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Abstract
Capybara (Hydrochoerus hydrochaeris) is the world’s largest rodent species distributed throughout South America. These 
animals are incredibly tolerant to anthropogenic environments and are occupying large urban centers. Capybaras are known 
to carry potentially zoonotic agents, including R. rickettsia, Leishmania spp., Leptospira spp., Trypanosoma spp., Salmonella 
spp., Toxoplasma gondii, and rabies virus. Focusing on the importance of monitoring potential sources of emerging zoonotic 
viruses and new viral reservoirs, the aim of the present study was to assess the presence of fecal-borne viruses in the feces 
of capybaras living in urban parks in São Paulo state, Brazil. A total of 337 fecal samples were collected between 2018 and 
2020 and screened for the following: (i) Rotavirus group A (RVA) by ELISA; (ii) non-RVA species and Picobirnavirus (PBV) 
using PAGE; (iii) Human Bocaparvovirus (HBoV), Bufavirus (BuV), Tusavirus (TuV), and Cutavirus (CuV) qPCR; (iv) 
Human Enterovirus (EV), Norovirus GII (NoV), and Hantavirus by in houses RT-qPCR; (v) SARS-CoV-2 via commercial 
RT-qPCR kit assay; and (vi) Astrovirus (AstV) and Adenovirus (AdV) using conventional nested (RT)-PCRs. All fecal 
samples tested were negative for fecal-borne viruses. This study adds further evidence that the fecal-borne viruses is a minor 
public health issue in Brazilian capybaras, at least during the surveillance period and surveyed areas. Continuous monitoring 
of sylvatic animals is essential to prevent and control the emergence or re-emergence of newly discovered virus as well as 
viruses with known zoonotic potential.
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Zoonosis is an infectious disease that is transmitted between 
animals and humans and can be caused by bacteria, viruses, 
parasites, and even prions [1]. In recent years, there has 
been an emergence of zoonotic infections, especially viral-
borne diseases, including the recently Zika virus outbreak 
and SARS-CoV-2 pandemic [2, 3]. Wild animal species in 
close contact with humans are often involved in viral-borne 
infections [1] and should be carefully considered when 

assessing zoonotic disease emergence. Continuing wildlife 
surveillance is crucial for mitigating the consequences of 
emerging zoonotic viruses.

Rodents are the most species-rich order of mammals and 
well known recognized as reservoirs associated with new 
virus emergence [1]. Capybara (Hydrochoerus hydrochaeris) 
is the world’s largest rodent species, displaying semi-aquatic 
habit and distributed throughout South America. Their high 
reproductive capacity, generalist feeding habits, and minimal 
habitat quality requirements have contributed to overpopula-
tion in numerous regions of Brazil. In addition, capybaras 
are regularly found in close proximity to human population 
in urban parks across the country [4–6]. R. rickettsii is trans-
mitted to humans mainly by the tick Amblyomma sculptum, 
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which uses the capybara as its main host [7]. Capybaras 
are also known to carry other potentially zoonotic agents, 
including Leishmania spp., Leptospira spp., Trypanosoma 
spp., Salmonella spp., Toxoplasma gondii, and rabies virus 
[8, 9]. Therefore, monitoring these animals in areas cohab-
ited by humans is vital to help outline measures in order to 
decrease the risk of a zoonotic emergence. The role of these 
rodents as asymptomatic hosts for potential zoonotic fecal-
borne viruses has been poorly investigated in the country 
[4–6].

Enteric viruses can be transmitted by the fecal–oral route 
directly or by indirect contact via contaminated fluids, 
including surface water, food, and carriers such as fomites. 
In addition, enteric viruses are usually very stable in the 
environment and can survive under different conditions 
once these pathogens must tolerate the hostile conditions 
of the gastrointestinal tract [10]. Recently, there have been 
a growing number of reports describing the interspecies 
transmission of enteric viruses between animal and humans 
[1, 11]. Rotavirus, Picobirnavirus, Norovirus, Astrovirus, 
Bocaparvovirus, Enterovirus, and Adenovirus infect a wide 
range of vertebrates including human, domestic and wild 
mammals, especially rodents [1, 11, 12]. Moreover, rodents 
are also a source of Coronaviruses and Hantaviruses as well 
as newly identified viruses [12]. It is important to highlight 
that virus fecal shedding do not necessarily require replica-
tion in the intestine, like hepatitis A and E viruses that is 
shed in the feces despite their liver tropism [13]. In the same 
way, not all viruses that are shed in feces infect new hosts 
via the fecal–oral route, standing out the respiratory viruses 
[2], but in both cases, viral DNA/RNA can be detected in 
stool samples.

