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Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) are a prokaryotic adaptive immune system that, through 
Cas proteins, promote the degradation of foreign nucleic acids such as phages and plasmids. We analyzed 10 genomes of 
Corynebacterium striatum clinical isolates from a public hospital in Rio de Janeiro, Brazil, the most emergent multidrug-
resistant Corynebacterium species. All isolates were submitted to antimicrobial susceptibility testing. The occurrence and 
diversity of the CRISPR system were investigated by bioinformatics tools. Our analysis revealed that the isolates exhibited 
type I-E gene arrangements, and 3 more multidrug-resistant isolates, alternative type I-E gene arrangements, showing a 
divergent gene arrangement within the cas operon. Phylogenetic analysis of the cas1 gene of this type I-E CRISPR-Cas 
system alternative arrangement, termed here type I-E’, showed a cluster in a distinct clade of the type I-E CRISPR-Cas 
system. The systems’ guanine-cytosine (GC) content is lower than the genomic DNA’s GC content, and mobile genetic ele-
ments were found in some isolates near the CRISPR-Cas system. Most CRISPR spacers are unknown indicating that there 
is a reservoir of unexplored corynebacteriophages and plasmids. Some spacers showed perfect homologies with phage and 
plasmid sequences. Intact phage regions were found in 3 of our isolates, ranging from 9.1 to 43.8 kb, with regions showing 
similarity to Rhodococcus and Corynebacterium phages. Our results may contribute to research about the CRISPR-Cas 
system diversity in C. striatum, where there are no published data to date.
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Introduction

Corynebacterium species are widely distributed in the envi-
ronment and are part of the skin and mucosal microbiota 
[1, 2]. Corynebacterium striatum is a Gram-positive rod, 
non-sporulating recognized as a true pathogen in specific 
circumstances when isolated from patients with chronic dis-
eases, indwelling medical devices, and several samples from 
sterile body sites [3–5]. C. striatum has been cited in several 
reports as a multidrug-resistant (MDR) health care infection 
pathogen, including septicemia, valvular damage, pulmonary 
infection, meningitis, endocarditis, osteomyelitis, and other 
invasive infections [1, 3, 6, 7]. Clonal MDR C. striatum has 
been affecting both immunocompromised and immunocom-
petent patients [1, 3, 6]. Multidrug resistance and patient-to-
patient transmission have also been reported [3, 6].
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The prokaryotic CRISPR (Clustered Regularly Inter-
spaced Short Palindromic Repeats) system resembles an 
immunity system to host cells against invading nucleic acids 
and they represent a barrier to recombination. This system 
has been detected in bacteria and archaea. CRISPR-associ-
ated proteins (Cas) consist of a combination of Cas effector 
proteins that are involved in target DNA or RNA cleav-
age, CRISPR loci transcript processing, and novel spacer 
integration [8–11]. The CRISPR system uses mechanisms 
divided into three stages, the first being the adaptation 
phase, when a novel spacer is acquired from an invading 
nucleic acid. At this stage, there are Cas1 and Cas2 that 
form a complex involved in the adaptation step and are con-
served in almost all CRISPR-Cas types. The second stage 
is the expression phase, where the CRISPR locus is tran-
scribed into pre-crRNA, and cas genes are expressed and 
involved in pre-crRNA processing and in mature short crR-
NAs that form a complex with these genes. The last step is 
the interference phase, where invading nucleic acids will be 
recognized and cleaved by crRNA-Cas complexes [12, 13].

The CRISPR-Cas system prevents the spread of plasmids 
and bacteriophages and limits horizontal gene transfer by 
these mobile genetic elements [14]. In many bacterial spe-
cies, antibiotic resistance is mediated by the acquisition of 
genes from plasmids and transposons. The presence of the 
CRISPR-Cas system and the acquisition of antibiotic resist-
ance genes may have an inverse correlation. Studies have 
shown a significant association between antibiotic resistance 
in Enterococcus faecalis and the absence of the CRISPR-Cas 
system [15]. However, in a study performed on Escherichia 

coli, CRISPR-Cas system appears to ineffectively block plas-
mid dissemination and antibiotic resistance [16].

CRISPR and associated cas genes have been detected in 
some Corynebacterium species, such as Corynebacterium 
diphtheriae [8], Corynebacterium bovis [17], Corynebac-
terium pseudotuberculosis [18], Corynebacterium ulcer-
ans [19], and Corynebacterium urealyticum [20]. In other 
Corynebacterium species, CRISPR-Cas system studies are 
scarce, except for Corynebacterium glutamicum, which 
is an important metabolite producer in the biotechnology 
industry [21]. The type I-E CRISPR-Cas system was found 
in most corynebacteria. In the pathogen that causes diph-
theria diseases, Corynebacterium diphtheriae, type II-C 
system and type I-E variant system were found [8]. To 
date, there are no published data on diversity about the 
C. striatum CRISPR-Cas system, an opportunistic hospi-
tal-associated pathogen. In this study, we explored 10 C. 
striatum genomes isolated from a nosocomial outbreak 
in the city of Rio de Janeiro, Brazil, and 21 C. striatum 
genomes available at NCBI were analyzed for the pres-
ence and characterization of the CRISPR-Cas system and 
their spacers.

