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Abstract
Fast, precise, and low-cost diagnostic testing to identify persons infected with SARS–CoV-2 virus is pivotal to control the 
global pandemic of COVID-19 that began in late 2019. The gold standard method of diagnostic recommended is the RT-
qPCR test. However, this method is not universally available, and is time-consuming and requires specialized personnel, as 
well as sophisticated laboratories. Currently, machine learning is a useful predictive tool for biomedical applications, being 
able to classify data from diverse nature. Relying on the artificial intelligence learning process, spectroscopic data from 
nasopharyngeal swab and tracheal aspirate samples can be used to leverage characteristic patterns and nuances in healthy 
and infected body fluids, which allows to identify infection regardless of symptoms or any other clinical or laboratorial tests. 
Hence, when new measurements are performed on samples of unknown status and the corresponding data is submitted to 
such an algorithm, it will be possible to predict whether the source individual is infected or not. This work presents a new 
methodology for rapid and precise label-free diagnosing of SARS-CoV-2 infection in clinical samples, which combines 
spectroscopic data acquisition and analysis via artificial intelligence algorithms. Our results show an accuracy of 85% for 
detection of SARS-CoV-2 in nasopharyngeal swab samples collected from asymptomatic patients or with mild symptoms, 
as well as an accuracy of 97% in tracheal aspirate samples collected from critically ill COVID-19 patients under mechani-
cal ventilation. Moreover, the acquisition and processing of the information is fast, simple, and cheaper than traditional 
approaches, suggesting this methodology as a promising tool for biomedical diagnosis vis-à-vis the emerging and re-emerging 
viral SARS-CoV-2 variant threats in the future.
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Introduction

After reaching the status of a pandemic, the new coronavirus 
variant 2 (SARS-CoV-2), the etiological agent of the 2019 
coronavirus infectious disease (COVID-19), has infected 
more than two hundred million individuals and caused over 
five million deaths worldwide (https:// covid 19. who. int). 
In order to mitigate the effects of the related morbidity of 
COVID-19, there is a substantial need for improved popu-
lation-scale testing solutions to early identify infection and 
thus allow adequate tracking [1]. New diagnosis techniques 
that are fast, accurate, and low-cost will not only help the 
management of the current crisis, but also serve as a baseline 
for the development of multiplex technology that will be 
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useful in the response to future epidemics. Presently, most 
diagnostic methods involve sampling and testing different 
fluids like nasopharyngeal cell lysate, saliva, or blood.

Infections of SARS-CoV-2 in the initial stage are cur-
rently identified using real-time quantitative polymerase 
chain reaction (RT-qPCR) assays, considered the Gold 
Standard method, which may require up to 3 days after infec-
tion for a reliable positive signal [2]. In addition, RT-qPCR 
tests require between 3 to 4 h to be concluded [3] and are 
hardly used on a daily basis due to their elevated cost, short-
ages in biomarkers, and key reagents.

Intermediate stage or past infections are investigated 
using serum-based testing methods such as enzyme-linked 
immunosorbent assays (ELISAs), lateral flow immunoas-
says (LFIAs), or chemiluminescent immunoassays (CLIAs). 
These tests normally detect a significant and measurable 
concentration of immunoglobulin G (IgG) and immuno-
globulin M (IgM) antibodies in blood samples. However, 
the build-up of such antibodies in the blood is slow, thus 
concentrations of IgG and IgM are measurable by these 
methods only after 2 weeks of infection [4]. Sensitive and 
specific serological methods are not fast, requiring 4 to 6 h 
to be completed [3]. Moreover, since most infections become 
apparent only upon symptom onset, the current methods of 
testing are unlikely to identify pre-symptomatic carriers. It 
is estimated that as many as 50% of individuals infected 
with SARS-CoV-2 are asymptomatic, hampering early-stage 
interventions that reduce transmission [5, 6]. There is also 
a large number of unreported infection cases and COVID-
19-related deaths [7].

In this regard, appropriate clinical samples are essential 
to produce reliable results for the diagnosis of infection with 
SARS-CoV-2. For primary diagnostic assessment for cur-
rent SARS-CoV-2 infection, the Center for Disease Control 
and Prevention (CDC) recommends collecting and testing an 
upper respiratory specimen, which includes sputum, bron-
choalveolar lavage, and tracheal aspirate samples [8]. Con-
sidering that the virus does not produce or poorly induces 
viremia, it is essential to search for the virus in the local 
infection milieu. As such, fast, accurate and inexpensive 
methods for the early detection of SARS-CoV-2 in sputum, 
bronchoalveolar lavage, and tracheal aspirate samples in real 
time are urgently needed.

Emerging optical methods have been proposed for the 
detection of virus diseases [9]. Such methods usually detect 
labeled samples or use laser-based expensive and complex 
measurement techniques [9]. However, efforts to implement 
fast and sensitive diagnostic approaches have emerged in 
response to the current health crisis, as key steps to control 
the pandemic as well as part of reopening strategies [10]. 
Although the combination of RT-qPCR and serological 
tests such as ELISA are ideal for an accurate diagnosis, the 
detection of antibodies is particularly relevant during later 

transmission [11]. Thus, a fast and label-free methodology 
for COVID-19 diagnosis during the first days after infection 
is desirable.

Here, we report the use of a patent-pending [12–14] label-
free optical spectroscopic method of straightforward opera-
tion, combined with machine learning (ML) processing of 
the acquired spectroscopic data, as a new diagnostic method 
of SARS-CoV-2. Using inactivated nasopharyngeal swab 
samples from RT-qPCR tested individuals, as well as inac-
tivated tracheal aspirate from intubated patients, we show 
that this patent-pending multiplex method can be used to 
detect diseased individuals in less than 15 min, with elevated 
accuracy, and at a very low cost.

