Skip to main content

Advertisement

Log in

Candida albicans antibiofilm molecules: analysis based on inhibition and eradication studies

  • Bacterial and Fungal Pathogenesis - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Biofilms are communities of microbial cells surrounded by an extracellular polysaccharide matrix, recognized as a fungal source for local and systemic infections and less susceptible to antifungal drugs. Thus, treatment of biofilm-related Candida spp. infections with popular antifungals such as fluconazole is limited and species-dependent and alternatively demands the use of expensive and high toxic drugs. In this sense, molecules with antibiofilm activity have been studied but without care regarding the use of important criteria such as antibiofilm concentration lower than antifungal concentration when considering the process of inhibition of formation and concentrations equal to or lower than 300 µM. Therefore, this review tries to gather the most promising molecules regarding the activity against the C. albicans biofilm described in the last 10 years, considering the activity of inhibition and eradication. From January 2011 to July 2021, articles were searched on Scopus, PubMed, and Science Direct, combining the keywords “antibiofilm,” “candida albicans,” “compound,” and “molecule” with AND and OR operators. After 3 phases of selection, 21 articles describing 42 molecules were discussed in the review. Most of them were more promising for the inhibition of biofilm formation, with SM21 (24) being an interesting molecule for presenting inhibitory and eradication activity in biofilms with 24 and 48 h, as well as alizarin (26) and chrysazine (27), with concentrations well below the antifungal concentration. Despite the detection of these molecules and the attempts to determine the mechanisms of action by microscopic analysis and gene expression, no specific target has been determined. Thus, a gap is signaled, requiring further studies such as proteomic analyses to clarify it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prigitano A, Cavanna C, Passera M et al (2020) Evolution of fungemia in an Italian region. J Mycol Med 30(1):100906. https://doi.org/10.1016/j.mycmed.2019.100906

  2. Siopi M, Tarpatzi A, Kalogeropoulou E et al (2020) Epidemiological trends of fungemia in Greece with a focus on candidemia during the recent financial crisis: a 10-year survey in a tertiary care academic hospital and review of literature. Antimicrob Agents Chemother 21;64(3):e01516–e01519. https://doi.org/10.1128/AAC.01516-19

  3. Villanueva F, Veliz J, Canasa K et al (2020) Characteristics of fungemias in a Peruvian referral center: 5-year retrospective analysis. Ver Peru Med Exp Salud Publica 37(2):276–281. https://doi.org/10.17843/RPMESP.2020.372.5026

    Article  Google Scholar 

  4. D’Enfert C, Kaune AK, Alaban LR et al (2021) The impact of the fungus-host-microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Ver 5;45(3):fuaa060. https://doi.org/10.1093/femsre/fuaa060

  5. Paiva LCF, Vidigal PG, Donatti L, Svidzinski TIE, Consolaro MEL (2012) Assessment of in vitro biofilm formation by Candida species isolates from vulvovaginal candidiasis and ultrastructural characteristics. Micron 43:497–502. https://doi.org/10.1016/j.micron.2011.09.013

    Article  PubMed  Google Scholar 

  6. Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9:109–118. https://doi.org/10.1038/nrmicro2475

    Article  CAS  PubMed  Google Scholar 

  7. Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69(1):71–92. https://doi.org/10.1146/annurev-micro-091014-104330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsui C, Kong EF, Jabra-Rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis 74(4):ftw018. https://doi.org/10.1093/femspd/ftw018

  9. Cavalheiro M, Teixeira MC (2018) Candida biofilms: threats, challenges, and promising strategies. Front Med 13;5:28. https://doi.org/10.3389/fmed.2018.00028

  10. Mba IE, Nweze EI (2020) Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 39(10):1797–1819. https://doi.org/10.1007/s10096-020-03912-w

    Article  PubMed  Google Scholar 

  11. Pereira R, dos Santos Fontenelle RO, de Brito EHS, de Morais SM (2021) Biofilm of Candida albicans: formation, regulation and resistance. J Appl Microbiol 131(1):11–22. https://doi.org/10.1111/jam.14949

    Article  CAS  PubMed  Google Scholar 

  12. Fanning S, Mitchell AP (2012) Fungal biofilms. PLoS Pathog 8(4):e1002585. https://doi.org/10.1371/journal.ppat.1002585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chevalier M, Ranque S, Prêcheur I (2018) Oral fungal-bacterial biofilm models in vitro: a review. Med Mycol 56(6):653–667. https://doi.org/10.1093/mmy/myx111