Focusing on the importance of monitoring potential 
sources of emerging zoonotic viruses and new viral reser-
voirs, the aim of the present study was to assess the presence 
of fecal-borne viruses in the feces of capybaras living in 
urban parks in São Paulo state, Brazil.

A total of 337 fecal samples were collected between 2018 
and 2020 from 4 urban parks located in 2 municipalities of 
São Paulo state, Brazil. The (i) Yacht Club Santo Amaro 
(YCSA) is placed on the shores of the Guarapiranga Reser-
voir (Socorro District); the (ii) Novo Rio Pinheiros bike lane 
is placed on the banks of the Pinheiros River, both of them 
located at south region of São Paulo City (Santo Amaro 
District); the (iii) Tietê Ecological Park (PET) is placed on 
the east region of São Paulo City (Cangaíba District); and 
the (iv) Municipal Dam Park is placed on the east region of 
São José do Rio Preto City (Fig. 1). The 4 parks inhabited 
by capybaras present low water quality conditions, and the 
pollutants are associated with anthropogenic environments, 
mostly emerging contaminants resultant from incomplete 
degradation in sewage treatment plants (https://​cetesb.​sp.​
gov.​br/​infoa​guas/). Stool samples were obtained in natura 

and immediately stored at − 20 °C. All frozen specimens 
were taken to the Enteric Disease Laboratory, Virology 
Center, Adolfo Lutz Institute, São Paulo, Brazil. All ani-
mal procedures in this study were approved by the Ethics 
Committee on Animal Use (CEUA) guidelines of the Adolfo 
Lutz Institute, IAL, São Paulo, SP, Brazil (no 04/2018) and 
by Chico Mendes Institute for Biodiversity Conservation 
(ICMBio), Ministry of the Environment (No 77659–1/2021).

Controls for (RT-) PCR inhibitors or for DNA/RNA 
extraction efficiency are not available for animal origin 
specimens. In order to improve the reliability of negative 
PCR test result eventually obtained (i.e., assure that a nega-
tive PCR test result represent a true negative in the sam-
ple), we proposed to verify the viability of the capybaras 
stools screened in the present study using MALDI-TOF MS 
(matrix-assisted laser desorption ionization–time of flight 
mass spectrometry) and seeded experimental specimens 
with rotavirus and adenovirus reference strains (representing 
enteric RNA and DNA viruses, respectively). MALDI-TOF 
MS is a rapid and simple technique for microbial identifica-
tion [14]. The detection of bacteria and fungi in capybara 
feces ensures an adequate logistics applied in the collection, 
packaging, and transport of feces samples from the field to 
the laboratory for viral testing. In addition, the capacity of 
recovering viruses artificially seeded in stools specimens 
offer the opportunity to evaluate the presence of potential 
PCR inhibitory factors. Therefore, based on collection site 
(representative sampling), a total of 35 stool samples were 
selected for MALDI-TOF MS investigation and 20 fecal 
specimens for seeded experiments.

One positive Rotavirus group A (RVA) G2P[4] speci-
men (GenBank accession No. JQ693560) and one positive 
Human Adenovirus F-40 (HAdV-F40) (GenBank acces-
sion No. MH201117) stool sample representing enteric 
RNA viruses and DNA viruses, respectively, were used 
to spike experimental specimens. The reference RVA and 
HAdV-F40 samples used here belong to the Enteric Dis-
eases Laboratory collection, a regional reference center for 
viral gastroenteritis surveillance. The titers of positive RVA 
and HAdV-F samples used for the spiking experiments were 
not established; hence, detection limits were not evaluated. 
The aim of the seeded experiments was exclusively tested 
the sample matrices (stool) for containing potential PCR 
inhibitory factors. A total of 20 capybaras stool samples 
was spiked with the reference RVA G2P[4] and HAdV-F40 
specimens. Briefly, 1 g of experimental stool and 1 g of 
each reference sample were added to 1 mL of TRIS/HCL 
in 1.5-mL microtubes. The suspensions were vigorously 
vortexed and centrifuged at 5000 × g for 30 min. The clari-
fied supernatants were transferred to 2-mL cryotubes and 
stored at − 20 °C for subsequent direct DNA/RNA extrac-
tion using Bio Gene DNA/RNA Viral (Quibasa – Química 
Básica Ltda, Belo Horizonte, BH, Brazil) according to the 
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manufacturer’s instructions. Qualitative (RT-) PCRs were 
used for screening RVA and HAdV in seeded specimens. For 
RVA detection, the extracted dsRNA was subjected to G and 
P typing by semi-nested multiplex reverse transcription–pol-
ymerase chain reaction (RT-PCR) with specific primers for 
G and P types following protocol previously described by 
Gouvea et al. [15]. The presence of HAdV was detected by 
amplifying the Hexon gene, using primers AdVFhex( +)/
( −) (292 bp fragment) according to the protocol reported by 
Primo et al. [16]. All PCR products were visualized by Gel-
Red™ (Biotium, Fremont, CA) staining and UV transillumi-
nation, following electrophoretic separation (1 h, 140 V) on 
1.5% agarose gels. The G2 and P[4] genotypes were assigned 
using agarose gel analysis of second-round PCR products, 
652 pb and 483 pb, respectively.

