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and hosts ACE2 protein suggest Malayan pangolin
as intermediary host
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Abstract
An emergence of a novel coronavirus, causative agent of COVID19, named as severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), occurred due to cross-species transmission. Coronaviruses are a large family of viruses able to infect a great
number of hosts. Entrance of SARS-CoV-2 depends on the surface (S) protein interaction with host ACE2 protein and cleavage
by TMPRSS2. ACE2 could be a species-specific barrier that interferes with bat-to-human coronavirus cross-species transmis-
sion. Molecular analysis supported bats as natural hosts for SARS-CoV and involved them in MERS-CoV origin. The genomic
similarity between bat RaTG13 CoV strain and SARS-CoV-2 implicates bats in the origin of the new outbreak. Additionally,
there is a hypothesis for the zoonotic transmission based on contact with Malayan pangolins by humans in Huanan seafood
market in Wuhan, China. To investigate bats and pangolin as hosts in SARS-CoV-2 cross-species transmission, we perform an
evolutionary analysis combining viral and host phylogenies and divergence of ACE2 and TMPRSS2 amino acid sequences
between CoV hosts. Phylogeny showed SARS-like-CoV-2 strains that infected pangolin and bats are close to SARS-CoV-2. In
contrast to TMPRSS2, pangolin ACE2 amino acid sequence has low evolutionary divergence compared with humans and is
more divergent from bats. Comparing SARS-CoV with SARS-CoV-2 origins, pangolin has yet lower ACE2 evolutionary
divergence with humans than civet—the main intermediary host of SARS-CoV. Thus, pangolin has become an opportune host
to intermediates bat-to-human SARS-CoV-2 jump and entry.
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Global attention has been given to the emergence of a new
coronavirus pandemic. In December 2019, a serious pneumo-
nia outbreak caused by a novel coronavirus started in China
[1]. The given name to the disease associated with the coro-
navirus was COVID19, while novel CoV was named as

severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). COVID19 is milder but a highly transmissible infec-
tious disease compared with SARS (severe acute respiratory
syndrome) and MERS (Middle East respiratory syndrome)
outbreaks, according to morbidity and mortality rates [2, 3].
Coronaviruses are a large family of viruses able to infect a
great number of hosts [4]. Cross-species transmission of zoo-
notic coronaviruses (CoVs) can result in disease outbreaks [5].
Molecular analysis supported bats as natural hosts for SARS-
CoV, but palm civets (Paguma larvata) had a critical role in
the transmission to humans [6, 7]. Camels were identified as
the natural host for MERS-CoV, despite implication of bats in
the origin of this virus [8]. Bats are also implicated in SARS-
CoV-2 origin. A very similar SARS-CoV-2 strain (RaTG13
CoV) was detected in Rhinolophus affinis bat with 96% ge-
nome similarity compared with SARS-CoV-2 genome se-
quence. Considering that bats were in hibernation when the
outbreak occurred, the virus is more likely to have been trans-
mitted via other species [9]. The hypothesis for the zoonotic
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transmission route was constructed based on contact with
Malayan pangolins (Manis javanica) by visitors of Huanan
seafood market in Wuhan, China [10]. The linkage with
Huanan market was done due to few cases of pneumonia in
the city of Wuhan associated with the SARS-CoV-2 [11].
Today, the involvement of the Huanan market with
COVID19 origin seems controversial [12, 13]. However, mo-
lecular epidemiologic studies also confirmed animal handlers
as the earliest infected with SARS-CoV in 2002–2003 out-
breaks [7]. The presence of bats and bat products in food
and traditional medicine markets occurs due persistent viral
infection without clinical symptoms [14]. Contact between
bats and wild animals may occur because bats live among a
large number of different animal species that is also commer-
cialized in animal markets, giving opportunity to coronavirus
transmission [7]. Furthermore, other wild animals can be in-
fected by coronavirus after eating partially digested fruits by
bats that were spitted out and fall to the ground with residual
bat saliva or part of insects discarded by infected bats [15].
These routes allow viral infection by a diverse set of animals,
such as palm civets and Malayan pangolins involved in
SARS-CoV and SARS-CoV-2 origins, respectively [7, 10,
15]. In humans, SARS-CoV and SARS-CoV-2 are rapidly
spread by respiratory droplets, airborne routes, or direct con-
tact [16]. While CoV related with cold is limited to upper
respiratory tract infection, SARS-CoV invades pneumocytes
in the lower respiratory tract (lungs) [17, 18]. The first viral
interaction with host cells occurs when receptor-binding do-
mains (RBDs) from viral spike or surface (S) protein attach
ACE2 (angiotensin-converting enzyme 2) host receptor [6].
Expression of ACE2 appears to be essential for SARS-CoV/
SARS-CoV-2 infection in airway epithelia [18, 19].
Subsequently, SARS-CoV/SARS-CoV-2 employ TMPRSS2
(transmembrane protease serine 2) for cell host entry thanks to
its cleavage activity [19]. TMPRSS2 is known to cleave and
activate the S protein of SARS-CoV [20] and also plays a role
in the spread and immunopathology of SARS-CoV and
MERS-CoV in the airways [21].