Methods

Study design and overview

We investigated whether optical spectroscopy data of naso-
pharyngeal swab and tracheal aspirate samples could be 
effectively used to detect SARS-CoV-2 infection with the 
aid of machine learning methods and without the use of 
biomarkers, in a fast and accurate way. Figure 1 shows an 
overview of the study process, divided into four steps: par-
ticipant recruitment, collection of nasopharyngeal swab or 
tracheal aspirate samples, optical spectroscopy, and machine 
learning modeling.

Participant recruitment

The samples used in this research were collected from naso-
pharynx swabs of 152 patients suspected of SARS-CoV-2 
infection, from asymptomatic individuals and from mildly 
symptomatic non-hospitalized patients. In addition, tracheal 
aspirate samples from 12 healthy patients and 12 critically 
ill COVID-19 patients, aged from 18 to 80 years old, 14 
males and 10 females, under mechanical ventilation at the 
Intensive Care Unit of Risoleta Tolentino Neves Hospital 
were also studied.

The use of these samples was approved by the Ethi-
cal Committee (CAAE: 32,113,420.6.0000.5149; 
1,686,320.0.0000.5149) from Universidade Federal de 
Minas Gerais (UFMG). Sensitive information was duly 
anonymized. All procedures followed ethical guidelines in 
accordance with Brazilian national regulations.

Collection of nasopharyngeal swab samples

Nasopharyngeal and oropharyngeal swab samples were 
collected from participants by inserting a rayon swab with 
a plastic shaft into the nostril, parallel to the palate, and 
gently scraped for a few seconds to absorb secretions. 
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Another swab was shafted into the tonsils for sample col-
lection. Next, the swabs were immediately merged into a 
sterile tube containing 2 mL of guanidine isothiocyanate 
solution. RNA extracted from all samples was tested by 
RT-qPCR using probes for viral and human genes. RT-
qPCR was performed at the Vaccine Technology Center 
(CTVacinas) of the Universidade Federal de Minas Gerais 
to allow a definitive diagnosis of SARS-CoV-2 infection. 
Ground truth categorization of swab samples into nega-
tive (78) versus positive (74) SARS-CoV-2 infection was 
based on PCR results. Further details of the RT-qPCR 
results can be found in the Supplementary Information.

Collection of tracheal aspirate samples

Tracheal aspirate (TA) samples (2–10  mL) were col-
lected during the early morning routine of COVID-19 
patients. All patients included in the study tested positive 
for SARS-CoV-2 by RT-qPCR targeting the E gene. Only 
secretive productive patients were included in the study. 
Samples were aspirated into sterile tracheal secretion col-
lectors and immediately processed in a biosecurity level 
3 laboratory.

Optical spectroscopy measurements

For the optical measurements, each nasopharyngeal swab or 
tracheal aspirate sample was thawed and homogenized by 
spinning for 1 min, at room temperature and 1200 rpm. Next, 
10 µL of the sample was deposited on a 22 mm × 22 mm 
glass #1½ coverslip (Corning, USA) and covered with a 
second coverslip. The sandwich samples were studied by 
ellipsometry in the 245–1690 nm wavelength range, with 
incidence angle varying from 45 to 70° in 5-degree steps. 
The measurements were repeated in 9 different regions of 
approximately 3 mm × 6 mm of each slide, organized as a 
3 × 3 rectangular mesh, in order to account for possible spa-
tial inhomogeneities across the samples.

Development of the machine learning model

The measured data was used to train a machine learning 
model to identify SARS-CoV-2 infected patients. This 
model was specifically trained to predict the infection sta-
tus for each of the distinct positions read from the individual 
slides. The patient’s final diagnosis was defined by the aver-
age infection probability of all positions in the slide. An 

Fig. 1  Overview of the study 
process. a Enrollment. b Col-
lection of nasopharyngeal swab 
or tracheal aspirate samples. c 
Optical spectroscopy measure-
ments. d The algorithm was 
trained to predict the probability 
of a patient by COVID-19
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average probability below 0.5 meant a negative diagnostic, 
being positive otherwise.

Model design was performed in three stages: feature treat-
ment/model type selection, training with data augmentation, 
and model tuning. Throughout, model quality was assessed 
by accuracy, precision, recall, F1, and ROC-AUC scores in 
a test set, determined at the patient level. F1 was chosen as 
the reference metric for optimization.

In the first stage of model design, the pipeline consisted 
of the following sequential steps: manual variable selection, 
manual feature selection, scaling preprocessing, methods of 
outlier detection and removal, automatic feature selection, 
and model type selection. These steps aimed to recognize 
the variables, features, and preprocessing procedures that 
would yield the best models. For manual variable selec-
tion, we considered the variables related to experimental 
design. The angles of incidence were tried individually (45, 
50, 55, 60, 65, and 70°) and combined (all angles). Four 
windows of wavelength were tried: below 380 nm, between 
380 and 1000 nm, above 1000 nm, and the whole range (all 
wavelength). Due to concerns of rapid sample degradation, 
as well as the will to speed up the procedure in a clinical 
setup, three combinations of positions were tried: positions 
1–3, 1–5, and 1–9 (all positions). For manual feature selec-
tion, we used combinations of the measured ellipsometry 
features: angles Ψ and Δ, depolarization, intensity, and the 
real and imaginary parts of the complex reflectance ratio 
ρ = tan Ψ eiΔ. The scaling step is introduced to express all 
measures in a comparable scale; the methods tested were 
MinMaxScaler, StandardScaler, QuantileTransformer and 
RobustScaler, as implemented by the Python package Scikit-
Learn v0.24 [15]. The outlier detection methods tested were 
PCA, LOF, KNN, COPOD, and IForest, with contamina-
tion rates in the range of 1 to 12.5%, as implemented by 
the Python package PyOD v0.8.7 [16]. Automatic feature 
selection was performed to rank the features according to 
their discriminative power. The methods tested in this step 
were ExtraTreesClassifier (both by Gini and entropy crite-
ria), PCA, and LDA, as implemented by Scikit-Learn v0.24. 
After the features were ordered accordingly, we tried the top 
“n” features from a range of 20 to 500. For model type, we 
tested implementations of logistic regression, support vec-
tor machine, gradient boosting classifier and deep neural 
network (multi-layer perceptron classifier), by Scikit-Learn 
v0.24, and XGBoost Classifier by Python package XGBoost 
v1.4.0 [17].

