third 
waves of COVID-19 were estimated by a linear mixed-effects 
(LME) model with a random slope and intercept for each wave. 
Gender, age, and COVID-19 severity were tested to estimate the 
VL trajectories, but none of them improve the model fit—based 
on the minimization of the Akaike information criterion—and 
were therefore not included in the final model. The Kaplan–Meier 
plot with a log-rank test was used to assess differences in viral 
RNA clearance between waves. To analyze differences between 
the first and third wave for categorical and continuous variables, 
Fisher and Mann–Whitney–Wilcoxon tests were performed, 
respectively. Pearson’s correlation coefficient was used to evalu-
ate the linear relationship between SARS-CoV-2 VL values 
and cycle threshold (CT) values for N gene obtained by Food 
and Drug Administration approved molecular diagnostic tests 
for SARS-CoV-2 (RealStar® SARS-CoV-2 RT-PCR Kit; Gen-
eFinder™ COVID-19 Plus RealAmp Kit; and PerkinElmer® 
SARS-CoV-2 real-time RT-PCR assay, and the assay developed 
by the Institute of Virology Charité Universitätsmedizin). Statisti-
cal analyses were performed with R, version 3.3.1 (R Foundation 
for Statistical Computing, Vienna, Austria).

Results

Patient characteristics

Among the 28 children included in the study, the median 
age was 8 years [interquartile range (IQR): 3–13]. Of them, 
thirteen acquired SARS-CoV-2 infection during the first 
wave (G1) and fifteen during the third wave (G2) of COVID-
19. Demographic data and clinical characteristics of the 
patients included in each group are presented in Table 1. 
The underlying pathology was hemato-oncological in most 
cases (57%), followed by solid tumor (18%), other immuno-
compromising condition (14%), pediatric solid organ (SOT, 
7%), and hematopoietic stem cell transplants (HSCT, 4%). 
Regarding the severity of the COVID-19, most children 
experienced a mild disease (57%) or were asymptomatic 
(32%), and only three had a severe or critical evolution 
(11%). Three patients of G2 had received at least one dose 
of SARS-CoV-2 vaccine. Two of them received one dose 
of Pfizer-BioNTech vaccine and the other one received two 
doses of Sinopharm. A difference in the gender distribution 
was observed between G1 and G2, with a predominance of 
girls in G2 (P < 0.01). The number of samples measured 
per patient was similar in both groups, with a median of 6 
(IQR): 5–7) for G1 and 7 (IQR: 6–7) for G2. Also, the period 
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of study was similar between both groups: a median of 46 
(IQR: 30–69) days since diagnosis for G1 and a median of 
50 (IQR: 45–61) days since diagnosis for G2.

RNA viral load dynamics of SARS‑CoV‑2

The LME model showed an overlap between the trajectories 
of G1 and G2, evidencing no difference in the dynamic of 
SARS-CoV-2 RNA VL by the wave of COVID-19 (Fig. 1). 

At the moment of SARS-CoV-2 diagnosis, RNA VL was 
5.34 (95% confidence interval (CI): 4.47–6.21]  log10 copies/
mL in G1 and 5.79 (95% CI: 4.93–6.65)  log10 copies/mL in 
G2. Then, RNA VL decayed with a rate of 0.059 (95% CI: 
0.038–0.080)  log10 copies/mL per day since diagnosis in G1 
and 0.088 (95% CI: 0.058–0.118)  log10 copies/mL per day 
since diagnosis in G2. It is important to note that the RNA 
VL dynamic was not affected by the age (P = 0.966), sex 
(P = 0.176), and severity of COVID-19 (P = 0.188). Next, we 

Table 1  Clinical characteristics 
of immunocompromised 
children

HSCT, hematopoietic stem cell transplant; SOT, solid organ transplant. †Fisher test. ‡Mann–Whitney test

Variable Total (n = 28) Group 1 (n = 13) Group 2 (n = 15) p value

Gender, no. (%)  < 0,01†

     Girls 15 (53,6) 3 (23,1) 12 (80,0)
     Boys 13 (46,4) 10 (76,9) 3 (20,0)