Receptor recognition for SARS-CoV is considered one of
the main barriers between animal species and humans [22].
High variation in the SARS-CoV and SARS-CoV-2 S proteins
seems to be essential to lead animal-to-human transmission to
human-to-human transmission [23]. To investigate bats and
pangolin as hosts in SARS-CoV-2 jump to human, we per-
formed evolutionary analysis based on viral and host molecu-
lar phylogenies and also evolutionary divergent pairwise anal-
ysis. Based on 87 amino acid sequences from CoV S protein,
we inferred a maximum likelihood phylogenetic analysis
(Fig. 1), using PhyML 3.3v software to phylogenetic tree in-
ference and MEGA X to find the best substitution model
(Supplementary Table 1). Rooted by cold-related 229E CoV,
the phylogenetic tree formed three distinct clades. Clade 1
includes two main clusters: clade 1A formed by SARS-CoV

together with SARS-like-CoV isolated from bats and civets
and clade 1B formed by SARS-CoV-2 together with SARS-
like-CoV-2 isolated from bats and Malayan pangolin. Clade 2
encompasses MERS-CoV strains interspersed with camel-
CoVs and also includes some bat CoV strains related with
MERS-CoV. Pandemic SARS-CoV-2 strains clustered signif-
icantly close with RaTG13CoV and pangolin CoV strains (see
clade 1B). According to the CoV S protein analysis, the phy-
logenetic tree revealed that the distance between SARS-CoV-2
and RaTG13 CoV is shorter than that between SARS-CoV-2
and pangolin CoV. Then, pangolin CoV S protein is closest to
S protein from SARS-CoV-2 behind bat RaTG13 CoV.
Behind pangolin CoVs, bat CoV strains isolated in China in
2015 and 2017 are noted, followed by a cluster with bat CoVs
also identified in China during 2004–2014 (clade 1B). We
reinforce the scenario that suggests that SARS-CoV-2 trans-
mission chain began from bat and reached the human. The
diverse set of CoVs infecting bats frequently associated with
fast-evolving CoV S protein propriety might have favored the
epidemic from animal to human. The close position of SARS-
like-CoV-2 isolated from pangolins indicates that this species
has a potential role along the SARS-CoV-2 transmission chain
(clade 1 B). Pangolin CoV strain isolated in March 2019 is
very closer to RATG13 CoV and to SARS-CoV-2 than
SARS-like-CoV-2 from other pangolins isolated in 2017–
2018. The occurrence of recombination between SARS-like-
CoVs from pangolin and bats, or even convergent evolution,
must be considered as possible events for the SARS-CoV-2
origin. Phylogenetic tree showed that bat CoVs are strongly
related with SARS-CoV, SARS-CoV-2, and also with MERS-
CoV. Deep evolutionary and adaptation between bats and vi-
ruses contribute to asymptomatic state but spreading coronavi-
rus to humans [25, 26]. Although bats are considered as natural
hosts and reservoirs for SARS-CoV and SARS-CoV-2, camels
may be the natural host of MERS-CoV [27]. The close relation
between camel CoVwithMERS-CoV (clade 2) indicates cam-
el as a direct source ofMERS-CoV. However, theMERS-CoV
ancestor might have circulated among bat species due to
MERS-like-CoV persistence in bat populations. MERS-CoV
took a different evolutive way from SARS-CoV and SARS-
CoV-2. In contrast to SARS-CoV and SARS-CoV-2, which
use ACE2 to invade the host, MERS-CoV uses CD26
expressed by host. MERS-CoV S protein likely only recog-
nizes conserved CD26 sequences. Furthermore, MERS-CoV S
protein RBD sequence is considered more conserved compar-
ing with SARS-CoV and SARS-CoV-2 S protein [8]. Despite
the fast-evolving S protein capacity, bat CoV transmission to
humans appears to be limited by a barrier. Then, intermediary
hosts might be necessary to overcome genetic barriers to favor
the start of human coronavirus disease outbreaks.