In the second stage of model design, we tested the top 
performing models identified so far with a technique of 
data augmentation presented in [18]. The main idea of the 
method is to create synthetic training data by mixing the 
original measurements; more data tends to increase the 
power of generalization of the model. The synthetic data in 
this study was generated by averaging two measurements, 

making sure that only measurements from the same class 
and position would be mixed. The original data was also 
kept in the training set. The test set consisted only of original 
measurements.

The third and last stage consisted of tuning further the 
best performing models by adjusting the parameters specific 
to each model type. We performed an exhaustive search, 
tweaking some of the adjustable parameters according to 
each model documentation, relying once again on the data 
augmentation setup.

Throughout the model design protocol, models were 
trained with a training set and evaluated with a test set. Even 
though models were trained on individual positions in the 
slides, we made sure that the same slide would not be pre-
sent in the training and test set at the same time, therefore, 
preventing data leakage at the patient level. These sets were 
generated by randomly splitting all the measurements avail-
able in a stratified fashion, reserving 20% of the patients 
to the test set. All metrics reported are an average of 10 
such splits, produced as follows: at first, all available slides 
were shuffled then split into 5 folds with roughly the same 
size, then, this process was repeated, yielding the 10 folds 
reported. Therefore, each of the 2 sets of 5 splits covered 
the whole dataset, and each patient was evaluated twice by 
the same model, trained with different patients each time.

Results

Machine learning model

Figure 2 depicts the steps of data preparation related to fea-
ture selection, prior to model implementation, for the naso-
pharyngeal swabs. The solid lines in panels a, b, and c are 
the mean spectra of the physical property denoted in the 
y-axis, at a particular angle, measured at the wavelengths 
denoted in the x-axis, for all the positions in the slides. The 
shadow areas are the corresponding standard deviation, and 
the readings are separated by infection status (color coded). 
Each position of the slide is represented by a set of data as 
exemplified in Fig. 2a; such a set contains readings for 9 
different physical properties (Ψ, Δ, depolarization (depol), 
intensity, real part of ρ, imaginary part of ρ, sin(Δ), cos(Δ), 
tan(Ψ)), 6 different angles (45–70°) and 674 different wave-
lengths, making a total of 9 × 6 × 674 = 36,396 features avail-
able as a starting point for the development of the algorithm. 
After the manual selection of features, each position is repre-
sented by 198 features (Fig. 2b), which contain data for one 
single angle (55°), one single physical property (depolariza-
tion), and a sub-range of wavelengths (above 1000 nm). Fig-
ure 2c represents the remaining features after the automatic 
feature selection and data scaling, where the wavelengths 
are ordered by their importance given by the method chosen 
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for feature selection. At this point, 166 features remain: 166 
selected wavelengths from the depolarization spectra at 55°. 
Figure 2d is a PCA representation of the same data shown 
in Fig. 2c; some patients of the same status cluster together, 
but not all healthy and infected individuals are clearly dis-
criminated by the data alone. The machine learning model 
is responsible for this final step in the classification task.

For these samples, the feature that delivered the best 
scores is depolarization, measured at an angle of 55°, at 
wavelengths above 1000 nm, and at all positions of a slide. 
They were scaled by the RobustScaler method. Outlier 
detection and removal were performed by the iForest method 
with a contamination rate of 10%. Samples from the test set 
were not evaluated for the presence of outliers, meaning that 
outliers were removed only from the training set. Automatic 

feature selection was guided by the ExtraTreesClassifier with 
Gini criterion, and 166 features were fed into the model. The 
model that yielded the best F1 score was an implementation 
of the MLPClassifier, from the Python package Scikit-Learn 
v0.24 [15], which is used to design neural networks. It con-
tained two hidden layers with 100 neurons each. All layers 
were activated by the ReLU function. The solver used was 
SGD, with alpha of 1E-5, momentum of 0.95, and constant 
learning rate. This setup yielded a model able to diagnose 
patients with an accuracy of 85.0% (standard deviation 
6.0%), F1 of 85.9% (5.4%), precision of 79.1% (7.2%), recall 
of 90.4% (5.4%), and ROC-AUC of 0.900 (0.045).