    Article  CAS  PubMed  Google Scholar 

  14. Padder SA, Prasad R, Shah AH (2018) Quorum sensing: a less known mode of communication among fungi. Microbiol Res 210:51–58. https://doi.org/10.1016/j.micres.2018.03.007

    Article  PubMed  Google Scholar 

  15. Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF et al (2021) Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition. Front Microbiol 12:638609. https://doi.org/10.3389/fmicb.2021.638609

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP (2021) Candida albicans biofilms and polymicrobial interactions. Crit Ver Microbiol 47(1):91–111. https://doi.org/10.1080/1040841X.2020.1843400

    Article  CAS  Google Scholar 

  17. Ramage G, Saville SP, Thomas DP, López-Ribot JL (2005) Candida biofilms: Na update. Eukaryot Cell 4(4):633–638. https://doi.org/10.1128/EC.4.4.633-638.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. De-la-Pinta I, Cobos M, Ibarretxe J et al (2019) Effect of biomaterials hydrophobicity and roughness on biofilm development. J Mater Sci Mater Med 19;30(7):77. https://doi.org/10.1007/s10856-019-6281-3

  19. McCall AD, Pathirana RU, Prabhakar A, Cullen PJ, Edgerton M (2019) Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. Npj Biofilms Microbiomes 5(21):1–12. https://doi.org/10.1038/s41522-019-0094-5

    Article  CAS  Google Scholar 

  20. Uppuluri P, Chaturvedi AK, Srinivasan A et al (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6(3):e1000828. https://doi.org/10.1371/journal.ppat.1000828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chandra J, Mukherjee PK (2015) Candida biofilms: development, architecture, and resistance. Microbiol Spectr 3(4). https://doi.org/10.1128/microbiolspec.MB-0020-2015

  22. Thomas JG, Litton I, Rinde H (2006) Economic impact of biofilms on treatment costs. CDC. https://www.cdc.gov/ncidod/hip.challenges.htm. Accessed 13 Mar 2021

  23. Dominguez EG, Andes DR (2017) “Candida biofilm tolerance: Comparison of planktonic and biofilm resistance mechanisms”. In Rajendra Prasad (ed) Candida albicans: Cellular and molecular biology. Springer International Publishing, Cham, pp 77–92. https://doi.org/10.1007/978-3-319-50409-4_6

  24. Soldini S, Posteraro B, Vella A et al (2018) Microbiologic and clinical characteristics of biofilm-forming Candida parapsilosis isolates associated with fungaemia and their impact on mortality. Clin Microbiol Infect 24(7):771–777. https://doi.org/10.1016/j.cmi.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  25. Tobudic S, Kratzer C, Lassnigg A, Presterl E (2012) Antifungal susceptibility of Candida albicans in biofilms. Mycoses 55(3):199–204. https://doi.org/10.1111/j.1439-0507.2011.02076.x

    Article  PubMed  Google Scholar 

  26. Taff HT, Mitchell KF, Edward JA, Andes DR (2013) Mechanisms of Candida biofilm drug resistance. Future Microbiol 8(10):1325–1337. https://doi.org/10.2217/FMB.13.101

    Article  CAS  PubMed  Google Scholar 

  27. Silva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M (2017) Candida species biofilms' antifungal resistance. J Fungi 3(1):8. https://doi.org/10.3390/jof3010008

  28. Grau SS, Pozo JC, Romá E et al (2015) Cost-effectiveness of three echinocandins and fluconazole in the treatment of candidemia and/or invasive candidiasis in nonneutropenic adult patients. Clin Econ Outcomes Res 7:527–535. https://doi.org/10.2147/CEOR.S91587

    Article  CAS  Google Scholar 

  29. Ou HT, Lee TY, Chen YC, Charbonneau C (2017) Pharmacoeconomic analysis of antifungal therapy for primary treatment of invasive candidiasis caused by Candida albicans and non-albicans Candida species. BMC Infect Dis 17(1):481. https://doi.org/10.1186/s12879-017-2573-8