Age, y median (IQR) 8 (3–13) 13 (5–14) 6 (2–10) 0,087‡

Immunocompromising condition, no. (%) 0,021†

     Oncology—solid tumor 5 (17,9) 3 (23,0) 2 (13,3)
     Oncology—leukemia/lymphoma 16 (57,1) 4 (30,8) 12 (80,0)
     HSCT 1 (3,6) 1 (7,7) 0 (0,0)
     SOT 2 (7,1) 1 (7,7) 1 (6,7)
     Other 4 (14,3) 4 (30,8) 0 (0,0)

COVID-19 severity, no. (%) 0,197†

     Asymptomatic 9 (32,1) 4 (30,8) 5 (33,3)
     Mild 16 (57,2) 6 (46,1) 10 (66,7)
     Severe/critic 3 (10,7) 3 (23.1) 0 (0,0)

Fig. 1  Comparison of SARS-CoV-2 RNA VL dynamics in naso-
pharyngeal swabs between the first and third waves of COVID-19 
in immunocompromised children. Each dot represents an individual 
RNA VL measure and the shape of them indicates the wave (first 

wave:  empty boxes; third wave:  solid circles). Curves represent the 
trajectory of RNA VL since SARS-CoV-2 diagnosis for each wave of 
COVID-19 (first wave: continuous line; third wave: dashed line) esti-
mated by linear mixed-effects model
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analyzed the level of RNA VL in each group per week over 
the first three weeks since diagnosis (Table 2). Notably, at the 
end of this period, RNA VL persisted around 10,000 copies/
mL in both groups. By the end of the follow-up period, RNA 
VL level fell below de limit of quantification—considered as 
RNA clearance—at days 51 and 39 since diagnosis in G1 and 
G2, respectively. In an independent analysis performed by 
Kaplan–Meier model, the 50% of the patients reached unde-
tectable levels of RNA VL at day 48 and 34 since diagnosis 
in G1 and G2, respectively (Fig. 2). However, this difference 
was not statistically significant (P = 0.051).

Finally, the correlation between RNA VL values and CT 
values of the N gene—determined by qualitative test for 
SARS-CoV-2 diagnosis—was evaluated. Over a total of 186 
nasopharyngeal swabs samples analyzed, both RNA VL and 
 CT measures correlated significantly (r = -0.87, P < 0.001).

Discussion

In this retrospective cohort study, immunocompromised pedi-
atric patients with acquired SARS-CoV-2 infection during the 
first and third waves of COVID-19 in Argentina exhibited a 
very similar pattern of RNA VL throughout the course of infec-
tion. We also observed by studying each patient longitudinally 
that SARS-CoV-2 RNA persisted at high levels for more than 

three weeks in both waves. To our knowledge, this is the first 
study describing the natural history of SARS-CoV-2 RNA VL 
in immunocompromised pediatric patients, even comparing the 
RNA VL dynamics across different waves of COVID-19.

SARS-CoV-2 RNA VL data in immunocompromised chil-
dren is scarce. Similar to findings from immunocompromised 
children study conducted over the first two waves of COVID-
19 (from March 2020 to March 2021) in United States by 
Dolan et al. [18], we observed a prolonged viral persistence 
of SARS-CoV-2 in our cohort. In fact, Dolan and colleagues 
found that the median time from positive to negative real time 
RT-PCR was six weeks, while in our study, the time to achieve 
RNA levels below the limit of quantification was greater than 
five weeks. Comparing viral persistence between both waves 
studied, we observed that time to reach non-quantifiable levels 
of RNA VL was longer during the first wave—attributed to 
ancestral infections—compared to the third one—attributed to 
Omicron infections. However, this difference was not statisti-
cally significant not only by LME but also by Kaplan–Meier 
analysis. In fact, most of the patients in both waves (62% and 
73% in the first and third waves, respectively) had sustained 
quantifiable RNA VL levels beyond fourth week since SARS-
CoV-2 diagnosis. Contrary to our findings, a preliminary pre-
print reported by Hay et al. suggested that the duration of 
viral shedding may be shorter and clearance more rapid in 
patients infected with Omicron variant in comparison to those 
infected with previous variants [19]. However, in a later report 
of 1,280 individuals, the same authors found a similar clear-
ance time between Omicron (6.2 days) and Delta (7.6 days) 
infection in vaccinated individuals, but they were shorter than 
non-Delta and non-Omicron infections in unvaccinated indi-
viduals [20]. Also, recent studies have found no difference 
regardless of SARS-CoV-2 viral shedding between Omicron 
and Delta variants [21, 22]. Nevertheless, most of the sub-
jects included in those studies were immunocompetent and 
vaccinated, whereas in our cohort, most of the patients were 
unvaccinated (90%). Surprisingly, patients vaccinated against 
SARS-CoV-2 (n = 3) showed a viral RNA persistence beyond 