In the case of the tracheal samples, four features were 
used: Ψ, Δ, depolarization, and intensity, measured at 
an angle of 70°, at all wavelengths, at positions 1–3. The 

Fig. 2  Transformation of the 
data along the processing steps. 
a Representation of the meas-
ured data. b Data after manual 
feature selection. c Data after 
automatic feature selection and 
scaling. d PCA of the data at the 
end of feature selection
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best scaling method was Robust Scaler, and outliers were 
removed by the KNN method with a contamination rate 
of 2.5%. Automatic feature selection was guided by the 
ExtraTreesClassification with Gini criterion, and the model 
performed best using 568 features. Due to the lower number 
of samples, the best results were achieved prior to the data 
augmentation phase. The best model was an implementation 
of the LogisticRegression classifier with standard parame-
ters, as implemented by the Scikit-Learn v0.24 package [15]. 
The accuracy at the patient level was 97.2% (standard devia-
tion of 5.5%), F1 was 97.2% (5.7%), precision was 96.4% 
(7.4%), recall was 97.2% (8.3%), and ROC-AUC was 1.0.

In the configuration of 9 measured positions and only one 
measured angle, we estimated a 7-min interval to carry out 
the measurement and classification of one sample, and less 
than 15 min for the overall time of the diagnosis process of 
one patient, including the collection of the nasopharyngeal 
swab samples, preparation of the sample to be measured, 
the optical measurements, and the AI processing of the data. 
The measurement and classification of the tracheal aspirate 
are even faster, since only 3 positions of the slide are neces-
sary to be measured.

Discussion

The rapid spreading of the new SARS-CoV-2 virus world-
wide has shown the necessity and impact of governmen-
tal restrictions, such as lockdowns, to prevent the increase 
in cases and the collapse of health centers [19]. Likewise, 
this pandemic revealed the urgent need for fast, precise, and 
well-timed diagnostic systems to identify and manage the 
treatment of infected individuals, thus hampering the effects 
of COVID-19. Up to now, the most applied diagnostic meth-
ods encompass RT-qPCR assay at the early stage of infec-
tion, through samples collected from nasopharyngeal and 
oropharyngeal swabs, and ELISA at a later stage of infection 
by evaluating the patient’s sera [20]. Although the elevated 
sensitivity of the current available tests, false positive and 
false negative results may occur depending on the time of 
infection and the quantity of viral load. For example, it may 
be challenging to find viral RNA in some samples due to the 
quality of transport and manipulation. Radiological methods 
such as chest computed tomography or thoracic radiogra-
phy also have demonstrated remarkable signs of COVID-19 
disease; however, they cannot be used for disease screening 
[21].

New methodologies for massive testing are available by 
applying LFA through different approaches, mainly using 
nanomaterials. Among them, an electrochemical immu-
noassay based on a graphene electrode was functional-
ized with anti-spike antibodies for the rapid detection of 
the SARS-CoV-2 virus via the spike surface protein [22]. 

Another study has proposed three-dimensional assembly 
of electrodes of reduced-graphene-oxide (rGO) nanoflakes 
immobilized with specific viral antigens integrated with a 
microfluidic device [23]. In addition, a rapid electrochemical 
detection of SARS-CoV-2 antibodies using a commercially 
available impedance sensing platform was also proposed, 
which contains sensing electrodes coated with SARS-CoV-2 
spike protein and exposes samples to an anti-SARS-CoV-2 
monoclonal antibody [24]. However, these technologies pos-
sess some drawbacks difficult to overcome such as automa-
tion and integration of microfluidics as well as the avoidance 
of nonspecific biomolecule adhesion in their systems.

Plasmonic biosensors have encouraged the develop-
ment of novel approaches to achieve the effective cover-
age of the biological receptor while confirming the affin-
ity and specificity of targeted viral nucleic acids, proteins, 
or whole virus [25]. Localized surface plasmon resonance 
(LSPR) has already been proposed to detect other viruses 
of medical interests such as dengue and Zika virus [26]. 
Besides, other strategies using gold nanoparticles (AuNPs) 
serological fast tests to identify the presence of IgM and/or 
IgG immunoglobulins are commercially available [27] and 
single-walled carbon nanotube (SWCNT)-based field-effect 
transistor (FET) semiconducting to detect the presence of 
SARS-CoV-2 antigens in clinical nasopharyngeal samples 
was assessed [28]. Nevertheless, most fast tests available 
have shown a considerable lack of specificity [29].

A more sophisticated biosensing platform was suggested 
by using a reverse transcription recombinase polymerase 
amplification (RT-RPA) coupled with clustered regularly 
interspaced short palindromic repeats (CRISPR-Cas12a) 
for the SARS-CoV-2 detection. This methodology utilizes 
DNA-modified gold nanoparticles (AuNPs) as a universal 
colorimetric readout and can specifically target the ORF1ab 
and N regions of the SARS-CoV-2 genome [30]. However, 
it is expensive and unlikely to be commercially available at 
large scale.

On the other hand, suggested spectroscopic techniques 
have demonstrated useful importance for rapid, accurate, 
and relatively cost-effective methods for virus detection 
but also for infection checking and follow-up [31, 32]. For 
instance, surface-enhanced Raman spectroscopy (SERS) 
[33], COVID-19 salivary Raman fingerprint [34], and a 
superfast, reagent-free, and non-destructive approach of 
attenuated total reflection Fourier-transform infrared (ATR-
FTIR) spectroscopy [35] have already shown reliability for 
diagnostic applications.

The ability of monitoring potential virus mutations is 
essential, especially in identifying SARS-CoV-2 variants 
that are known to change their RNA sequence. The use of 
spectroscopic techniques combined with artificial intel-
ligence models will allow detection and probably monitor 
and detect any changes related to this virus [36]. AI has 
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been employed in health care fields for several proposals 
ranging from the prediction of disease spread trajectory to 
the development of diagnostic and prognostic models [37] 
by developing algorithms to analyze possible predictions for 
overall prognosis for COVID-19 patients [38]. Moreover, 
a machine-learning model that predicts a positive SARS-
CoV-2 infection in a RT-PCR test based on symptoms was 
already established [39].