Host molecular repertoire used by coronavirus cycle and
invasion, including ACE2 and TMPRSS2 proteins, could be a
species-specific barrier to coronavirus [22]. ACE2 appears to
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have slow evolutionary rates between vertebrates [28]. Thus,
to infer the host susceptibility, we perform a phylogenetic
analysis based on 23 ACE2 amino acid sequences (Fig. 2A),
including bats species, humans, primates, felids, canids, mu-
rine, and other ones. All amino acids sequences were obtained
by NCBI Protein database (www.ncbi.nlm.nih.gov/protein/).
ACE2 phylogenetic tree, inferred by Bayesian method, was
highly supported by posterior probability values (see Fig. 2c).
We also constructed a heat map based on pairwise divergence

matrix to complement phylogenetic analysis. Best substitution
models to perform phylogeny and pairwise divergence matrix
were selected (see Supplementary Table 1). According to our
results, the phylogenetic topology conserved Homo sapiens
closer to other primates in a monophyletic group, with low
divergent amino acid sequences within this group, as expect-
ed. Bat species also composed amonophyletic group. Humans
and bats are evolutionary divergent and phylogenetically dis-
tant, shown by ACE2 pairwise divergence matrix and tree,

Fig. 1 CoV S protein maximum likelihood phylogenetic inference (n =
87). Based on the same analysis, we present (a) a complete phylogenetic
tree and (b) a simplified cladogram with bootstrap values and some
collapsed clades. Three clades were well clustered: clade 1A including
SARS-CoV, clade 1B including SARS-CoV-2, and clade 2 including
MERS-CoV, rooted by 229E CoV. Clade 1A presents SARS-CoVs in-
terspersed with bat CoVs and civet CoVs. In the clade 1B, note that
SARS-CoV-2 strain sequences are very similar to each other. SARS-
CoV-2 strains were clustered near bat RaTG13 CoV and pangolin CoV
strain identified in 2019. Additionally, SARS-like-CoV-2 strains identi-
fied from pangolin in 2017–2018 were also closely related to SARS-
CoV-2. Still in the clade 1B, there was an Asian bat SARS-like-CoV-2
cluster. Bats CoV strains are broadly distributed in tree. Clade 2 is char-
acterized by a cluster with MERS-CoV together with camels CoV. Bats
included in this cluster are more distant. Maximum likelihood phyloge-
netic analysis involved 87 amino acid sequences from CoV S protein

