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Abstract
Probiotics have been used for the treatment of chronic metabolic diseases, including type 2 diabetes (T2D). However, the 
mechanisms of antidiabetic effects are not well understood. The object of this study is to assess the antidiabetic effect of 
Lactiplantibacillus plantarum Y15 isolated from Chinese traditional dairy products in vivo. Results revealed that L. plan-
tarum Y15 administration improved the biochemical indexes related to diabetes, reduced pro-inflammatory cytokines, L. 
plantarum Y15 administration reshaped the structure of gut microbiota, decreased the abundance of LPS-producing, and 
increased short-chain fatty acids (SCFAs)-producing bacteria, which subsequently reduce the levels of lipopolysaccharide 
(LPS) and pro-inflammatory cytokines. L. plantarum Y15 administration also regulated the expressions of the inflammation 
and insulin signaling pathway-related genes. These results suggest that L. plantarum Y15 may serve as a potential probiotic 
for developing food products to ameliorate T2D.
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Introduction

Diabetes mellitus (DM), characterized by hyperglycemia, 
is a chronic metabolic disease mainly including type 1 and 
type 2 diabetes (T2D). It has been estimated that the number 
of diabetic patients will reach 642 million by 2040 [1]. This 
accelerating pandemic comes with high financial costs to the 
individual and society. In addition, according to the statis-
tics from the Global Burden of Disease statistics, diabetes 
was the leading causes of years of life lost in most regions 
[2]. T2D causes almost 90% of diabetes mellitus cases and 
results from insulin resistance of adipose, liver, and muscle 
cells [3]. Unlike type 1 diabetes, T2D is mainly affected by 
environmental factors, and several risk factors have been 
identified, such as age, diet, sedentary lifestyle, and obesity 
[4]. With the change of lifestyle and dietary constituents, 

T2D is increasingly diagnosed in children, adolescents, and 
young adults [5]. Current treatments for T2D mainly include 
oral medicine and insulin injection. However, these drugs 
have different side effects. The most common side effects of 
insulin injections include hypoglycemia and weight gain. In 
addition, some insulin will also promote cell mitosis, chil-
dren, and patients with a tendency to tumors should not be 
used. Sulfonylurea drugs are likely to cause hypoglycemia 
and increased body mass. Studies have shown that gliben-
clamide causes a higher risk of hypoglycemia [6], while 
glipizide causes more body mass increase [7]. The results 
of a large-scale survey fully confirmed the cardiovascular 
risk of rosiglitazone[8]. Therefore, effectiveness and non-
harmful side effects of non-medicinal foods have claimed to 
be antidiabetic agents of high potential. Developing effec-
tive strategies aimed at delaying or preventing the T2D is 
important for public health.

With the rapid development of sequencing technique 
in recent years, there is a certain connection between gut 
microbiota and the diabetes. More and more evidences have 
supported the hypothesis that gut microbiota is crucial in 
onset and development of T2D. Studies have shown that 
gut microbiota was different between T2D patients and 
healthy population [4]. These differences mainly include 
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reduction in butyric acid-producing bacteria, elevation in 
various opportunistic pathogens, and disorder in a moderate 
degree. Thus, gut microbiota is becoming a new target for 
T2D therapy.

In recent years, the health benefits of probiotics have 
attracted more and more attention. Probiotics are defined 
as live microorganisms which confer a health benefit on 
the host when administered in adequate amount [9]. A 
large number of experimental studies have proved that 
probiotics could improve immune function and oxida-
tive stress and ameliorate T2D [10]. Li et al. indicated 
that insulin resistance and glucose tolerance were ame-
liorated after administration of L. plantarum CCFM0236 
[11]. Asemi et al. indicated that probiotic capsules could 
reduce levels of fasting blood glucose, hemoglobin 
(HbA1C), and insulin resistance index (HOMA-IR) [12]. 
Andreasen et al. revealed that Lactobacillus acidophi-
lus NCFM could enhance insulin sensitivity [13]. Fur-
thermore, clinical trials have also shown that favorable 
associations exist between probiotic consumption and 
metabolic profile among diabetes subjects [14]. Although 
many studies have revealed the hypoglycemic activity of 
probiotics, the related mechanisms have not been fully 
elucidated. Therefore, the potential mechanisms underly-
ing the effects of probiotics on improving T2D need to be 
elucidated further.