Methods

Bacterial isolates

We analyzed 10 C. striatum genomes, deposited at NCBI 
(Table 1), isolated from nosocomial outbreaks that occurred 

Table 1   Details of CRISPR-Cas loci in Brazilian C. striatum isolates

a According to Ramos et al. [4] 

Isolatesa Isolation datea Isolation sitesa PFGE 
profilesa

CRISPR-Cas system (num-
ber of spacers)

GenBank access number

1954 October 2009 Surgical wound secretion IV – PGGF01000000.1
1961 December 2009 Urine III I-E (15) LAYR01000000.1
2023 August 2009 Blood I I-E (18)

I-E’ (9)
LBCN01000000.1

2038 September 2009 Blood II I-E (51)
I-E’ (59)

PGGG00000000.1

2130 August 2010 Blood V I-E (20) NRIL00000000.1
2230 February 2011 Blood VI I-E (44)

I-E (47)
LTBF00000000.1

2237 March 2011 Blood VI I-E (47) NRIM01000000.1
2296 July 2011 Central venous catheter VII I-E (100) NRIN00000000.1
2308 August 2011 Blood I I-E (117)

I-E’ (58)
NRIO00000000.1

2425 August 2012 Blood IX I-E (55) NRIP00000000.1
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at a public university hospital in the city of Rio de Janeiro, 
Brazil, for 42 months (January 2009 to February 2013). In 
addition to the 10 genomes, we have included 21 C. stria-
tum genomes, available at GenBank/NCBI, for comparative 
purposes (Supplementary Table 1).

Antimicrobial susceptibility testing

Antimicrobial susceptibility profiles were determined 
by minimum inhibitory concentration (MIC) using Etest 
strips on cation-adjusted Mueller–Hinton agar supple-
mented with 5% sheep blood using inoculum equivalent 
to a 0.5 McFarland standard. Interpretation of penicil-
lin, ciprofloxacin, moxifloxacin, vancomycin, clinda-
mycin, tetracycline, linezolid, and rifampin values was 
performed according to the current BrCAST/EuCAST 
guideline [22] (Table 2). MDR was defined as acquired 
non-susceptibility to at least one agent in three or more 
antimicrobial categories [23].

Characterization of CRISPR‑Cas diversity

CRISPRCasFinder1 (version CRISPR-Cas +  + 1.1.2) was 
used to identify the CRISPR-Cas system of genomes. 
CRISPR arrays with low evidence, equal to 0 or 1, were 
not included in the analyses [24]. CRISPR-Cas cassette 
type was determined following the nomenclature and 
classification described by Makarova et al. [11]. CRISPR 
array spacers were extracted from CRISPRFinder out-
puts. Spacer sequences were analyzed for their iden-
tity: at the CRISPRTarget2 database, which contained A 
CLAssification of Mobile Genetic Elements (ACLAME), 
Genbank-Phage, RefSeq-Plasmid, RefSeq-Viral, Island-
Viewer, PHAST and Community Cyber infrastructure 
for Advanced Microbial Ecology Research & Analysis 
(CAMERA) sequences, and the cut-off score was the 
default parameter value [25]; and at the ViroBLAST3 
server, version 2.6 against viral databases using default 
parameters [26] and against spacers databases in the 
CRISPR-Cas +  + database1 with E-value = 0.01 [24]. 
Spacer hits were selected from the ViroBlast, CRIS-
PRTarget, and CRISPR-Cas +  + databases with a cut-off 
identity cover according to Sangal et al. [8]. Direct repeat 
conservation was represented by WebLogo,4 version 2.82 

[27]. Prophage sequences were identified from assem-
bled contigs using the PHASTER5 webserver (PHAge 
Search Tool Enhanced Release) [28].

Core genome and phylogenetic analysis

Prokka,6 version 1.14.6, was used for whole-genome anno-
tation to produce standards-compliant GFF3 output files 
required for pangenome calculation [29]. The annotated 
gene repertoires of the studied genomes were grouped using 
Roary,7 version 3.13.3 using the parameters as follows: 
–mafft; -i 60 to calculate pan-genome and core-genome [30]. 
A neighbor-joining (NJ) phylogenetic tree was constructed 
from C. striatum core genome sequence alignment using 
Mega X8 [31]. NJ trees were also generated from nucleo-
tide sequence alignments of cas genes and direct repeats 
consensus of CRISPR-Cas systems of all isolates by p-dis-
tance with 500 iterations for bootstrap. Geneious,9 version 
2021.2.2, was used to assess Cas protein conservation by 
multiple sequence global alignment (Needleman-Wunsch) 
with standard parameters.