    Article  PubMed  PubMed Central  Google Scholar 

  30. Borba HHL, Steimbach LM, Riveros BS et al (2018) Cost-effectiveness of amphotericin B formulations in the treatment of systemic fungal infections. Mycoses 61(10):754–763. https://doi.org/10.1111/myc.12801

    Article  PubMed  Google Scholar 

  31. Kato H, Hagihara M, Yamagishi Y et al (2018) The evaluation of frequency of nephrotoxicity caused by liposomal amphotericin B. J Infect Chemother 24(9):725–728. https://doi.org/10.1016/j.jiac.2018.04.014

    Article  CAS  PubMed  Google Scholar 

  32. de Barros PP, Rossoni RD, de Souza CM, Scorzoni L, Fenley JDC, Junqueira JC (2020) Candida biofilms: an update on developmental mechanisms and therapeutic challenges. Mycopathologia 185(3):415–424. https://doi.org/10.1007/s11046-020-00445-w

    Article  PubMed  Google Scholar 

  33. Bjarnsholt T, Alhede M, Alhede M et al (2013) The in vivo biofilm. Trends Microbiol 21(9):466–474. https://doi.org/10.1016/j.tim.2013.06.002

    Article  CAS  PubMed  Google Scholar 

  34. Khan MSA, Ahmad I (2012) Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 67(3):618–621. https://doi.org/10.1093/jac/dkr512

    Article  CAS  PubMed  Google Scholar 

  35. Gupta P, Pruthi V, Poluri KM (2021) Mechanistic insights into Candida biofilm eradication potential of eucalyptol. J Appl Microbiol 131(1):105–123. https://doi.org/10.1111/jam.14940

    Article  CAS  PubMed  Google Scholar 

  36. Kim HR, Eom YB (2021) Antifungal and anti-biofilm effects of 6-shogaol against Candida auris. J Appl Microbiol 130(4):1142–1153. https://doi.org/10.1111/jam.14870

    Article  CAS  PubMed  Google Scholar 

  37. Yan Y, Tan F, Miao H, Wang H, Cao Y (2019) Effect of Shikonin against Candida albicans biofilms. Front Microbiol 10:1085. https://doi.org/10.3389/fmicb.2019.01085

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu H, Liu X, Wang C et al (2016) Assessing the potential of four cathelicidins for the management of mouse candidiasis and Candida albicans biofilms. Biochimie 121:268–277. https://doi.org/10.1016/j.biochi.2015.11.028

    Article  CAS  PubMed  Google Scholar 

  39. Yun DG, Lee DG (2016) Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans. Int J Biochem Cell Biol 80:1–9. https://doi.org/10.1016/j.biocel.2016.09.008

    Article  CAS  PubMed  Google Scholar 

  40. Kishen A, Haapasalo M (2010) Biofilm models and methods of biofilm assessment Introduction: changing paradigm in endodontic infection. Endod Topics 22(1):58–78. https://doi.org/10.1111/j.1601-1546.2012.00285.x

    Article  Google Scholar 

  41. Lee JH, Kim YG, Choi P, Ham J, Park JG, Lee J (2018) Antibiofilm and antivirulence activities of 6-gingerol and 6-shogaol against Candida albicans due to hyphal inhibition. Front Cel Infect Microbiol 8:299. https://doi.org/10.3389/fcimb.2018.00299

    Article  CAS  Google Scholar 

  42. Jovanovic M, Radivojevic J, O’Connor K et al (2019) Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of Candida albicans. Bioorg Chem 87:209–217. https://doi.org/10.1016/j.bioorg.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  43. Lee JH, Kim YG, Khadke SK, Lee J (2020) Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol. Microb Biotechnol 14(4):1353–1366. https://doi.org/10.1111/1751-7915.13710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Priya A, Pandian SK (2020) Piperine impedes biofilm formation and hyphal morphogenesis of Candida albicans. Front Microbiol 11:756. https://doi.org/10.3389/fmicb.2020.00756

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gulati M, Nobile CJ (2016) Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect 18(5):310–321. https://doi.org/10.1016/j.micinf.2016.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marrie TJ, Costerton JW (1984) Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters. J Clin Microbiol 19(5):687–693. https://doi.org/10.1128/jcm.19.5.687-693.1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. PubMed (2021) National Center for Biotechnology Information (NCBI). https://www.pubmed.ncbi.nlm.nih.gov. Accessed 18 Oct 2021