In our previous study, we found L. plantarum Y15 admin-
istration could regulate the gut microbiota with BSH activ-
ity, resulting in upregulation of deconjugated bile acids with 
low resorption, which could further influence the hepatic 
FXR-SHP signaling pathway to upregulate the expression 
level of CYP7A1 to enhance the cholesterol catabolism [15]. 
In the present study, we aimed to assess the potential antidia-
betic of L. plantarum Y15 in T2D mice induced by high-fat 
diet and intraperitoneal injection of streptozotocin (STZ). 
First is the effects on basic indexes related to T2D, lipid 
metabolism, and inflammation cytokines. Subsequently, 
the composition of gut microbiota of cecal contents from 
different groups was detected. Finally, expression of genes 
related to the NF-κB signaling pathway and insulin signaling 
pathway was evaluated.

Materials and methods

Chemicals and reagents

Streptozotocin (STZ) was purchased from Sigma Chemi-
cal (St. Louis, MO, USA). Enzyme link immune sorbent 
assay (ELISA) development kit, HbA1c, and insulin were 
purchased from the Beijing Chenglin Bioengineering 
Institute (Beijing, China). ELISA kits used to measure 
the levels of IL-4, IL-6, IL-8, and TNF-α were procured 

from the Nanjing Jiancheng Bioengineering Institute 
(Nanjing, China). Trizol and PrimeScript RT reagent kit 
with gDNA eraser was purchased from Takara (Shiga, 
Japan).

Bacterial strain and culture

L. plantarum Y15 was isolated from yak yogurt in Gansu 
Province, China and identified by 16S rDNA similarity 
analysis [15] and deposited at the School of Food and 
Biological Engineering, Zhengzhou University of Light 
Industry, Zhengzhou, Henan, China. The cells cultivated 
by De Man Rogosa Sharpe (MRS) broth were harvested 
by centrifugation at 10,000 × g for 10 min at 4 °C after 
incubation at 37 ℃ for 18 h. The cell pallets were col-
lected and washed three times with 0.01 M phosphate 
buffer solution (PBS, pH 7.4) and re-suspended in PBS. 
The cell numbers were adjusted to 3 ×  108 CFU/mLto 
obtain bacterial suspensions for animal experiment. 
Briefly, 100 μL of sample solutions with the dilution of 
 10−4,  10−5,  10−6, and  10−7 times was separately inoculated 
in solid MRS medium and coated evenly with a coating 
stick. The plates were incubated at 37 °C for 48 h to count 
the colony number.

Animals and experimental design

A total of 36 male C57BL/6 J mice (3-week-old) were pur-
chased from Beijing Vital River Laboratory Animal Tech-
nology Co., Ltd. (Beijing, China) and housed in a room 
under controlled environmental conditions at 24 ± 2 °C, 
relative humidity of 45–50%, and with a 12-h light/
dark cycle. During the first week, animals were placed 
in a special environment with food and water ad libitum 
before the initiation of experimentation. After 1 week, 
mice were randomly divided two groups. Mice in group 
1 were fed a normal diet, and those in group 2 were fed 
a high fat diet (HFD) for 4 weeks. At week 5, feeding 
with HFD mice was intraperitoneally injected with STZ 
(dissolved in 50 mM sodium citrate buffer, pH 4.4) at the 
dose of 100 mg/kg of body weight, and the NC group mice 
received an equal volume of citrate buffer. One week after 
injection, fasting blood glucose (FBG) was measured, and 
mice with FBG level > 11.1 mmol/L were considered as 
T2D mice. Then, T2D mice were randomly divided into 
2 groups (eight mice each group): (1) diabetes control 
group (MC), received PBS buffer; (2) Y15 group, received 
3 ×  108 CFU L. plantarum Y15. All treatment groups were 
administered 0.2 mL corresponding experimental samples 
by oral gavage once daily for 6 weeks. The experimental 
protocol was approved by the Institutional Animal Care 
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and Use Committee of the Northeast Agricultural Univer-
sity (NEAUEC20011108).