Results

Antimicrobial resistance profiles

Table 2 shows antimicrobial susceptibility profiles of 10 
C. striatum isolates. Eight C. striatum isolates showed 
non-susceptibility to at least one agent in three or more 
antimicrobial categories and were identified as MDR path-
ogens. Isolates no. 1954 and 1961 were susceptible to all 
antimicrobials tested and showed intermediate susceptibil-
ity to ciprofloxacin, according to the BrCAST/EuCAST 
guideline [22]. Isolates no. 2023, 2038, and 2308 have 
an additional CRISPR-Cas system, termed here type I-E’ 
CRISPR-Cas, and were susceptible only to vancomycin, 
tetracycline, and linezolid. Our isolates showed resistance 
to penicillin (70%), ciprofloxacin (100%), moxifloxa-
cin (80%), clindamycin (80%), and rifampin (30%). All 
isolates were susceptible to vancomycin, linezolid, and 
tetracycline.

1  https://​crisp​rcas.​i2bc.​paris-​saclay.​fr/​Crisp​rCasF​inder/​Index
2  http://​crispr.​otago.​ac.​nz/​CRISP​RTarg​et/​crispr_​analy​sis.​html
3  https://​indra.​mulli​ns.​micro​biol.​washi​ngton.​edu/​virob​last/​virob​last.​php
4  https://​weblo​go.​berke​ley.​edu/​logo.​cgi

5  http://​phast​er.​ca/

8  https://​www.​megas​oftwa​re.​net/
9  https://​www.​genei​ous.​com

6  https://​github.​com/​tseem​ann/​prokka/​issues
7  https://​sanger-​patho​gens.​github.​io/​Roary/

https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index
http://crispr.otago.ac.nz/CRISPRTarget/crispr_analysis.html
https://indra.mullins.microbiol.washington.edu/viroblast/viroblast.php
https://weblogo.berkeley.edu/logo.cgi
http://phaster.ca/
https://www.megasoftware.net/
https://www.geneious.com
https://github.com/tseemann/prokka/issues
https://sanger-pathogens.github.io/Roary/
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CRISPR‑Cas system diversity and arrangement in C. 
striatum

A total of 13 CRISPR-Cas systems among 9 Brazilian C. 
striatum genomes and their features were listed in Table 1. 
Only multidrug-susceptible (MDS) isolate 1954 did not con-
tain CRISPR-Cas system. All systems scored highly accu-
rate (level of evidence = 4; as high as possible) based on 
parameters from the CRISPRFinder database, which assigns 
levels of evidence from 1 to 4 for spacer repetition and simi-
larity [24]. The CRISPRFinder server identified type I-E 
system in all isolates. Four isolates presented two CRISPR-
Cas systems, and the CRISPR-Cas system arrangement in 
three C. striatum isolates showed differences (Fig. 1a and 
b). All three MDR C. striatum isolates susceptible only 
to vancomycin, tetracycline, and linezolid present a novel 
type I-E system configuration, exhibiting a divergent gene 
arrangement within the cas operon, termed here as type I-E’ 
(Fig. 1b).

C. striatum draft or complete genomes from other coun-
tries available in the GenBank/NCBI database, including 

MDR 215 and 216 complete genomes [3], were used to com-
pare with our isolates. Three draft genomes were excluded 
from the analysis, for presenting evidence level zero or 1 in 
the CRISPRFinder database. Furthermore, LK37 and 1329-
caur draft genomes were not used because the CRISPR-Cas 
system was divided into distinct contigs. Thus, it was pos-
sible to observe that 6 C. striatum genomes from the Gen-
Bank/NCBI database also presented the type I-E’ system 
(Supplementary Table 1).

To further distinguish the CRISPR-Cas system in C. 
striatum, the cas1 gene’s NJ tree was constructed. Results 
showed that all cas1 genes of the type I-E CRISPR sys-
tem formed a separated branch from those of the type I-E’ 
CRISPR system (Fig. 2). Moreover, the amino acid identities 
of all cas proteins of Brazilian C. striatum genomes for types 
I-E (n = 10) and I-E’ (n = 3) CRISPR systems were detected. 
Within a single type I-E or I-E’, most Cas1 proteins share 
more than 99% amino acid identity and some up to 100% 
amino acid identity. When amino acid sequences of type I-E 
Cas1 proteins were compared with those of type I-E’, they 
shared 30% of amino acid identity (Table 3).