The 337 fecal specimens were screened for 12 differ-
ent fecal-borne viruses: Rotavirus, Picobirnavirus, Human 
Bocaparvovirus, Bufavirus, Tusavirus, Cutavirus, Enterovi-
rus, Norovirus genogroup GII, Hantavirus, SARS-CoV-2, 
Astrovirus, and Adenovirus (Supplement 1). All specimens 
were screened for RVA by a commercial enzyme-linked 
immunosorbent assay (ELISA) (RIDASCREEN® Rotavirus, 

R-biopharm, Darmstadt, Germany), according to the manu-
facturers protocol. Fecal samples were also tested for non-
RVA species and Picobirnavirus (PBV) using polyacrylamide 
gel electrophoresis (PAGE) followed by silver staining of gels, 
according to standard procedure previously describe [17].

Viral nucleic acids were extracted from 10% fecal samples 
using Bio Gene DNA/RNA Viral (Quibasa – Química Básica 
Ltda, Belo Horizonte, BH, Brazil) according to the manufac-
turer’s instructions. Human Bocaparvovirus (HBoV), Bufa-
virus (BuV), Tusavirus (TuV), and Cutavirus (CuV) were 
screened by quantitative real‐time polymerase chain reac-
tion (qPCR) following protocols previously reported [18, 
19]. Human Enterovirus (EV), Norovirus GII (NoV), and 
Hantavirus were tested by reverse transcription quantitative 
real‐time polymerase chain reaction (RT-qPCR) using proce-
dures formerly defined by Zhang et al. [20], Kageyama et al. 
[21], and Nunes et al. [22], respectively. Severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) was evalu-
ated using commercial Allplex™ 2019-nCoV (Seegene Inc., 
Seoul, South Korea) RT-qPCR kit assay. Reverse transcrip-
tion was carried out with random primers [23], and cDNA 
was screened for the presence of Astrovirus (AstV) using 

Fig. 1   Map of São Paulo state, Southwestern region, Brazil; high-
lighting municipalities (in red and blue) and São Paulo municipali-
ties’ districts (in red, green, and yellow) from which samples were 
collected from free-living capybaras in urban parks between 2018 
and 2020. Up left: Map of Brazil stressing São Paulo state. Down: 

Municipalities surveyed: São Paulo and São José do Rio Preto. Up 
right: Districts surveyed at São Paulo municipality. Map was gener-
ated with QGIS software v2.14.9 (https://​www.​qgis.​org/​pt_​BR/​site/​
about/​index.​html)

https://www.qgis.org/pt_BR/site/about/index.html
https://www.qgis.org/pt_BR/site/about/index.html


546	 Brazilian Journal of Microbiology (2023) 54:543–551

1 3

heminested PCR targeting the RdRp gene following prim-
ers and protocol described by Chu et al. [24]. Nested-PCR 
amplification of a partial sequence of the adenoviral DNA 
polymerase gene was performed for Adenovirus (AdV) test-
ing following primers and protocol described by Li et al. [12].

Of the 35 stool samples tested using MALDI-TOF MS, 
a total of 25 bacterial and 5 fungi species were identified 
(Table 1). MALDI-TOF MS is a rapid, simple, inexpensive, 
and high-throughput proteomic technique for identification 
of both bacteria and fungi, but it is important to highlight 
that its application is dependent on the reference strains 

included in the database [25]. Therefore, for some fungi or 
bacteria species, their identification by MALDI-TOF MS 
may be failed during the sample screening conducted here. 
Enterococcus hirae (20%, 7/35), Escherichia coli (14.3%, 
5/35), and Escherichia hermannii (5.7%, 2/35) were identi-
fied in the feces (Table 1). The presence of the enterobac-
terias in capybaras stool has been previously investigated 
in Brazil [8], and a high inter-individual bacterial variation 
was observed. This data was also consistent with a previ-
ous study conducted in Venezuela [26]. The successfully 
microbial identification in these 35 selected samples assures 
that the biological samples were of consistent quality for the 
intent analysis and study goals.