Oral glucose tolerance test (OGTT), area 
under the curve (AUC), and fasting blood glucose 
(FBG)

Mice were fasted 12 h and administered with a glucose 
solution (2 g/kg body weight) by oral gavage. Glucose lev-
els in the blood obtained from the tail were measured by 
a glucometer (Roche Diagnostics, Mannheim, Germany) 
at 0, 30, 60, 90, and 120 min after glucose load. The area 
under the curve of glucose (AUC glucose) values were cal-
culated. FBG was measured after fasting.

Sample collection

At the end of the experiment, the mice (fasting for 
12 h) were anesthetized and sacrificed by inhalation of 
ether. Serum samples were collected by centrifugation 
at 4000 × g for 10 min at 4 °C and stored at − 80 °C for 
further analysis. Liver and pancreas tissues were isolated 
from every animal and washed with cold 0.85% saline 
solution for biochemical assays (stored at − 80 °C) and 
histopathological evaluation (fixed in 10% neutral forma-
lin), respectively.

Biochemical analyses

The levels of glycosylated hemoglobin (HbA1C) and 
fasting insulin (FINS) were determined by using ELISA 
kits (Beijing Chenglin Bioengineering Institute, Beijing, 
China) according to the manufacturer’s instructions, 
respectively. Insulin resistance index (HOMA-IR) was 
calculated as follows: HOMA-IR = FBG × FINS/22.5. 
The levels of serum total cholesterol (TC), triacylglyc-
erols (TG), low density lipoprotein cholesterol (LDL-C), 
and high-density lipoprotein cholesterol (HDL-C) were 
measured with the assay kits following the manufacturer’s 
instructions, respectively.

Histopathologic examination and analysis

The pancrease was fixed in 10% neutral formalin for 48 h, 
after being dehydrated in graded alcohol, transparent in 
xylene, then embedded in paraffin wax. Tissue sections 
of 5-μm thickness were sliced and routinely stained with 
hematoxylin–eosin (HE). Histological differences between 
the groups were viewed and photographed with light 
microscopy (Leica, Wetzlar, Germany).

Effect on cytokine levels

The levels of IL-4, IL-6, IL-8, and TNF-α in the mice 
serum were determined using ELISA kits according to the 
instructions of the manufacturer, respectively.

Microbial analysis of cecal contents

Bacterial DNA in the cecal contents from the NC, MC, 
and Y15 groups was extracted by a QIAamp DNA stool 
mini kit (Qiagen, Dusseldorf, Germany) according to the 
manufacturer’s instructions. The V3–V4 region of the 16S 
rDNA were selected for generating amplicons by PCR. The 
primers were as follows: forward primers: 5′-ACT CCT 
ACG GGA GGC AGC AG-3′; reverse primers: 5′-GAC TAC 
HVGGG TWT CTAAT-3′. Pyrosequencing was performed 
on an Illumina Miseq (Illumina, Santiago, USA). The anal-
ysis pipeline was followed by Li et al. method [16]. Raw 
data were merged using FLASH 1.2.7 [17]. The chimera 
sequences were discarded by using the UCHIME algorithm 
to obtain the high-quality clean tags [18]. The tags were 
clustered into distinct operational taxonomic units (OTUs) 
using Uparse software with a 97% sequence identity [19]. 
OTUs were classified using QIIME 1.7.0 against a curated 
database derived from GreenGenes [20]. Linear Discrimi-
nant Analysis Effect Size (LEfSe) was used to perform with 
an effect size threshold of 2 [21]. This work was performed 
by Harbin Botai Biological Co., Ltd (Harbin, China).