obtained from NCBI Protein database (www.ncbi.nlm.nih.gov/protein/).
Malayan pangolin MT084071 sequence was translated from annotated
coding region obtained from NCBI Genbank database (www.ncbi.nlm.
nih.gov/genbank/). Accession codes were included in each taxon name.
Phylogenetic tree inference was based in maximum likelihood method
with Whelan and Goldman model [23]. The tree with the optimal log
likelihood (26256.243) is shown. Bootstrap values calculated for 100
replications are shown next to the nodes of cladogram (b). Initial tree(s)
for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms. A discrete gamma distribution
was used to model evolutionary rate differences among sites (4 categories
[+ G, parameter = 0.7168]). The tree is drawn to scale, with branch
lengths measured in the number of substitutions per site. There were a
total of 1494 positions in the final dataset. Phylogenetic analyses were
conducted in PhYML v3.3 [24] and the trees were formatted with the
FigTree v1.3.1 software (http://tree.bio.ed.ac.uk/software/figtree/).
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respectively. Phylogenetic tree presented bats closer to a clade
that includes pangolin and civet than humans are. Despite the
phylogenetic position, humans have lower evolutionary diver-
gence in comparison with pangolin and civet than these ani-
mals have with bats. We display the evolutionary divergence
values in Table 1. Comparing humans with pangolin/civet, we
found lower evolutionary divergence values with pangolin
than with civet. Thus, considering ACE2 interaction as a host
barrier that protects humans from zoonotic pathogens, SARS-
CoV-2 in bats may require some intermediate mammalian
hosts to jump to humans to start the outbreak, like civet was

required for intermediary host to favor SARS-CoV origin. We
further inferred a Bayesian phylogenetic tree based on
TMPRSS2 amino acid sequences (Fig. 2b), supported with
high posterior probabilities values (see Fig. 2d). This tree pre-
sented pangolin close to bats. TMPRSS2 phylogeny and evo-
lutionary divergences sequences indicated distance between
Homo sapiens and bats/pangolin. Among all of the bat spe-
cies, Rhinolophus ferrumequinum presented the highest simi-
larity of TMPRSS2 amino acid sequence compared with hu-
man and pangolin. R. ferrumequinum is susceptible for both
SARS-like-CoV and SARS-like-CoV-2 infection [10, 14].

Fig. 2 Evolutionary analysis of CoV hosts: ACE2 and TMPRSS2
Bayesian phylogenetic trees associated with evolutionary divergence
matrix heat maps. The heat map color gradient represents the
evolutionary divergence based on the number of amino acid
substitutions/site from pairwise comparison between sequences, from
low (red) to high (blue). a ACE2-based phylogeny and heat map matrix
(n = 23) show a cluster with primates presented low evolutionary diver-
gences. Malayan pangolin (Manis javanica) and civet (Paguma larvata)
clustered with felids, canids, and others ones besides the clade composed
by bat species. Pangolin and civet are phylogenetically close from bats
than with humans. On the other hand, ACE2 heat map shows that both
pangolin and civet are more divergent from bats than with humans. b
TMPRSS2 evolutionary analysis presents close relationship between pan-
golin and civet with bats, while primates remained distant. c and d rep-
resent more detailed Bayesian consensus phylogenetic trees based on
ACE2 and TMPRSS2 with supported values described. Analysis in-
volved 23 amino acid sequences from ACE2 protein and 21 amino acid
sequences from TMPRSS2 protein. All sequences were obtained from
NCBI Protein database (www.ncbi.nlm.nih.gov/protein/). R. sinicus

ASM188883v1 sequence was translated based on genome assembly
obtained from NCBI Genome database (www.ncbi.nlm.nih.gov/
genome/). (R. macrotis and P. larvata TMPRSS2 sequences were not
available at the time of this analysis). Accession codes were included in
each taxon name. Phylogenies were based on Bayesian analysis using
JTT + G model (Jones-Taylor-Thornton model with a Gamma
distribution for among-site rate variation) conducted by Mr. Bayes 3.2v
[29]. Trees were searched for one million generations with sampling
every 100 generations until the standard deviation from split frequencies
were under 0.01. Scale bar indicates the number of substitutions/site for
the trees. The parameters and the trees were summarized by wasting 25%
of the samples obtained (burn-in). Phylogenetic trees were formatted with
the FigTree v1.3.1 software (http://tree.bio.ed.ac.uk/software/figtree/).
Evolutionary divergence between ACE2 and TMPRSS2 sequences
were based on the number of amino acid substitutions per site from
between sequences. Analyses were conducted using the JTT matrix-
based model by MEGA X software [30], and heat maps were performed
by Microsoft ExcelTM software
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Molecular similarity of TMPRSS2 from SARS-CoV and
SARS-CoV-2 susceptible hosts is suggestive that the mole-
cule seems not to be an important barrier to emerging human
coronaviruses. Probably, the SARS-CoV-2 entry into host
cells, interaction with ACE2 receptor, appears to be the main
challenge. While most of SARS-CoV-2 phylogenetic studies
are focusing in viral phylogenies, we contributed with host
analysis based on ACE2 and TMPRSS2. In summary, we
report and conclude that SARS-like-CoV-2 strains infected
pangolin and bats and are phylogenetically close to SARS-
CoV-2. Thus, our phylogenetic analysis based on SARS-
CoV-2 S protein supports the hypothesis of SARS-CoV-2
transmission chain began from bat, had Malayan pangolin as
intermediary host, and infected humans. Considering CoV S
protein as the key to invade host cell through host ACE2, we
explore this host molecule as base of analysis to understand
the role of the hosts in the origin of SARS-CoV-2. ACE2
sequence from pangolin has low evolutionary divergence
compared with humans but is more divergent from bats.
Taken together, combined viral and host evolutive analysis
corroborated the hypothesis of Malayan pangolin as interme-
diary host in SARS-CoV-2 origin. Looking back through co-
ronavirus outbreak histories, wild animal chains appear to be
necessary. Frequent jumps of bats virus produce potential in-
fections or short transmission chains that resolve, with no
adaptation to sustained transmission [33].