Table 2   Minimum inhibitory concentration and antimicrobial susceptibility profiles of 10 Corynebacterium striatum isolates from blood (n = 7), 
central venous catheter (n = 1), urine (n = 1), and surgical wound secretion (n = 1) infections

Antimicrobial
agents

Isolates

1954 1961 2130 2230 2237 2296 2425 2023 2038 2308

Penicillin 0.12 0.03 0.5 2-4 2-4 0.5 0.12 >256 >256 >256

Vancomycin 0.25 0.5 0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.5

Ciprofloxacin 0.094 0.125 2 > 32 > 32 > 32 >32 >32 >32 >32

Moxifloxacin 0.125 0.125 0.75 8 4-6 > 32 >32 8 6 6

Tetracycline 2 2 2 2 1 0.5 0.5 1 1 1

Clindamycin 0.12 0.12 >256 > 256 > 256 > 256 > 256 >256 >256 >256

Rifampin <0.002 <0.002 0.003 0.002 0.002 <0.002 <0.002 >32 >32 >32

Linezolid 0.38 0.094
0.38-

0.5
0.19 0.38 0.25 0.064 0.25 0.75 0.25

Negative 
CRISPR-

Cas 
(n=1)

Type I-E CRISPR-Cas (n=6)
Type I-E CRISPR-
Cas plus type I-E’ 

CRISPR-Cas

According to the BrCAST guideline (2021), orange is resistant, blue is intermediate, and green is susceptible to antimicrobial agents
Isolation sites: surgical wound secretion (1954); urine (1961); blood (2023, 2038, 2130, 2230, 2237, 2308, and 2425); and central venous cath-
eter (2296)
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Fig. 1   Type I-E CRISPR-Cas 
system (a) classic configuration 
and alternative gene arrange-
ment named type I-E’ (b) found 
in Brazilian C. striatum isolates. 
The similarity scale between the 
C. striatum isolate CRISPR-Cas 
systems is represented below, 
ranging from 0 to 100% (white 
to black). The numbers in the 
red box indicate the quantity of 
spacer sequences. Isolates bear-
ing the contig number have two 
CRISPR-Cas systems
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Fig. 2   NJ tree for cas1 gene 
in C. striatum. Cas1 gene 
alignment was performed using 
the ClustalW algorithm in 
BioEdit Sequence Alignment, 
and the tree was generated in 
MegaX software. The inferred 
distance was calculated using 
p-distance. Bootstrap val-
ues (> 60%) based on 500 
replicates are shown. 0.05% 
scale bar estimated sequence 
divergence. Isolates LK37 
and 1329-caur were excluded 
from this analysis because the 
CRISPR-Cas system is divided 
into different contigs. Brazilian 
isolates contain an asterisk in 
the name. Type I-E’ and type 
I-E CRISPR-Cas systems were 
colored blue and black, respec-
tively. FDAARGOS 1054 T 
corresponds to C. striatum type 
strain

NSCs20
CSc20
Wp1a
NSCs27
FDAARGOS 1115
1327 caur
216
CSc27
587 caur
2130
1961

2237

2296
2425

NCTC9755
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100
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NSCs27
FDAARGOS 1115
1327 caur
216
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2130*
1961*
2023* (contig15)
2230* contig15
2038* (contig4)
2230* (contig28)
2237*
2308* (contig18)
2296*
2425*
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NCTC9755
FDAARGOS 1197
215

FDAARGOS 1054
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3012STDY7069329
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Table 3   Cas protein 
conservation of Brazilian 
Corynebacterium striatum 
isolates

Geneious global alignment (Needleman-Wunsch) was used for multiple sequence alignment. For each 
protein, global alignment was performed within each type (I-E or I-E’), and consensus similarity between 
them was given in percentage
The amino acid identity percentage indicates the alignment between type I-E protein consensus sequence 
and type I-E’ protein consensus sequence
As cas3 was cleaved in isolate 1961, it was not considered to calculate amino acid identity
As cse1 was very short in isolate 2230 (contig 15) and showed a frameshift in isolate 2296, it was not con-
sidered to calculate amino acid identity
As cas7 showed a frameshift in isolate 2038 (type I-E’), it was not considered to calculate amino acid identity
As cas2 was broken in isolated 2023 (type I-E’), it was not considered to calculate amino acid identity

CRISPR type Isolates % amino acid identity

Cas3 Cse1 Cse2 Cas7 Cas5 Cas6 Cas1 Cas2

Type I-E 1961
2023
2038
2130
2230
2230
2237
2296
2308
2425
Consensus 99.7 98.6 98.7 99.8 99.6 99.6 99.9 99.8

Type I-E’ 2023
2038
2308
Consensus 99.9 100 100 100 100 100 100 100

% amino acid identity 23.5 19.8 17.9 24.9 19.1 22.5 30.7 28.3
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Source of spacer sequences

A total of 640 spacer sequences were found in C. striatum 
CRISPR arrays from Brazilian isolates (Supplementary 
Table 2). The ViroBlast server found no hits for spacers of 
isolates no. 1961 and 2023. The CRISPRTarget database 
returned the highest number of hits (n = 226) among the 
databases used. All hits (n = 16) found in CRISPRCasdb 
returned only for CRISPR spacers found in C. striatum 
genomes with the parameters previously described in meth-
ods. About 379 spacers (59.2%) are unknown according to 
the database used: 73 and 306 spacers in type I-E’ and I-E 
systems, respectively.