Real‑time quantitative polymerase chain reaction 
(RT‑qPCR) analyses of gene expression

Total RNA of the liver tissue of each mouse was extracted 
using Trizol reagent (Takara, Dalian, China). cDNA was 
obtained by reverse transcription by using the PrimeScript 
RT reagent kit with gDNA Eraser (Takara, Dalian, China) 
according to the manufacturer’s instructions. The mRNA 
expression of genes was performed by 7900HT fast real-time 
PCR system (Applied Biosystems, USA). The gene primers 
were obtained from the National Centre for Biotechnology 
Information (NCBI) database, designed, and then synthe-
sized by Comate Bioscience Co., Ltd, China (Table S1). The 
housekeeping gene (β-actin) was used for normalization. 
Data analysis was carried out by  2−ΔΔCt method.

Statistical analysis

Results were expressed as mean ± standard deviation (SD). 
Statistical significance of difference was determined using 
one-way analysis of variance (ANOVA) followed by mul-
tiple comparisons with Duncan’s significance test. The 
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difference was considered to be statistically significant at 
P < 0.05.

Results

Effect of L. plantarum Y15 administration 
on diabetic symptoms

As shown in Fig. 1A, the level of FBG in the MC group was 
significantly higher than that in the NC group (P < 0.01); 
L. plantarum Y15 administration obviously reduced the 
level of FBG as compared with the MC group (P < 0.01). 
OGTT and AUC glucose of different groups are exhibited in 
Fig. 1B, C. The level of blood glucose of the T2D mice 
was obviously higher than that of normal mice at 0, 30, 
60, and 120 min. The NC group mice had the lowest AUC 
glucose (797.88 ± 33.98). The value of AUC glucose in the MC 
group was 2912.14 ± 78.18, showing poor glucose toler-
ance. L. plantarum Y15 administration reduced the value 
of AUC glucoe (P < 0.01), indicating L. plantarum Y15 was 
able to improve glucose tolerance. The level of HbA1c 
was 7.62 ± 0.63 and 12.91 ± 0.95 mIU/L in the NC and 
MC groups, respectively. L. plantarum Y15 administration 

significantly decreased (P < 0.01) the value of the HAb1c as 
compared to the MC group (Fig. 1D). As shown in Fig. 1E, 
serum insulin level was 24.48 ± 0.68 and 51.69 ± 2.31 mIU/L 
in the NC and MC groups, respectively. L. plantarum Y15 
administration significantly reduced (P < 0.01) the level of 
insulin level. In addition, L. plantarum Y15 administration 
significantly reduced (P < 0.01) HOMA-IR value in diabetic 
mice (Fig. 1F). Therefore, L. plantarum Y15 performed high 
anti-diabetic effects.

Fig. 1  Effect of L. plantarum Y15 administration on (A) fasting 
blood glucose, AUC glucose (B), OGTT (C), HbA1c (D), insulin (E), 
and HOMA-IR (F). ## P < 0.01: significantly different compared with 

the NC group; ** P < 0.01: significantly different compared with the 
MC group with Duncan’s significance test

Table 1  Effect of L. plantarum Y15 administration on serum lipid 
profiles

NC normal control, MC model control, Y15 MC plus L. plantarum 
Y15 (3 ×  108 CFU/d) ##P < 0.01: significantly different compared with 
the NC group; *P < 0.05, **P < 0.01: significantly different compared 
with the MC group

Parameter NC MC Y15

TG (mmol/L) 1.28 ± 0.09 2.31 ± 0.08## 1.39 ± 0.08**

TC (mmol/L) 1.61 ± 0.06 2.58 ± 0.06## 2.01 ± 0.07*

HDL-C (mmol/L) 8.33 ± 0.13 3.86 ± 0.06## 6.60 ± 0.22**

LDL-C (mmol/L) 0.59 ± 0.04 1.86 ± 0.09## 1.31 ± 0.06**
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Effect of L. plantarum Y15 administration on serum 
lipid profiles