The qualitative PCR was able to detect RVA G2P[4] and 
HAdV-F40 in all 20 seeded capybaras stool samples. Virus 
detection in stool samples could be hampered by PCR 
inhibitors that may lead to false-negative results [27], especially 
considering feces from animal origin that can be a very 
heterogeneous biological material. Several PCR inhibitors have 
been characterized including phenolic compounds, glycogen, 
fats, cellulose, constituents of bacterial cells, heavy metals [28], 
and, more recently, dietary factor and gut microbiota [29]. All 
DNA/RNA extracts in seeded specimens amplified efficiently 
and did not differ from results of DNA/RNA extracted from 
the original reference strains used. Although viral titer was not 
determined prior to seeding experiments, the qualitative (RT-) 
PCRs protocols applied here successfully recover virus from the 
capybaras specimens. Thus, the stool samples employed in the 
present study were suitable for viral testing. This investigation 
emphasizes the need for PCR inhibitor evaluation when clinical 
samples obtained from animal origin are analyzed.

All samples tested negative for RVA, non-RVA species, 
HBoV, NoV GII, AstV, and AdV. These viruses are well 
known recognized as important cause associated with acute 
gastroenteritis in human and animals worldwide, as well as 
involved in interspecies transmission [30–34]. RVA, non-
RVA species, HBoV, NoV GII, AstV, and AdV infections 
in rodents have been reported in the past, especially in rats 
[1, 11, 35, 36]. However, no capybara has tested positive 
for these viruses so far [4–6], in agreement with the data 
obtained here. There is also no serological evidence of viral 
gastroenteric infections [8, 37]. Collectively, capybaras’ 
role in the epidemiological chain of enteric viral infections 
remains unknown. It is important to mentioning that besides 
anthropogenic influences, local water bodies are also con-
taminated with sewage, sustaining the continuous exposing 
of capybaras to enteric viruses and to a potentially zoonotic-
transmission route as these animals are living at the human-
animal interface environments.

PBV is ubiquitous in feces and gut contents of humans 
and animals with or without diarrhea but also detected in 
invertebrates and environmental samples [38]. The true 
host(s) and the role of these viruses as causative agents of 

Table 1   Frequency of bacterial and fungi species identified in the 
fecal samples of 35 free-ranging capybaras (Hydrochoerus hydrocha-
eris), São Paulo state, Brazil, 2018–2020

Bold means the total of samples and the percentage obtnaied

Bacterial Positive individuals % of strains
  Acinetobacter lwoffii 2 5.7%
  Acinetobacter schindleri 1 2.8%
  Acinetobacter seifertii 1 2.8%
  Arthrobacter gandavensis 1 2.8%
  Bacillus altitudinis 1 2.8%
  Bacillus cereus 7 20%
  Bacillus koreensis 1 2.8%
  Bacillus licheniformis 1 2.8%
  Bacillus marisflavi 10 28.6%
  Bacillus megaterium 5 14.3%
  Bacillus pumilus 10 28.6%
  Bacillus spp. 2 5.7%
  Bacillus thuringiensis 1 2.8%
  Cellulosimicrobium cel-

lulans
1 2.8%

  Enterobacter bugandensis 2 5.7%
  Enterobacter kobei 2 5.7%
  Enterococcus hirae 7 20%
  Enterococcus mundtii 1 2.8%
  Escherichia coli 5 14.3%
  Escherichia hermannii 2 5.7%
  Klebsiella variicola 1 2.8%
  Kurthia gibsonii 1 2.8%
  Microbacterium arborescens 1 2.8%
  Pantoea séptica 1 2.8%
  Serratia marcescens 1 2.8%

Total 35 samples 100%
Fungi Positive individuals % of strains
  Cryptococcus diffluens 2 18%
  Cryptococcus laurentii 3 27%
  Cryptococcus liquefaciens 1 9%
  Rhodotorula mucilaginosa 4 36%
  Torulaspora delbrueckii 

(Saccharomyces del-
brueckii)

1 9%

Total 11 samples 100%
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gastroenteritis and respiratory infections or as opportunis-
tic enteric pathogens remain unclear [39]. Although PBV 
has been frequently detected in a wild range of animal 
feces [40], there is no evidence of PBV infecting capybaras 
in viral surveillance studies [4–6] as also demonstrated in 
the present investigation.