The CRISPR loci found in C. striatum vary in length and 
spacer content. The longest CRISPR locus contains 117 
spacers and was found in the type I-E system of MDR isolate 
2308. The smallest CRISPR locus was found in MDR isolate 
2023, with 9 spacers. Of the 117 spacers found in isolate 
2308, five were duplicated. None of these spacer sequences 
was found in the additional type I-E’ system of this isolate. 
Forty-nine of the 117 spacer sequences were found in iso-
lates 2230 and 2237, some with a 1 bp difference in length. 
A significant amount of 117 spacer sequences were found 
only in the type I-E system of MDR isolates 2023 and 2038, 
totalizing 20 and 45 spacer sequences, respectively.

The 9 Brazilian C. striatum isolates shared spacers with 
100% similarity (Supplementary Table 3), but between type 
I-E’ and type I-E systems, there was no sharing of spacer 
sequences. Isolate 2130 was the only one that did not share 
spacer sequence with other isolates. The type I-E CRISPR 
system spacer sequences of isolate 2308 were the most 
shared among the isolates, with 44 of them found in the 
type I-E CRISPR system of isolates 2038, 2230, and 2237.

Repeat consensus sequences were also different among 
the two CRISPR system configurations (Fig. 3a and b), 
while they were conserved within the same layout (Sup-
plementary Fig. 1). Within a single type I-E or I-E’, most 

repeat consensus shared more than 96.5% nucleotide similar-
ity and some up to 100% nucleotide similarity. When repeat 
consensus nucleotide sequences of the type I-E system were 
compared with those of type I-E’, they shared 50% nucleo-
tide identity.

Genetic relationship between C. striatum isolates

The C. striatum core genome consisted of 1619 coding 
sequences (CDS), when calculated using 31 genomes. Phy-
logenetic analysis (Fig. 4) of the conserved core genome 
was contradictory to the type of CRISPR-Cas systems and 
phylogeny of cas1 genes (Fig. 2). Furthermore, by phyloge-
netic analysis of the core genome, Brazilian MDR isolates 
were grouped in a distinct clade from MDS isolates 1954 
and 1961 and from isolates of other countries (Fig. 4; Sup-
plementary Table 1).

Prophage regions

Isolates were submitted to PHASTER analysis for iden-
tification and annotation of prophage sequences. The 
results revealed the presence of 3 intact phages in iso-
lates 1961, 2130, and 2425. An intact prophage region of 
9.1 kb was identified in MDS isolate 1961, with a score 
of 100% containing 12 proteins. The phage with the high-
est number of proteins like those identified in this region 
was Rhodoc_Sleepyhead (GenBank NC048782_2), with 
52.22% of GC content. Isolate 2130 also has a 43.2 kb 
intact prophage region containing 60 proteins, scor-
ing 140%. The phage with the highest number of pro-
teins like those in the region is Rhodoc_Jace (GenBank 
NC047974_15), with 54.7% of GC content. Finally, iso-
late 2425 showed an intact prophage region of 43.8 kb 
containing 64 proteins, with a score of 110%, and the 
most common phage found was Coryne_Poushou (Gen-
Bank NC042139_11), with 57.2% of GC content. When 

Fig. 3   Direct repeat conserva-
tion in a type I-E and b type 
I-E’ CRISPR configurations of 
C. striatum. The sequence logo 
was created by WebLogo 2.8.2. 
The height of the letters shows 
the relative frequency of the 
corresponding nucleotide at that 
position

a

b
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submitted to NCBI BLAST using nucleotide collection, 
the intact prophage sequence of isolate 1961 aligned with 
a small chromosomal region of C. striatum 215, about 
7 kb, approximately. Of the 43.2 kb of the intact region 
of the prophage found in isolate 2130, about 21.7 kb 
were aligned with the chromosomal region of C. stria-
tum strain, with correspondence with proteins commonly 
found on phages, such as phage tail and phage portal pro-
tein. Finally, the intact prophage region of isolate 2425 
aligned only 5.4 kb, approximately, with the chromosome 
region of C. striatum DSM45711 (FDAARGOS 1197). 
The similarity between the spacers and the phages found 
in isolates 1961, 2130, and 2425 was verified. There was 
no match between the CRISPR spacers from isolate 1961 
and the phage found in the same isolate. Four unknown 
CRISPR spacers from isolate 2130 matched with the 
phage found in this isolate. Three CRISPR spacers from 
isolate 2425 matched with the phage found in this isolate. 
Spacers 6, 10, and 31 were found in C. simulans (100% 
identity), Gordonia phage Easley (84.37% identity), and 
Corynebacterium glyciniphilum (87.50% identity)/Tur-
key Adenovirus 1 (81.25% identity), respectively.