The parameters related to lipid metabolism are listed 
in Table 1. The levels of TG and TC in the MC group 
(2.31 ± 0.08 and 2.58 ± 0.06 mmol/L) were significantly 
(P < 0.01) lower than those in the NC (1.28 ± 0.09 and 
1.61 ± 0.06 mmol/L) group, respectively. L. plantarum 
Y15 administration reversed this trend. The level of 
HDL-C was significantly decreased in the MC group com-
pared with that in the NC group (P < 0.01). A significant 
increase was observed in the HDL-C level after treatment 
with L. plantarum Y15 (P < 0.05). The level of LDL-C 
level was significantly increased in the MC group when 
compared to the NC group (P < 0.05). L. plantarum Y15 

administration significantly reduced the level of LDL-C 
(P < 0.05).

Effect of L. plantarum Y15 administration 
on prevention of pancreas injury

Histopathological examination of the pancreas is shown 
in Fig. 2. The structure of pancreatic islet cells was nor-
mal, cells were arranged closely and have clear cellular 
characteristic, and no obvious pathological damage was 
observed in the NC group. However, some pathologi-
cal changes in islets of the MC group, such as irregular 
structure, reduced volume of islet cells, and balloon-
ing degeneration. L. plantarum Y15 administration 
improved cell damage to some degree by increasing 

Fig. 2  Effect of L. plantarum 
Y15 administration on pancreas 
histopathological alterations. 
(A) NC group; (B) MC group; 
and (C) Y15 group

Fig. 3  Effect of L. plantarum 
Y15 administration on the 
inflammation cytokine levels. 
(A) interleukin 6 (IL-6), (B) 
interleukin 8 (IL-8), (C) tumor 
necrosis factor-α (TNF-α), and 
(D) interleukin 4 (IL-4). ## 
P < 0.01: significantly different 
compared with the NC group; 
*P < 0.05, ** P < 0.01: signifi-
cantly different compared with 
the MC group with Duncan’s 
significance test
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the number of islets and decreasing β-cell necrosis and 
vacuolization.

Effect of L. plantarum Y15 administration 
on the inflammatory cytokine levels

As shown in Fig. 3A, B, and C, there was a significant 
increase (P < 0.01) in IL-6, IL-8, and TNF-α levels of dia-
betic mice compared with the non-diabetic mice. How-
ever, a significant reduction (P < 0.05) in the IL-6, IL-8, 
and TNF-α levels of L. plantarum Y15-treated mice as 
compared with the MC group mice was found. In addi-
tion, a significant decrease (P < 0.01) was observed in the 
IL-4 level of diabetic mice compared with the non-dia-
betic mice. The level of IL-4 was significantly increased 

(P < 0.01) in the L. plantarum Y15 group as compared to 
the MC group (Fig. 3D).

Effect of L. plantarum Y15 administration 
on the structure of gut microbiota

The gut microbiota composition was analyzed using next-
generation 16S rDNA sequencing. Among the bacterial 
α-diversity, the Shannon index and observed species index 
were used to estimate the richness and diversity of gut 
microbiota. As shown in Fig. 4A, the Shannon index and 
observed species index in the MC group were markedly 
(P < 0.05) lower than those in the NC group. L. plantarum 
Y15 administration markedly (P < 0.05) elevated these two 
indexes. Among the bacterial β-diversity, the hierarchical 

Fig. 4  Effect of L. plantarum 
Y15 administration on gut 
microbiota α-diversity and 
β-diversity. (A) Shannon index 
and observed species index; 
and (B) hierarchical clustering 
tree of Bray–Curtis distances. # 
P < 0.05, ## P < 0.01: signifi-
cantly different compared with 
the NC group; * P < 0.05: 
significantly different compared 
with the MC group with Dun-
can’s significance test

Fig. 5  LEfSe comparison of the gut microbiota (A) and the LDA score indicates the effect size and ranking of each differentially abundant taxon 
(B) among the NC, MC, and Y15 groups
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clustering tree of Bray–Curtis distances showed that the Y15 
group was grouped with NC group and then clustered with 
the MC group (Fig. 4B). These findings indicated that L. 
plantarum Y15 administration shifted the overall structure 
of the T2D mice gut microbiota to the non-diabetic mice.