Table 2  RNA viral load level per week during the first four weeks 
since SARS-CoV-2 diagnosis

* Weeks from the first positive result for SARS-CoV-2 detection by 
RT-PCR

Week* log10 copies/mL, media (95% CI)

Group 1 Group 2

1 4.93 (4.14–5.72) 5.18 (4.42–5.94)
2 4.51 (3.78–5.25) 4.56 (3.88–5.25)
3 4.10 (3.40–4.80) 3.95 (3.31–4.59)
4 3.69 (2.99–4.38) 3.33 (2.71–3.96)

Fig. 2  Kaplan–Meier survival 
curves for RNA viral load in all 
children included in the study 
(n = 28) and grouped according 
to the wave of COVID-19
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40 days (since SARS-CoV-2 diagnosis) similarly to the unvac-
cinated ones. Due to the small number of vaccinated patients 
in our cohort, we cannot draw conclusions on this matter. 
In recent literature, numerous studies have demonstrated that 
vaccines accelerate viral clearance in immunocompetent 
individuals [23–25]. However, there is a significant gap in 
the research when it comes to the effects of vaccination on 
viral clearance time in immunocompromised individuals. It 
is therefore important to investigate whether there is a dif-
ference in the viral clearance time between vaccinated and 
unvaccinated immunocompromised patients.

Over the first two waves of COVID-19, there have been 
reports that immunocompromised pediatric patients were at no 
increased risk of severe COVID-19 [26–28]. In contrast, other 
authors found that persons with immunocompromising condi-
tions are at elevated risk of severe outcomes, hospitalization, and 
death from COVID-19 [29]. In our cohort of immunocompro-
mised children, 89% had asymptomatic or mild disease, with no 
difference between the first and third waves. In addition, we do 
not find an association between RNA VL and disease severity 
in concordance with a large pediatric cohort study reported by 
Ochoa et al. [30]. Therefore, our results reinforce the notion that 
there is not a direct association between these two variables.

An important strength of this work is that RNA VL measures 
were performed by a single methodology based on an in-house 
quantitative real time RT-PCR, which was validated following 
the Clinical Laboratory Improvement Amendments—CLIA—
standards reviewed by Burd et al. [31]. In this way, we used a 
standard curve to quantify the amount of virus expressed in 
RNA copies per milliliter, instead of using naive CT values, 
which avoid a misunderstanding of RNA VL kinetics for com-
parison across different amplification runs, as described by Han 
et al. [32]. By contrast, the main limitation of this study was 
that the small size of our cohort precluded analyses to account 
for factors that may influence RNA VL dynamics (e.g., type 
of immunosuppression condition) and increased the risk of a 
type II error. Also, the characterization of SARS-CoV-2 viral 
variant could not be performed in our cohort. However, as was 
mentioned, the ancestral and Omicron variants were highly pre-
dominant over the period of study in the first and third waves, 
respectively, based on local epidemiological reports [15, 16]. 
Lastly, we did not test for the presence of infectious virus, and 
our findings are based on RNA VL values obtained from a 
standardized quantitative method.

In conclusion, our results suggest no difference between the 
Omicron and ancestral infections on the dynamics of SARS-
CoV-2 RNA VL in immunocompromised pediatric patients 
and add evidence in favor of the higher viral persistence in 
this population. Also, our observations support the use of 
test-based, rather than time-based, protocols for defining the 
duration of isolation in immunocompromised individuals to 
limit the spread of SARS-CoV-2.
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