Discussion

C. striatum isolates expressing different MDR profiles have 
been identified as the etiologic agent of healthcare-associated 
infections in several countries [1, 3, 4, 7, 32] demonstrating 
the involvement of genetic mobile elements in the resistome 
of this bacterial species. C. striatum isolate genomes present 
antimicrobial resistance genes acquired, disseminated, and 
conserved by vertical transfer through plasmids and trans-
posons [32]. Bacterial CRISPR-Cas systems are important 
elements for inhibiting horizontal gene transfer between 
bacterial cells [8, 33]. However, information on CRISPR-
Cas systems in C. striatum remains unknown. In this study, 
we analyzed CRISPR-Cas systems, and all elements for this 
system (cas genes, repeats, leader sequences, and adjacent 
protospacer motifs) were characterized. In some studies, 
there was a reverse correlation between the CRISPR-Cas 
system presence and antibiotic resistance in some species 
such as Enterococci [33], but, in MDR C. striatum, such as 
E. coli [34], there was no significant relation.

In this study, we have identified a different configuration 
of the type I-E CRISPR-Cas system in 3 Brazilian isolates. 
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To our knowledge, this is the first comprehensive study of 
the CRISPR-Cas system in C. striatum, an important MDR 
pathogen associated with nosocomial outbreaks in several 
countries [1, 3, 4, 7].

Previous studies reported the emergence of C. striatum 
isolates as novel clones by PFGE genotyping as etiologic 
agents of invasive infections [4, 7]. The CRISPR-Cas sys-
tem was found in 9 Brazilian genomes. Of these, 8 isolates 
are MDR with different levels of resistance, but resistant 
to at least one agent in three or more antimicrobial catego-
ries [23]. Isolates 2023, 2038, and 2308, classified as PFGE 
profiles I and II, are the most resistant, susceptible only to 
tetracycline, vancomycin, and linezolid [4] (Table 2). It is 
important to emphasize that these 3 more resistant isolates 
presented an additional system with an alternative arrange-
ment named here type I-E’. Although the resistance pro-
files of C. striatum isolates from other countries used in this 
study are unknown, some showed the type I-E’ CRISPR-Cas 
system too (Supplementary Table 1). A similar configuration 
was found in C. diphtheriae, the causative agent of diph-
theria disease, named type I-Ea [8, 35]. In this case, the 
CRISPR loci are located between the cas3 and cse1 genes.

This study revealed a diversity of spacers among CRISPR 
arrays of Brazilian C. striatum genomes. Of the 640 spac-
ers, 113 were shared among the 9 isolates, being 104 spac-
ers between the type I-E system and 9 spacers between the 
type I-E’ system. There was no sharing of spacers between 
the two types of systems. CRISPR loci found in our iso-
lates presented a significant amount of spacer sequences 
(n = 135), with similarities ranging from 81.2 to 100% to 
prophage of Rhodococcus (phage Rhodoc REQ3—GenBank 
NC016654), belonging to family Siphoviridae, isolated from 
wastewater. This prophage is also found in the C. striatum 
type strain. Some spacers showed similarities above 81.2% 
with corynebacteriophages or unannotated regions of other 
Corynebacterium species, such as Corynebacterium aurimu-
cosum, Corynebacterium simulans, and Corynebacterium 
ulcerans. Eleven spacer sequences from our Brazilian iso-
lates, except for isolates 1961, 2296, and 2425, matched with 
Corynebacterium phage phi673 (GenBank NC042354), a 
lytic phage of Corynebacterium glutamicum ATCC 13,032.

Thirteen spacer sequences matched with C. striatum 215, 
216, and type strain by the CRISPR-Cas +  + database, with 
similarities ranging from 84.3 to 100%. Interestingly, 5 spac-
ers showed similarity with non-corynebacteria plasmids, 
such as Bacillus, Sinorhizobium, and Rhodobacter, and the 
last had the same score as the phage Salmon SPN1S spacer. 
This diversity of spacers may reflect a history of previous 
invasions, with hits ranging from uncultivable viruses, Rho-
dococcus, Mycobacterium, Gordonia, and Corynebacterium 
phages to plant pathogenic bacteria plasmids, such as Ral-
stonia solanacearum, although for the majority (59.7%) no 

hits were found in the databases, indicating that there is a 
reservoir of unexplored plasmids and corynebacteriophages.