LEfSe analysis was used to identify the key phylotypes 
responsible for the biomarkers between groups. As shown in 
Fig. 5A, Desulfovibrionaceae and Deltaproteobacteria were 
abundant in the MC group, Clostridia, Lachnospiraceae 
NK4A136 group, Ruminiciostridium and Roseburia were 
abundant in the Y15 group, and Lactobacillus was enriched 
in the NC group. Finally, linear discriminant analysis (LDA) 
was used to further estimate the effect size of each differen-
tially abundant feature. As shown in Fig. 5B, the MC, NC, 
and Y15 groups were clearly separated by the key variables, 
which were consistent with the LEfSe analysis.

Effect of L. plantarum Y15 administration 
on the mRNA expression of genes related 
to the NF‑κB signaling pathway

The mRNA expression levels of genes related to the NF-κB 
signaling pathway are shown in Fig. 6; diabetes significantly 
up-regulated (P < 0.01) the mRNA expression levels of 
TLR4, IKKβ, and NF-κB and significantly down-regulated 

(P < 0.01) the mRNA expression level of IκB-α. Interestingly, 
L. plantarum Y15 administration partly reversed these trends.

Effect of L. plantarum Y15 administration 
on the mRNA expression of genes related to insulin 
signaling pathway

Insulin mainly regulates glucose metabolism in the liver via 
the insulin signaling pathway. The mRNA expression levels 
of genes related to the insulin signaling pathway are shown in 
Fig. 7. The mRNA expression levels of genes related to insulin 
signaling pathway were significantly down-regulated (P < 0.01) 
in the MC group compared with the NC group. However, the 
mRNA expression levels of IRS-1, PI3K, AKT, and GLUT-4 
were significantly up-regulated (P < 0.01) after L. plantarum 
Y15 administration when compared to the MC group.

Discussion

A large number of studies have demonstrated that probiotics 
exhibit various biological activities, including antioxidant 
and anti-inflammatory activities, and regulate immune sys-
tem [22]. In the present study, we investigated the antidia-
betic effects and the potential molecular mechanism of L. 

Fig. 6  Effect of L. plantarum 
Y15 administration on the 
mRNA expression levels of 
genes related to the NF-κB 
signaling pathway. ## P < 0.01: 
significantly different compared 
with the NC group; * P < 0.05, 
** P < 0.01: significantly dif-
ferent compared with the MC 
group with Duncan’s signifi-
cance test
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plantarum Y15 in T2D mice induced by high fat diet and 
injection of STZ.

Previous studies showed that probiotics had a positive 
effect on reducing blood glucose levels, improving antioxi-
dant status, regulating disorders of lipid metabolism, and 
attenuating inflammatory injury [23]. In this study, based 
on our previous study, L. plantarum Y15 was selected, and 
the antidiabetic property of this strain was assessed in vivo. 
Animal experimental results showed that L. plantarum Y15 
administration could impair glucose tolerance and reduce 
the levels of FBG and HbA1c as compared with the MC 
group. These findings were in line with the previous studies 
[24–27]. It is well known that the main metabolic feature of 
T2D is insulin resistance. Previous studies indicated that the 
level of insulin was higher in diabetic mice as compared with 
that in normal mice; however, this trend was partly reversed 
after administration of probiotics [28, 29]. These results 
were in accordance with the present study that L. plantarum 
Y15 administration could reduce the level of insulin. In order 
to evaluate the status of T2D, HOMA-IR has been widely 
used to evaluate insulin resistance[30]. Studies have revealed 
that probiotics could decrease insulin resistance in diabetic 
mice and patients [31, 32]. In the present study, L. plantarum 
Y15 administration significantly reduced HOMA-IR value 
compared with the MC group. In addition, OGTT assay is 

one of the important indexes in evaluation of T2D and has 
been used to indirectly estimate insulin resistance [33]. In 
this study, L. plantarum Y15 administration improved the 
impaired glucose tolerance. A significant decrease in the 
insulin, AUC glucose, and HOMA-IR levels suggested that L. 
plantarum Y15 administration could improve insulin resist-
ance. Furthermore, histological analysis of the pancreas 
showed that L. plantarum Y15 administration increased the 
number of islets and improved the β cell damage. Hence, L. 
plantarum Y15 had the potential ability to alleviate T2D.