  48. Ma C, Du F, Yan L et al (2015) Potent activities of roemerine against Candida albicans and the underlying mechanisms. Molecules 20(10):17913–17928. https://doi.org/10.3390/molecules201017913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goswami RR, Pohare SD, Raut JS, Karuppayil SM (2017) Cell surface hydrophobicity as a virulence factor in Candida albicans. Biosci Biotechnol Res Asia 14(4):1503–1511. https://doi.org/10.13005/bbra/2598

    Article  Google Scholar 

  50. Kumari A, Mankotia S, Chaubey B, Luthra M, Singh R (2018) Role of biofilm morphology, matrix content and surface hydrophobicity in the biofilm-forming capacity of various Candida species. J Med Microbiol 67(6):889–892. https://doi.org/10.1099/jmm.0.000747

    Article  CAS  PubMed  Google Scholar 

  51. Huang G, Huang Q, Wei Y, Wang Y, Du H (2019) Multiple roles and diverse regulation of the Ras/cAMP/protein kinase A pathway in Candida albicans. Mol Microbiol 111(1):6–16. https://doi.org/10.1111/mmi.14148

    Article  CAS  PubMed  Google Scholar 

  52. Shahzad M, Sherry L, Rajendran R, Edwards CA, Combet E, Ramage G (2014) Utilising polyphenols for the clinical management of Candida albicans biofilms. Int J Antimicrob Agents 44(3):269–273. https://doi.org/10.1016/j.ijantimicag.2014.05.017

    Article  CAS  PubMed  Google Scholar 

  53. Palmieri V, Bugli F, Cacaci M, Perini G, Maio F, Delogu G, Torelli R, Conti C, Sanguinetti M, Spirito M, Zanoni R, Papi M (2018) Graphene oxide coatings prevent Candida albicans biofilm formation with a controlled release of curcumin-loaded nanocomposites. Nanomedicine 13(22):2867–2879. https://doi.org/10.2217/nnm-2018-0183

    Article  CAS  PubMed  Google Scholar 

  54. Maa S, Moserb D, Han F, Leonharde M, Schneider-Sticklere B, Tan Y (2020) Preparation and antibiofilm studies of curcumin loaded chitosan nanoparticles against polymicrobial biofilms of Candida albicans and Staphylococcus aureus. Carbohydr Polym 241:116254. https://doi.org/10.1016/j.carbpol.2020.116254

  55. Nafee N, Husari A, Maurer CK et al (2014) Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 192:131–140. https://doi.org/10.1016/j.jconrel.2014.06.055

    Article  CAS  PubMed  Google Scholar 

  56. Lobo CIV, de A. Lopes ACU, Klein MI (2021) Compounds with distinct targets present diverse antimicrobial and antibiofilm efficacy against Candida albicans and Streptococcus mutans, and combinations of compounds potentiate their effect. J Fungi 7(5):340. https://doi.org/10.3390/jof7050340

  57. Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4(8):461–469. https://doi.org/10.1046/j.1462-5822.2002.00206.x

    Article  CAS  PubMed  Google Scholar 

  58. de Groot PWJ, de Boer AD, Cunningham J et al (2004) Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell 3(4):955–965. https://doi.org/10.1128/EC.3.4.955-965.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leea JH, Kima YG, Khadkea SK, Yamanob A, Woob JT, Lee J (2019) Antimicrobial and antibiofilm activities of prenylated flavanones from Macaranga tanarius. Phytomedicine 63:153033. https://doi.org/10.1016/j.phymed.2019.153033

    Article  CAS  Google Scholar 

  60. Prasath KG, Sethupathy S, Pandian SK (2018) Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J Proteomics 208:103503. https://doi.org/10.1016/j.jprot.2019.103503

    Article  CAS  Google Scholar 

  61. Kim YG, Lee JH, Park JG, Lee J (2020) Inhibition of Candida albicans and Staphylococcus aureus biofilms by centipede oil and linoleic acid. Biofouling 36(2):126–137. https://doi.org/10.1080/08927014.2020.1730333

    Article  CAS  PubMed  Google Scholar 

  62. Pandolfi F, D’Acierno F, Bortolami M et al (2019) Searching for new agents active against Candida albicans biofilm: a series of indole derivatives, design, synthesis and biological evaluation. Eur J Med Chem 165:93–106. https://doi.org/10.1016/j.ejmech.2019.01.012