Isolates 2296 and 2425 shared 3 spacers with 84% simi-
larity to C. simulans chromosome region. Moreover, spacer 
26 from isolate 2296 had similarity to phage Propionibac-
terium PFR1 found in isolate 2425 (spacer 22) (Supplemen-
tary Table 3). Some type I-E’ system spacers from isolate 
2038 (n = 5) and type I-E system spacers from isolates 2130 
(n = 1), 2296 (n = 2), and 2308 (n = 5) were duplicated within 
the CRISPR arrays. This event has also been reported in 
Corynebacterium diphtheriae, in which 9 duplicated spac-
ers were found within CRISPR arrays [8]. The relationship 
between spacer duplication and increased efficiency of 
CRISPR-Cas-mediated immunity against invasive DNA is 
controversial [8].

It is important to emphasize that the total of 640 spacers 
are those that were present near the CRISPR-Cas system. 
Except for isolates 2038 and 2296, there are other CRISPR 
arrays located in other regions of the genomes. Therefore, 
there may be more than 113 spacers shared between the 9 
Brazilian isolates. The presence of mobile genetic elements, 
such as insertion sequences close to some CRISPR-Cas loci, 
may indicate that these systems may have been acquired 
horizontally. This observation is supported by the lower 
DNA GC content of cas operons (53% for both type I-E 
and type I-E’ systems) when compared with the average GC 
content of the C. striatum genome (59.3%). Furthermore, in 
6 isolates, the cas operons in both types I-E and I-E’ sys-
tems are close to transposases of families 21, 30, and 481 
(Fig. 1a and b). The IS21 element is carried by plasmid IncP 
R68 and is close to the kanamycin resistance gene therein 
[36]. IS30 works on a structure of compound transposons 
and has been identified as part of compound transposons 
that flank the colistin resistance gene mcr-1 [37]. The IS481 
family transposase actively mobilizes the TnRErm46 trans-
posable element that contains the erm gene responsible for 
emerging macrolide resistance [38]. According to Sangal 
et al. [8], the type I-E system is commonly flanked by mobile 
genetic elements, indicating the potential mobility of this 
system between isolates.

According to Ramos et al. [4], Brazilian isolates 2230 
and 2237 are clones belonging to PFGE profile VI and were 
isolated from the same patient with an interval of 1 month in 
2011 (Table 1). However, both isolates showed differences in 
the number of CRISPR-Cas systems. Isolate 2230 presented 
two type I-E CRISPR-Cas systems, and isolate 2237, only 
one type I-E CRISPR-Cas system. One of the CRISPR-Cas 
systems of isolate 2230 has 47 spacer sequences, as well as 
the number of spacers found in the CRISPR-Cas system of 
isolate 2237. The 47 spacer sequences found in both clones 
of the same PFGE profile are similar to each other (Sup-
plementary Table 3).
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The leader sequence is adjacent to the first spacer of the 
CRISPR locus and acts as a promoter for locus transcription 
and as a guide for novel spacer incorporation [39, 40]. This 
is a region rich in AT (adenine and thymine) and in Brazil-
ian isolates that ranged from 44 to 58%, and no difference 
between %AT of the leader sequence of the type I-E system 
and the type I-E’ system was observed. The leader sequence 
of isolates 2296, 2308 (contig 18) and isolate 2425 shared 
100% similarity (Fig. 1a) as well as the leader sequence of 
two CRISPR-Cas systems of isolate 2237.

The core genome is defined as the content of genes pre-
sent in all representatives of a species [41]. Core genome 
analysis was performed to verify if there was a correlation 
between the CRISPR system type and the core genome. 
Our core genome results showed that there is no such cor-
relation. Additionally, there was no correlation between 
the core genome and the cas1 gene phylogeny (Fig. 2) and 
direct repeat consensus (Supplementary Fig. 1). This fact 
has already been observed for the C. diphtheriae species 
[8]. By the core genome phylogenetic analysis, MDS 1954 
and 1961 isolates were grouped with one pre-1992 surgical 
incision isolate and two Chinese sputum and nasopharyngeal 
isolates in 2018. MDR isolates 2023 and 2308, classified 
as PFGE profile I in previous studies [4, 7], were grouped 
in the same clade. Similarly, MDR isolates 2230 and 2237, 
classified as PFGE profile VI [4], were grouped in the same 
clade. C. striatum Brazilian MDR isolates are grouped into 
a distinct clade from those isolates from other countries, but 
we do not know their antimicrobial susceptibility profiles, 
except for MDR isolates 215 and 216 from the USA men-
tioned above [3].