To further elucidate how L. plantarum Y15 improves 
T2D, we measured inflammatory indicators in serum. T2D 
is considered as a state of chronic low-grade inflammation 
[34]. Studies have shown that probiotics could regulate the 
expression of inflammatory factors in cell line models [35] 
and reduce inflammatory factors in animal experiments 
[36]. The level of inflammatory mediators is increased in 
serum, organ, or tissue of T2D animal model [37]. In the 
present study, a significant reduction of pro-inflammatory 
IL-6, IL-8, and TNF-α and a significant increase of anti-
inflammatory IL-4 were observed in the serum of the T2D 
mice after L. plantarum Y15 administration. IL-4 is an 
important anti-inflammatory cytokine in the host. Reduc-
tion in IL-4 disturbed the balance of pro-inflammatory/
anti-inflammatory in diabetes mellitus and aggravated 

Fig. 7  Effect of L. plantarum 
Y15 administration on the 
mRNA expression levels of 
genes related to insulin signal-
ing pathway. ## P < 0.01: signifi-
cantly different compared with 
the NC group; * P < 0.05, ** 
P < 0.01: significantly different 
compared with the MC group 
with Duncan’s significance test
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inflammatory complications [38]. These results indicated 
that L. plantarum Y15 is a potential probiotic against diabe-
tes-associated inflammation by inhibiting pro-inflammatory 
cytokine production, and elevating the level of IL-4.

Increasing studies have indicated that gut microbiota is 
closely associated with the onset and development of T2D 
[39]. There was a moderate degree dysbiosis of gut micro-
biota in patients with T2D [40]. Notably, Proteobacteria, 
Deltaproteobacteria, Desulfovibrionales, Desulfovibrion-
aceae, and Blautia were enriched in the MC group, which is 
in accordance with previous studies [41]. The phylum Pro-
teobacteria is commonly secondary in numbers to Bacteroi-
detes among the Gram-negative gut bacteria where members 
of the Alpha-, Beta-, Gamma-, Delta-, and Epsilon-proteo-
bacteria classes have been detected [42], which are gastro-
intestinal human pathogens with LPS. Interestingly, LPS 
from Desulfovubrio desulfuricans, a sulfate-reducing delta-
proteobacterium, is considered to take part in the systemic 
proinflammatory and immunomodulatory responses [43]. 
Blautia, belonging to the phylum Firmicutes(Park, Kim, 
& Bae, 2013), was also enriched in some diseases like 
Crohn’s disease and nonalcoholic fatty liver diseases [44, 
45]. Furthermore, some strains of Blautia could promote 
TNF-α secretion [46]. However, a study reported that the 
relative abundance of Blautia was reduced in the MC group 
[47]; thus, further studies were needed. Lachnospiraceae 
NK4A136 group and Roseburia were abundant in the Y15 
group, Lachnospiraceae NK4A136, which belongs to the 
family of Lachnospiraceae, is characterized by the anaero-
bic and spore-forming features with the ability to utilize the 
polysaccharides into SCFAs. It has been proposed the level 
of intestinal Roseburia negatively correlates with plasma 
glucose and modulates glucose homeostasis [48]. A signifi-
cant increase in Roseburia intestinalis species was observed 
after diabetes remission achieved by surgery [49].