Hantaviruses are considered infectious agents of great 
importance for public health and has been known to circulate 
throughout the Americas in the rodents [41]. The growing 
number of reports on hantaviruses in other vertebrate animal 
species, including bats and shrews, has stimulated the inter-
est in search for discovering potential new reservoirs, and 
Brazil is not an exception [42, 43]. Most rodent hosts shed 
Hantavirus in their saliva, urine, and feces [44]. In a con-
trolled experiment conducted with bank voles, Hardestam 
et al. [45] demonstrated the excretion of Puumala hantavi-
rus in these three clinical samples, corroborating that these 
transmission routes may occur in nature and eventually able 
to reach humans. None of the capybaras tested here were 
positive for viral hantavirus RNA in feces. Nevertheless, one 
limitation of the present study is the lack of serum samples 
collected from the animals in order to verify serological evi-
dence of previous infections by hantavirus.

BuV, TuV, and CuV are among the newest parvoviruses 
described in humans [46]. These viruses have been also 
reported in wild and domestic animals, including in 
rodents, but information on their epidemiology is rather 
limited [47–49]. BuV, CuV, and TuV have been described 
circulating in feces of human and animal origin in Brazil 
[50, 51]. Here we investigated the capybaras potential to 
play a role as harboring new and poorly surveyed viruses 
in the country. No positivity for BuV, CuV, and TuV were 
detected in capybaras feces, excluding them as potential 
hosts or reservoirs of these new parvoviruses in the 
investigated areas.

In the same way, we aimed to determinate whether capyba-
ras could be sheltering EV strains. EV are classified into twelve 
species EV-A to EV-L (https://​talk.​ictvo​nline.​org/​taxon​omy/), 
where species EV-A to EV-D commonly infects humans, spe-
cies EV-E to EV-G and EV-K causes diseases affecting live-
stock industry, including cattle and swine’s, species EV-H and 
EV-J was identified in monkeys, and species EV-I and EV-L 
were discovered in fecal samples collected from dromedaries 
and goats, respectively [52–55]. Given the evidence that EV 
naturally circulate in animals and that human EV have been 
detected in distinct mammalian species, including in Brazil 
[56–58], it must be considered its potential for interspecies 
transmission [59]. Our molecular tests detected no evidence 
of EV infection among capybaras populations living in the 
Sao Paulo state, reducing concerns about rodent reservoirs as 
a potential source of emerging EV infections.

Humans have infected a wide range of animals with 
SARS-CoV-2 [60–62]. Potential establishment of new 

reservoirs, like occurred in white-tailed deer populations 
in USA, rises critical concerns about SARS-CoV-2 evolu-
tion and epidemiology but mostly brings serious implica-
tions for public health issues, especially considering the risk 
of spillback of novel variants to humans [61]. Continuous 
monitoring of SARS-CoV-2 in animals is essential for risk 
management, particularly considering capybaras as they are 
water-loving rodents found in areas with abundant water 
sources, incredibly tolerant to anthropogenic environments 
and present in large urban centers such as Sao Paulo and São 
José do Rio Preto cities where water bodies are contami-
nated, mainly with domestic sewage [63–65]. Several stud-
ies have demonstrated the presence of the SARS‐CoV‐2 in 
human stool samples [66, 67]. Therefore, viral RNA is shed 
and disposed in wastewaters, highlighting a potential indirect 
infection pathway to humans or other susceptible mammals’ 
species [68]. No specimen tested positive for SARS-CoV-2 
in the present study, indicating that although the capybaras 
are in close contact with contaminated effluents, they are not 
being infected, and they probably do not constitute a reser-
voir for SARS-CoV-2 in the studied regions. It is important 
to mentioning that enteric coronavirus has been previously 
detected in capybaras feces from Sao Paulo state using trans-
mission electron microscopy technique [4].

The knowledge about the presence and diversity of fecal-
borne viruses in capybaras is so far limited, and a better 
understanding of a potential role of enteric infections is that 
animals are essential to develop preventive measures. The 
present study reports a molecular surveillance of various 
viral pathogens in Brazilian capybaras and adds further evi-
dence that the fecal-borne viruses is a minor public health 
issue, at least during the surveillance period and surveyed 
areas. Continuous monitoring of sylvatic animals is essen-
tial to prevent and control the emergence or re-emergence 
of newly discovered virus as well as viruses with known 
zoonotic potential, especially in anthropogenic environ-
ments. Capybaras are extremely tolerant to environmental 
changes and exhibit high vagility along waterways, thus con-
figuring a potential to trigger emerging zoonosis.
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