Searching for the CRISPR system of the Cas1 protein 
type I-E’ by BLASTp/NCBI, we have found that it exists 
only in one other Corynebacterium species: C. simulans 
(data not shown), phylogenetically related to C. striatum. 
Also, cas operon arrangement in the C. simulans genome 
is equivalent to the type I-E’ system found in our C. stria-
tum isolates. When all type I-E system Cas proteins were 
compared with those of type I-E’ system, they showed low 
identity (Table 3). In addition to the low similarity (30.7%) 
between the type I-E and type I-E’ system Cas1 proteins 
(Table 3), phylogenetic analysis revealed that the type I-E’ 
system Cas1 protein branched independently from the type 
I-E system Cas1 protein (Fig. 2).

Cas3 protein is the signature of type I systems, responsi-
ble for target DNA cleavage and degradation [43]. Cas3 gene 
(Supplementary Fig. 2) phylogenetic analyses were also car-
ried out and showed that the cas3 gene of the isolates that 
have the type I-E’ system separated into a different clade 
from the isolates that have the type I-E system.

Horizontal gene transfer favors the survival and adap-
tation of bacteria and archaea that acquire virulence fac-
tors, the ability to degrade toxic compounds, and antibiotic 

resistance. Although CRISPR systems provide bacterial 
immunity against horizontally acquired elements, this sys-
tem is not 100% effective. Some acquired elements are main-
tained when they confer selective advantage [40], and this 
could explain the presence of intact prophages found in 3 
of our isolates. To determine whether a bacterial lineage 
has been previously exposed to a specific phage, a matching 
CRISPR spacer sequence must be found. Phages can regu-
late host population size and can alter bacterial physiology 
as well bacteria phenotype in toxin production, antibiotic 
resistance genes, virulence factors, photosystem compo-
nents, CRISPR-Cas system, and other metabolic and genes 
with unknown functions [43]. The intact prophage regions 
of isolates 2130 and 2425 are similar in length, 43.2 kb and 
43.8 kb, respectively, both do not share sequence similarity 
and also differ in GC content. A large part of the prophage 
region is found in isolate MDS 1961 (6.9 kb to 9.1 kb), 
aligned with one of the 4 intact prophage regions C. striatum 
215, an MDR sputum isolate from the USA. Approximately 
21 kb of the phage region of isolate 2130 was aligned with 
various phage regions found in C. striatum strain, and only 
approximately 5 kb of the phage region was found in isolate 
2425, aligned with the phage region of C. striatum DSM 
45,711 (FDAARGOS 1197), isolated from blood in 2011 in 
Italy, according to information available in the German Col-
lection of Microorganisms DSMZ.10 In addition to the intact 
phages found in 3 of our isolates previously described, all 
isolates showed incomplete phage sequences with a total of 
8 in isolate 2308 (data not shown). These finds show that the 
CRISPR-Cas system is not always effective against foreign 
DNA invasions.

As important emergent pathogens, the CRISPR-Cas sys-
tem in C. striatum was found in 9 genomes from a nosoco-
mial outbreak that occurred at a public hospital in Rio de 
Janeiro, Brazil. Of these 9 clinical isolates, 8 are MDR with 
different resistance levels. According to the current clas-
sification method [11], the 13 CRISPR-Cas loci detected 
in our isolates are classified as type I-E system. However, 
additional cas operon alternative gene arrangement in 3 iso-
lates (Fig. 1b) was distinct from the classic type I-E system, 
despite the low identity between all proteins of both systems 
(Table 3). Phylogenetic analyses of cas1 (Fig. 2) and cas3 
genes (Supplementary Fig. 2) and of direct repeat consen-
sus sequences (Supplementary Fig. 1) separated both type 
I-E and type I-E’ systems into two distinct clades. Further-
more, no spacers were shared between the two systems. As 
observed by Ramos et al. [4], the profile PFGE I was the 
most frequently observed in the hospital, with susceptibility 
only to tetracycline, vancomycin, and linezolid, and it also 

10  https://​www.​dsmz.​de/​colle​ction/​catal​ogue/​detai​ls/​cultu​re/​DSM-​
45711

https://www.dsmz.de/collection/catalogue/details/culture/DSM-45711
https://www.dsmz.de/collection/catalogue/details/culture/DSM-45711
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presented a second CRISPR-Cas system called here type 
I-E’ system. As observed for other species, such as E. coli 
and Enterococci [15, 16], there is no correlation between the 
presence of CRISPR-Cas system and multidrug resistance 
in C. striatum. This is the first study about the CRISPR-Cas 
system occurrence, arrangement, and diversity in C. stria-
tum, and these finds may contribute to further investigations, 
in particular about the role of the CRISPR-Cas system in C. 
striatum.
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