As aforementioned, once the intestinal barrier function 
was impaired, excessive translocation of LPS to the liver 
via gut-liver axis could subsequently activate the inflamma-
tory responses [50], which would trigger the activation of 
LPS/TLR4/NF-κB signaling to stimulate inflammatory cells, 
leading to the release of pro-inflammatory cytokines (TNF-
α, IL-6, and IL-8) [51, 52]. Toll-like receptor 4 (TLR4), an 
important pattern recognition receptor for LPS, is related to 
low-grade chronic inflammatory diseases [53]. Once LPS 
binds to TLR4, it would lead to the activation of TLR4/
NF-κB to induce the production of inflammatory cytokines 
[54]. IKK, a Ser protein kinase, including IKKα and IKKβ, 
is necessary to control the activity of NF-κB, and the acti-
vation of IKK is largely determined by phosphorylation of 
its IKKβ subunit [55]. NF-κB is an important transcription 
factor responsible for regulating inflammatory responses 
[56]. Under normal conditions, NF-κB forms a complex 
with IκB protein (inhibitor of NF-κB) in the cytoplasm. 

When IKKβ, the kinase of IκB, is activated by pro-inflam-
matory cytokines, IκB are serine phosphorylated by IKKβ, 
and NF-κB translocate into the nucleus, subsequently bind-
ing to the genomic DNA and regulating the expression of 
pro-inflammatory cytokines (TNF-α, IL-6, and IL-8)[57]. 
This was in line with the results of inflammatory cytokine 
production. Previous studies have suggested that the insulin 
resistance can be prevented by the inhibition of the IKKβ/
NF-κB [58]. To further study the possible mechanisms of 
L. plantarum Y15 on improving T2D in mice, we measured 
the expression of genes related to inflammation pathway and 
the mRNA expression levels of TLR4, IKKβ, and NF-κB 
and significantly down-regulated the mRNA expression level 
of IκB-α, but this trend was reversed by L. plantarum Y15 
administration. These results indicated that L. plantarum 
Y15 could effectively alleviate T2D by regulating NF-κB 
signaling pathway.

It has been reported that TNF-α and IL-6 could promote 
the development of insulin resistance by influencing insulin 
receptor substrate (IRS) phosphorylation and link inflam-
matory process to insulin resistance [59]. These pro-inflam-
matory cytokines could tyrosine/serine phosphorylate IRS, 
disrupt insulin-receptor signaling, and cause insulin resist-
ance and glucose metabolism disorder [60, 61]. It is gener-
ally known that, insulin controls glucose transport in muscle, 
liver, and fat cells by PI3K/AKT signaling pathway. Briefly, 
insulin binds to insulin receptors leading to phosphorylation 
of insulin receptor substrate (IRS) family and then activates 
phosphatidylinositol 3-kinase (PI3K), which in turn acti-
vates GLUTs and increases glucose uptake [62]. To further 
explore the effect of inflammation on insulin signaling path-
way, the mRNA expression levels of IRS-1, PI3K, AKT, 
and GLUT-4 were measured. The mRNA expression levels 
of IRS-1, PI3K, AKT, and GLUT-4 were significantly up-
regulated after L. plantarum Y15 administration. Previous 
study demonstrated that PI3K expression in diabetic mice 
was significantly lower than that in the normal group [63]. 
L. paracasei could improve glucose metabolism by regulat-
ing expression of genes (IRS-1, PI3K, and Akt) involved in 
the insulin signaling pathway [64]. These results indicated 
that L. plantarum Y15 could effectively alleviate T2D by 
modulating insulin signaling pathway.

Conclusion

In conclusion, L. plantarum Y15 administration to T2D 
mice could improve the biochemical indexes related to dia-
betes (FBG, insulin, HbA1c, and HOMA-IR) and reduce 
the production of pro-inflammatory cytokines (IL-6, IL-8, 
and TNF-α). L. plantarum Y15 administration could reshape 
the structure of gut microbiota, decrease the abundance of 
LPS-producing, and increase SCFA-producing bacteria. 
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L. plantarum Y15 administration could also regulate the 
expression levels of the inflammation and insulin signaling 
pathway-related genes. These results suggested that L. plan-
tarum Y15 may serve as a potential agent for ameliorating 
T2D.
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