    Article  CAS  PubMed  Google Scholar 

  63. Kovács R, Majoros L (2020) Fungal quorum-sensing molecules: a review of their antifungal effect against Candida biofilms. J Fungi 6(3):99. https://doi.org/10.3390/jof6030099

    Article  CAS  Google Scholar 

  64. Singkum P, Muangkaew W, Suwanmanee S, Pumeesat P, Wongsuk T, Luplertlop N (2020) Suppression of the pathogenicity of Candida albicans by the quorum-sensing molecules farnesol and tryptophol. J Gen Appl Microbiol 65(6):277–283. https://doi.org/10.2323/jgam.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  65. Sebaa S, Boucherit-Otmani Z, Courtois P (2019) Effects of tyrosol and farnesol on Candida albicans biofilm. Mol Med Rep 19:3201–3209. https://doi.org/10.3892/mmr.2019.9981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006) Function of Candida albicans adhesin HWP1 in biofilm formation. Eukaryot Cell 5(10):1604–1610. https://doi.org/10.1128/EC.00194-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nobile CJ, Andes DR, Nett JE et al (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2(7):0636–0649. https://doi.org/10.1371/journal.ppat.0020063

    Article  CAS  Google Scholar 

  68. Orsi CF, Sabia C, Ardizzoni A et al (2014) Inhibitory effects of different lactobacilli on Candida albicans hyphal formation and biofilm development. J Biol Regul Homeost 28(4):743–752

    CAS  Google Scholar 

  69. Oura T, Kajiwara S (2010) Candida albicans sphingolipid C9- methyltransferase is involved in hyphal elongation. Microbiology 156:1234–1243. https://doi.org/10.1099/mic.0.033985-0

    Article  CAS  PubMed  Google Scholar 

  70. Rella A, Farnoud AM, Del Poeta M (2016) Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res 61:63–72. https://doi.org/10.1016/j.plipres.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  71. Lattif AA, Mukherjee PK, Chandra J et al (2011) Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. Microbiology 157:3232–3242. https://doi.org/10.1099/mic.0.051086-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hara T, Sonoi A, Handa T et al (2021) Unsaturated fatty acid salts remove biofilms on dentures. Sci Rep 11(1):12524. https://doi.org/10.1038/s41598-021-92044-y

  73. Reddy TVK, Jyotsna A, Devi BLAP, Prasad RBN, Poornachandra Y, Kumar CG (2016) Design, synthesis and in vitro biological evaluation of short-chain C12-sphinganine and its 1,2,3-triazole analogs as potential antimicrobial and anti-biofilm agents. Eur J Med Chem 118:98–106. https://doi.org/10.1016/j.ejmech.2016.04.020

    Article  CAS  Google Scholar 

  74. Madeo F, Frohlich E, Ligr M et al (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145:757–767. https://doi.org/10.1083/jcb.145.4.757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang M, Chang W, Shi H, Li Y, Zheng S, Lou WLH (2018) Floricolin C elicits intracellular reactive oxygen species accumulation and disrupts mitochondria to exert fungicidal action. FEMS Yeast Res 18(1). https://doi.org/10.1093/femsyr/foy002

  76. Wall G, Montelongo-Jauregui D, Bonifacio BV, Lopez-Ribot JL, Uppuluri P (2019) Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol 52:1–6. https://doi.org/10.1016/j.mib.2019.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hadanu R, Mastjeh S, Sholikhah EN, Wijayanti MA, Tahir I (2007) Quantitative structure-activity relationship analysis (QSAR) of antimalarial 1,10-phenanthroline derivatives compounds. Indo J Chem 7(1):72–77. https://doi.org/10.22146/ijc.21716

  78. Setiawati S, Nuryastuti T, Ngatidjan N et al (2017) In vitro antifungal activity of (1)-N-2-methoxybenzyl-1,10-phenanthrolinium bromide against Candida albicans and its effects on membrane integrity. Mycobiology 45(1):25–30. https://doi.org/10.5941/MYCO.2017.45.1.25