Despite all recent advances in diagnosis methods of 
SARS-CoV-2 above mentioned, there is an urgent need to 
develop a reagent-free, scalable, low-cost, sensitive, and 
specific assay for rapid detection of SARS-CoV-2 within 
minutes, or ideally in seconds, at the early stage of infection. 
Here, we have demonstrated the use of a label-free optical 
spectroscopy method of simple operation, combined with 
ML processing of the acquired raw spectroscopy data as an 
innovative method for SARS-CoV-2 infection detection in 
inactivated samples of nasopharyngeal swab and tracheal 
aspirate. Our methodology was validated by RT-qPCR and 
is applicable not only in the case of patients with mild symp-
toms or asymptomatic in the first stage of infection, but also 
to critically ill COVID-19 patients under mechanical ven-
tilation in intensive care units. Spectroscopic data from the 
samples, carrying information about the dielectric properties 
of the sample over a broad spectral range, was acquired. 
Software was specifically developed to manipulate the data 
and process them via an artificial intelligence algorithm. 
Both the spectroscopic technique and the software are patent 
pending at this moment. One of the advantages of the pre-
sent method is that the samples are not labeled or processed 
after collection. The samples can be measured right after 
collection or after several weeks of storage at − 20 °C. The 
volume of sample required for the test is relatively small, 
limited to 10 µL and dropped in between regular glass cover 
slides for measurements. Since the samples are inactivated 
at the moment of the collection, there is a very low bio-
logical risk associated with the preparation, manipulation, 
measurement, and later discard of the slides. The simplicity 
and automation of the measurements and data processing 
procedures avoid the necessity of highly qualified personnel. 
These characteristics ensure the low cost of our method. In 
general, the performance scores of different diagnostic tests 
are not comparable. Most of the scores depend on the cut-off 
point selection, as in the case of accuracy, selectivity, and 
sensitivity, for example. Other scores as the area under the 
receiver operating characteristic (AUC) are independent of 
the cut-off point selection but affected by asymmetries in 
the population of tested samples. However, just to put in 
perspective the results of our method (sensitivity of 90.4% 
and 97.2% for nasopharyngeal swab samples and tracheal 
aspirate samples, respectively), we should mention that 
SARS-CoV-2 detection with nasopharyngeal swabs by RT-
PCR has been reported with a sensitivity of 77% [40], 63% 

[41], 79% [42], and 73% [43]. In addition, a processing time 
of less than 15 min, which can be reduced with further auto-
mation of the process, accuracy and sensitivity compatibles 
with the above-mentioned methods of COVID-19 diagnosis, 
make this solution optimal for contributing to the diagno-
sis of emerging infectious diseases and future pandemics of 
public health importance.

Our study has some limitations. The fact that nasopharyn-
geal swab RT-PCR sensitivity varies throughout the disease 
course [40] limits the external validity of our findings. A 
future systematic follow-up study is necessary to understand 
the evolution of the performance scores of our methods dur-
ing the disease course. It is also possible that other pre-clini-
cal conditions could influence the classification outcome of 
our method. Further studies are necessary to understand the 
role of infection by common diseases that produces clinical 
conditions like COVID-19.

Conclusion

There is a massive demand for alternative methods to detect 
new cases of COVID-19 as well as to investigate the epide-
miology of the disease. In many countries, the importation 
of commercial kits poses a significant impact on their testing 
capacity and increases the costs for the public health system 
[11]. Decentralization of diagnostic testing and other tech-
nology transfer activities should be prioritized to improve 
accessibility in remote or isolated areas and reduce costs for 
the public health system [44]. Our approach demonstrates 
an accurate, simple, fast, label-free and cost-effective meth-
odology for SARS-CoV-2 diagnosis.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42770- 023- 00923-5.

Acknowledgements We thank all Brazilian funding agencies CAPES-
PNPD scholarship program, CNPq, and FAPEMIG.

Funding Part of this work was supported by the Brazilian Ministry of 
Science, Technology, and Innovation (MCTI) through the “Rede Virus” 
initiative and the following individual projects: sub-rede Diagnóstico 
and sub-rede Laboratórios de Campanha. We also acknowledge the 
support of Fundação de Amparo à Pesquisa do Estado de Minas Gerais 
(FAPEMIG) though the grants APQ-00418–20, APQ-01499–21 and 
RED-00135–22, as well as the support of the Ministry of Education 
through the grant 23072.211119/2020.

Data Availability All data generated or analysed during this study are 
available upon request.

Declarations 

Conflict of interest The authors declare no competing interests.

https://doi.org/10.1007/s42770-023-00923-5


776 Brazilian Journal of Microbiology (2023) 54:769–777

1 3

References

 1. Seshadri DR, Davies EV, Harlow ER et al (2020) Wearable 
sensors for COVID-19: a call to action to harness our digital 
infrastructure for remote patient monitoring and virtual assess-
ments. Front Digit Health 2:8. https:// doi. org/ 10. 3389/ fdgth. 
2020. 00008

 2. Sethuraman N, Jeremiah SS, Ryo A (2020) Interpreting diag-
nostic tests for SARS-CoV-2. J Am Med Assoc 323:2249–2251. 
https:// doi. org/ 10. 1001/ jama. 2020. 8259

 3. Kumar R, Nagpal S, Kaushik S et al (2020) COVID-19 diagnos-
tic approaches: different roads to the same destination. VirusDis 
31:97–105. https:// doi. org/ 10. 1007/ s13337- 020- 00599-7