Therefore, repeated opportunities may promote zoonotic
events resulting in coronavirus outbreaks. For SARS-CoV,
there were broad evidences suggesting civet as the main inter-
mediary host [7, 34, 35]. Our results also indicated civet as an
important player in SARS-CoV origin. Civet might be infect-
ed by SARS-like-CoV and has intermediary ACE2

divergence between humans and bats. Comparing SARS-
CoV with SARS-CoV-2 origins, pangolin ACE2 amino acid
sequence has yet lower evolutionary divergence with humans,
while civet ACE2 sequence is more divergent compared with
humans. Thus, pangolin has become an opportune host to
intermediates bat-to-human SARS-CoV-2 jump and entry.
Differently from bats, which are able to suppress viral repli-
cation, pangolin is an amplifying host which allows the in-
crease of viral load and probably favored SARS-CoV-2 jump
to human host and human-to-human transmission subsequent-
ly. The recurrent emergence of zoonotic disease outbreaks
caused by coronavirus alerts once more for the implementa-
tion of strict rules to decrease or eliminate consumption and
domestication or even the ban on wildlife markets.
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Table 1 Estimates of evolutionary divergence between ACE2 protein sequences

Species H. sap P. tro P. lar M. jav R. fer R. sin R. mac H. arm D. rot M. bra M. mus

Homo sapiens

Pan troglodytes 0.01026

Paguma larvata 0.22463 0.22472

Manis javanica 0.20912 0.20570 0.18750

Rhinolophus ferrumequinum 0.28301 0.28007 0.26965 0.25506

Rhinolophus sinicus 0.27941 0.27520 0.25946 0.24230 0.09058

Rhinolophus macrotis 0.27768 0.27505 0.25358 0.22599 0.09273 0.04557

Hipposideros armiger 0.28345 0.27822 0.26322 0.23590 0.20608 0.20141 0.19348

Desmodus rotundus 0.31272 0.30576 0.31213 0.26304 0.34012 0.32423 0.32713 0.33562

Myotis brandtii 0.26953 0.26678 0.26588 0.24297 0.29533 0.26611 0.26925 0.26943 0.27961

Mus musculus 0.25338 0.25776 0.26082 0.24598 0.32786 0.32524 0.31852 0.33391 0.33965 0.31988

The numbers of amino acid substitutions per site between sequences are shown. Divergence values involving civet and/or pangolin (possible interme-
diary hosts) with human and/or bats were presented in bold. Pangolin and civet have lower evolutionary distance from humans than from bats.
Evolutionary analyses were made using the JTT matrix-based model [31], conducted in MEGA X software [30]. The rate variation among sites was
modeled with a gamma distribution (shape parameter = 0.46). This analysis involved 11 amino acid sequences aligned byMUSCLE [32]. All ambiguous
positions were removed for each sequence pair (pairwise deletion option). There were a total of 829 positions in the final dataset
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