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nuryastuti T, Setiawati S, Ngatidjan N et al (2018) Antibiofilm activity of (1)-N-2-methoxybenzyl-1,10-phenanthrolinium bromide against Candida albicans. J Mycol Med 28(2):367–373. https://doi.org/10.1016/j.mycmed.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  80. Favre-Godal Q, Dorsaz S, Queiroz EF et al (2015) Anti-Candida cassane-type diterpenoids from the root bark of Swartzia simplex. J Nat Prod 78(12):2994–3004. https://doi.org/10.1021/acs.jnatprod.5b00744

    Article  CAS  PubMed  Google Scholar 

  81. Jafri H, Ahmad I (2020) Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. J Mycol Med 30(1):100911. https://doi.org/10.1016/j.mycmed.2019.100911

  82. Dalleau S, Cateau E, Berges T, Berjeaud JM, Imbert C (2008) In vitro activity of terpenes against Candida biofilms. Int J Antimicrob Agents 31:572–576. https://doi.org/10.1016/j.ijantimicag.2008.01.028

    Article  CAS  PubMed  Google Scholar 

  83. Miranda-Cadena K, Marcos-Arias C, Mateo E, Aguirre-Urizar JM, Quindos G, Eraso E (2021) In vitro activities of carvacrol, cinnamaldehyde and thymol against Candida biofilms. Biomed Pharmacother 143:112218. https://doi.org/10.1016/j.biopha.2021.112218

  84. Al-Ani E, Heaselgrave W (2022) The investigation of thymol formulations containing poloxamer 407 and hydroxypropyl methylcellulose to inhibit Candida biofilm formation and demonstrate improved bio-compatibility. Pharmaceuticals 15(1):71. https://doi.org/10.3390/ph15010071

  85. Vila T, Lopez-Ribot JL (2017) Screening the pathogen box for identification of Candida albicans biofilm inhibitors. Antimicrob Agents Chemother 61(1):e02006–16. https://doi.org/10.1128/AAC.02006-16

  86. Fathallah N, Raafat MM, Issa MY et al (2019) Bio-guided fractionation of prenylated benzaldehyde derivatives as potent antimicrobial and antibiofilm from Ammi majus l. fruits-associated Aspergillus amstelodami. Molecules 24(22):4118. https://doi.org/10.3390/molecules24224118

  87. Wong SSW, Kao RYT, Yuen KY, Wang Y, Yang D, Samaranayake LP, Seneviratne CJ (2014) In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLoS One 22;9(1):e85836. https://doi.org/10.1371/journal.pone.0085836

  88. Feldman M, Al-Quntar A, Polacheck I, Friedman M, Steinberg D (2014) Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans. PLoS One 9(5):e93225. https://doi.org/10.1371/journal.pone.0093225

  89. Navarathna DHMLP, Hornby JM, Krishnan N, Parkhurst A, Duhamel GE, Nickerson KW (n.d.) Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect Immun 75(4):1609–1618. https://doi.org/10.1128/IAI.01182-06

  90. Manoharan RK, Lee JH, Kim YG, Lee J (2017) Alizarin and chrysazin inhibit biofilm and hyphal formation by Candida albicans. Front Cell Infect Microbiol 90 7:447. https://doi.org/10.3389/fcimb.2017.00447

    Article  CAS  Google Scholar 

  91. Mohammad H, Eldesouky HE, Hazbun T, Mayhoub AS, Seleem MN (2019) Identification of a phenylthiazole small molecule with dual antifungal and antibiofilm activity against Candida albicans and Candida auris. Sci Rep 9(1):18941. https://doi.org/10.1038/s41598-019-55379-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study received financial support from the Bahia State Foundation for Research Support (FAPESB) (grant code BOL2236/2019). The author (Humberto F. Freitas) would like to thank the Coordination for the Improvement of Higher Education Personnel agency (CAPES) (Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

Carolina Guimarães, conceptualization, methodology, and writing — original draft. Humberto de Freitas, conceptualization, methodology, software, writing — review and editing, and visualization. Tânia Barros, writing — review and editing, and visualization. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Tânia Fraga Barros.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article Figs 1 and 2 had been interchanged.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Rosário Esteves Guimarães, C., de Freitas, H.F. & Barros, T.F. Candida albicans antibiofilm molecules: analysis based on inhibition and eradication studies. Braz J Microbiol 54, 37–52 (2023). https://doi.org/10.1007/s42770-022-00876-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00876-1

Keywords

Navigation