 4. Cheng MP, Papenburg J, Desjardins M et al (2020) Diagnostic 
testing for severe acute respiratory syndrome–related Coronavi-
rus 2: a narrative review. Ann Intern Med 172:726–734. https:// 
doi. org/ 10. 7326/ M20- 1301

 5. Arons MM, Kelly RN, Hatfield M et al (2020) Presymptomatic 
SARS-CoV-2 infections and transmission in a skilled nursing 
facility. N Engl J Med 382:2081–2090. https:// doi. org/ 10. 1056/ 
NEJMo a2008 457

 6. He X, Lau EHY, Wu P et al (2020) Temporal dynamics in viral 
shedding and transmissibility of COVID-19. Nat Med 26:672–
675. https:// doi. org/ 10. 1038/ s41591- 020- 0869-5

 7. Versiani AF, Sousa RG, Monteforte PT et al (2021) A required 
isolation index to support the health system during the pan-
demic of Covid-19 in Minas Gerais, Brazil. IEEE Lat Am Trans 
19:961–969

 8. Center for Disease Control and Prevention (2022). Interim 
guidelines for collecting and handling of clinical specimens for 
COVID-19 testing. https:// www. cdc. gov/ coron avirus/ 2019- 
ncov/ lab/ guide lines- clini cal- speci mens. html. Accessed 22 
Oct 2022

 9. Masson JF (2017) Surface plasmon resonance clinical biosensors 
for medical diagnostics. ACS Sens 2:16–30. https:// doi. org/ 10. 
1021/ acsse nsors. 6b007 63

 10. Carvalho AF, Rocha RP, Gonçalves AP et al (2021) The use of 
denaturing solution as collection and transport media to improve 
SARS-CoV-2 RNA detection and reduce infection of laboratory 
personnel. Brazilian Journal of Microbiology. Braz J Microbiol 
52:531–539. https:// doi. org/ 10. 1007/ s42770- 021- 00469-4

 11. Bagno FF, Sergio SAR, Figueiredo MM et al (2021) Develop-
ment and validation of and enzyme-linked immunoassay kit for 
diagnosis and surveillance of COVID-19 https:// doi. org/ 10. 1101/ 
2021. 06. 23. 21259 392

 12. Amaral PHR, González JC, Andrade LM, Silva MIN (2020) Pro-
cesso para classificação de células quanto a infecção por agen-
tes virais e usos. Instituto Nacional da Propriedade Industrial. 
BR1020200249932. https:// busca. inpi. gov. br/ pePI/ servl et/ Paten 
teSer vletC ontro ller? Action= detai l& CodPe dido= 15975 22& Searc 
hPara meter= BR102 02002 49932% 20% 20% 20% 20% 20% 20& 
Resumo= & Titulo=. Accessed 20 Oct 2022

 13. González JC, Andrade LM, Amaral, PHR (2020) CanDLE Soft. 
Instituto Nacional da Propriedade Industrial. BR512020001043–
1. https:// busca. inpi. gov. br/ pePI/ servl et/ Progr amaSe rvlet Contr 
oller? Action= detai l& CodPe dido= 29120 & Searc hPara meter=. 
Accessed 20 Oct 2022

 14. González JC, Andrade LM, Amaral, PHR (2021) MLSerum. 
Coordenadoria de Transferência e Inovação Tecnológica – Univer-
sidade Federal de Minas Gerais. UFMG-CTIT 20210001. http:// 
www. ctit. ufmg. br/. Accessed 20 Oct 2022

 15. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: 
machine learning in python. J Mach Learn Res 12:2825–2830

 16. Zhao Y, Nasrullah Z, Li Z (2019) PyOD: a python toolbox for 
scalable outlier detection. J Mach Learn Res 20:1–7

 17. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting 
system. In: Krishnapuram B, Shah M (ed) Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. ACM, New York. 785–794. https:// doi. org/ 
10. 1145/ 29396 72. 29397 85

 18. Houston J, Glavin FG, Madden MG (2020) Robust classification 
of high-dimensional spectroscopy data using deep learning and 
data synthesis. J Chem Inf Model 60:1936–1954. https:// doi. org/ 
10. 1021/ acs. jcim. 9b010 37

 19. Amaral PHR, Andrade LM, Fonseca FG et al (2020) Impact of 
COVID-19 in Minas Gerais, Brazil: excess deaths, sub-notified 
cases, geographic and ethnic distribution. Transbound Emerg Dis 
68:2521–2530. https:// doi. org/ 10. 1111/ tbed. 13922

 20 Yuan X, Yang C, He Q et al (2020) Current and perspective diag-
nostic techniques for COVID-19. ACS Infect Dis 6:1998–2016. 
https:// doi. org/ 10. 1021/ acsin fecdis. 0c003 65

 21. Adams HJA, Kwee TC, Yakar D et al (2020) Chest CT imag-
ing signature of Coronavirus disease 2019 infection: in pursuit of 
the scientific evidence. Chest 158:1885–1895. https:// doi. org/ 10. 
1016/j. chest. 2020. 06. 025

 22. Mojsoska B, Larsen S, Olsen DA et al (2021) Rapid SARS-CoV-2 
detection using electrochemical immunosensor. Sensors 21:1–11. 
https:// doi. org/ 10. 3390/ s2102 0390

 23. Ali MA, Hu C, Jahan S et al (2020) Sensing of COVID-19 anti-
bodies in seconds via aerosol jet nanoprinted reduced-graphene-
oxide-coated 3D electrodes. Adv Mater 33:2006647. https:// doi. 
org/ 10. 1002/ adma. 20200 6647

 24. Rashed MZ, Kopechek JA, Priddy MC et al (2021) Rapid detec-
tion of SARS-CoV-2 antibodies using electrochemical impedance-
based detector. Biosens Bioelectron 171:112709. https:// doi. org/ 
10. 1016/j. bios. 2020. 112709

 25. Mauriz E (2020) Recent progress in plasmonic biosensing 
schemes for virus detection. Sensors 20:1–27. https:// doi. org/ 10. 
3390/ s2017 4745

 26. Versiani AF, Martins EMN, Andrade LM (2020) Nanosensors 
based on LSPR are able to serologically differentiate dengue 
from Zika infections. Sci Rep 10:1–17. https:// doi. org/ 10. 1038/ 
s41598- 020- 68357-9

 27. Díaz-Badillo A, Muñoz LM, Morales-Gómez MC et al (2020) 
Diagnostic tests for COVID-19 detection: a hybrid methodology. 
Cir Cir 88:537–541. https:// doi. org/ 10. 24875/ CIRU. M2000 0068

 28. Shao W, Shurin MR, Wheeler SE et al (2021) Rapid detection of 
SARS-CoV-2 antigens using high-purity semiconducting single-
walled carbon nanotube-based field-effect transistors. ACS Appl 
Mater Interfaces 13:10321–10327. https:// doi. org/ 10. 1021/ acsami. 
0c225 89

 29. Low SL, Leo YS, Lai YL et al (2021) Evaluation of eight com-
mercial Zika virus IgM and IgG serology assays for diagnostics 
and research. PLoS ONE 16:1–15. https:// doi. org/ 10. 1371/ journ 
al. pone. 02446 01

 30. Zhang WS, Pan J, Li F et al (2021) Reverse transcription recombi-
nase polymerase amplification coupled with CRISPR-Cas12a for 
facile and highly sensitive colorimetric SARS-CoV-2 detection. 
Anal Chem 93:4126–4133. https:// doi. org/ 10. 1021/ acs. analc hem. 
1c000 13

 31. Carvalho LFCS, Nogueira MS (2020) Optical techniques for fast 
screening – towards prevention of the coronavirus COVID-19 out-
break. Photodiagnosis Photodyn Ther 30:101765. https:// doi. org/ 
10. 1016/j. pdpdt. 2020. 101765

 32. Lukose J, Chidangil S, George SD (2021) Optical technologies for 
the detection of viruses like COVID-19: progress and prospects. 
Biosens Bioelectron 178:113004. https:// doi. org/ 10. 1016/j. bios. 
2021. 113004

 33. Saviñon-Flores F, Méndez E, López-Castaños M et al (2021) 
A review on SERS-based detection of human virus infections: 

https://doi.org/10.3389/fdgth.2020.00008
https://doi.org/10.3389/fdgth.2020.00008
https://doi.org/10.1001/jama.2020.8259
https://doi.org/10.1007/s13337-020-00599-7
https://doi.org/10.7326/M20-1301
https://doi.org/10.7326/M20-1301
https://doi.org/10.1056/NEJMoa2008457
https://doi.org/10.1056/NEJMoa2008457
https://doi.org/10.1038/s41591-020-0869-5
https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html
https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html
https://doi.org/10.1021/acssensors.6b00763
https://doi.org/10.1021/acssensors.6b00763
https://doi.org/10.1007/s42770-021-00469-4
https://doi.org/10.1101/2021.06.23.21259392
https://doi.org/10.1101/2021.06.23.21259392
https://busca.inpi.gov.br/pePI/servlet/PatenteServletController?Action=detail&CodPedido=1597522&SearchParameter=BR1020200249932%20%20%20%20%20%20&Resumo=&Titulo=
https://busca.inpi.gov.br/pePI/servlet/PatenteServletController?Action=detail&CodPedido=1597522&SearchParameter=BR1020200249932%20%20%20%20%20%20&Resumo=&Titulo=
https://busca.inpi.gov.br/pePI/servlet/PatenteServletController?Action=detail&CodPedido=1597522&SearchParameter=BR1020200249932%20%20%20%20%20%20&Resumo=&Titulo=
https://busca.inpi.gov.br/pePI/servlet/PatenteServletController?Action=detail&CodPedido=1597522&SearchParameter=BR1020200249932%20%20%20%20%20%20&Resumo=&Titulo=
https://busca.inpi.gov.br/pePI/servlet/ProgramaServletController?Action=detail&CodPedido=29120&SearchParameter=
https://busca.inpi.gov.br/pePI/servlet/ProgramaServletController?Action=detail&CodPedido=29120&SearchParameter=
http://www.ctit.ufmg.br/
http://www.ctit.ufmg.br/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1021/acs.jcim.9b01037
https://doi.org/10.1021/acs.jcim.9b01037
https://doi.org/10.1111/tbed.13922
https://doi.org/10.1021/acsinfecdis.0c00365
https://doi.org/10.1016/j.chest.2020.06.025
https://doi.org/10.1016/j.chest.2020.06.025
https://doi.org/10.3390/s21020390
https://doi.org/10.1002/adma.202006647
https://doi.org/10.1002/adma.202006647
https://doi.org/10.1016/j.bios.2020.112709
https://doi.org/10.1016/j.bios.2020.112709
https://doi.org/10.3390/s20174745
https://doi.org/10.3390/s20174745
https://doi.org/10.1038/s41598-020-68357-9
https://doi.org/10.1038/s41598-020-68357-9
https://doi.org/10.24875/CIRU.M20000068
https://doi.org/10.1021/acsami.0c22589
https://doi.org/10.1021/acsami.0c22589
https://doi.org/10.1371/journal.pone.0244601
https://doi.org/10.1371/journal.pone.0244601
https://doi.org/10.1021/acs.analchem.1c00013
https://doi.org/10.1021/acs.analchem.1c00013
https://doi.org/10.1016/j.pdpdt.2020.101765
https://doi.org/10.1016/j.pdpdt.2020.101765
https://doi.org/10.1016/j.bios.2021.113004
https://doi.org/10.1016/j.bios.2021.113004


777Brazilian Journal of Microbiology (2023) 54:769–777 

1 3

influenza and coronavirus. Biosens 11:66. https:// doi. org/ 10. 3390/ 
bios1 10300 66

 34. Carlomagno C, Bertazioli D, Gualerzi A (2021) COVID-19 sali-
vary Raman fingerprint: innovative approach for the detection 
of current and past SARS-CoV-2 infections. Sci Rep 11:1–13. 
https:// doi. org/ 10. 1038/ s41598- 021- 84565-3

 35. Barauna VG, Singh MN, Barbosa LL et al (2021) Ultrarapid on-
site detection of SARS-CoV-2 infection using simple ATR-FTIR 
spectroscopy and an analysis algorithm: high sensitivity and 
specificity. Anal Chem 93:2950–2958. https:// doi. org/ 10. 1021/ 
acs. analc hem. 0c046 08

 36. Khan RS, Rehman IU (2020) Spectroscopy as a tool for detec-
tion and monitoring of Coronavirus (COVID-19). Expert Rev 
Mol Diagn 2:647–649. https:// doi. org/ 10. 1080/ 14737 159. 2020. 
17669 68

 37. Syeda HB, Syed M, Sexton KW et al (2021) Role of machine 
learning techniques to tackle the covid-19 crisis: systematic 
review. JMIR Med Inform 9:e23811. https:// doi. org/ 10. 2196/ 
23811

 38. Fernandes FT, Oliveira TA, Teixeira CE et al (2021) A multipur-
pose machine learning approach to predict COVID-19 negative 
prognosis in São Paulo, Brazil. Sci Rep 11:1–7. https:// doi. org/ 
10. 1038/ s41598- 021- 82885-y

 39. Zoabi Y, Deri-Rozov S, Shomron N (2021) Machine learning-
based prediction of COVID-19 diagnosis based on symptoms. npj 
Digit Med 4:1–5. https:// doi. org/ 10. 1038/ s41746- 020- 00372-6

 40. Clerici B, Muscatello A, Bai F, Pavanello D, Orlandi M, Marchetti 
GC, Castelli V, Casazza G, Costantino G, Podda GM (2021) Sen-
sitivity of SARS-CoV-2 detection with nasopharyngeal swabs. 

Front. Public Health 8:593491. https:// doi. org/ 10. 3389/ fpubh. 
2020. 593491

 41. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G et al (2020) Detection 
of SARS-CoV-2 in different types of clinical specimens. JAMA 
323:1843–1844. https:// doi. org/ 10. 1001/ jama. 2020. 3786

 42. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J 
(2020) Variation in false-negative rate of reverse transcriptase 
polymerase chain reaction–based SARS-CoV-2 tests by time since 
exposure. Ann Intern Med 173:262–267. https:// doi. org/ 10. 7326/ 
m20- 1495

 43. Böger B, Fachi MM, Vilhena RO et al (2021) Systematic review 
with meta-analysis of the accuracy of diagnostic tests for COVID-
19. Am J Infect Control 49:21–29. https:// doi. org/ 10. 1016/j. ajic. 
2020. 07. 011

 44 EisBrenner T, Tipples G, Kuschak T, Gilmour M (2020) Labo-
ratory response checklist for infectious disease outbreaks—pre-
paredness and response considerations for emerging threats. Can 
Commun Dis Rep 46:311–21. https:// doi. org/ 10. 14745/ ccdr. v46i1 
0a01

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.3390/bios11030066
https://doi.org/10.3390/bios11030066
https://doi.org/10.1038/s41598-021-84565-3
https://doi.org/10.1021/acs.analchem.0c04608
https://doi.org/10.1021/acs.analchem.0c04608
https://doi.org/10.1080/14737159.2020.1766968
https://doi.org/10.1080/14737159.2020.1766968
https://doi.org/10.2196/23811
https://doi.org/10.2196/23811
https://doi.org/10.1038/s41598-021-82885-y
https://doi.org/10.1038/s41598-021-82885-y
https://doi.org/10.1038/s41746-020-00372-6
https://doi.org/10.3389/fpubh.2020.593491
https://doi.org/10.3389/fpubh.2020.593491
https://doi.org/10.1001/jama.2020.3786
https://doi.org/10.7326/m20-1495
https://doi.org/10.7326/m20-1495
https://doi.org/10.1016/j.ajic.2020.07.011
https://doi.org/10.1016/j.ajic.2020.07.011
https://doi.org/10.14745/ccdr.v46i10a01
https://doi.org/10.14745/ccdr.v46i10a01

	New, fast, and precise method of COVID-19 detection in nasopharyngeal and tracheal aspirate samples combining optical spectroscopy and machine learning
	Abstract
	Introduction
	Methods
	Study design and overview
	Participant recruitment
	Collection of nasopharyngeal swab samples
	Collection of tracheal aspirate samples
	Optical spectroscopy measurements
	Development of the machine learning model

	Results
	Machine learning model

	Discussion
	Conclusion
	Anchor 15
	Acknowledgements 
	References


