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Abstract
The waste-to-energy (WTE) technologies are now recovering energy and materials from over 300 million tonnes of municipal 
solid wastes worldwide. Extensive studies have investigated substituting natural construction materials with WTE residues 
to relieve the environmental cost of natural resource depletion. This study examined the beneficial uses of WTE residues in 
civil engineering applications and the corresponding environmental standards in Europe, the U.S., and China. This review 
presents the opportunities and challenges for current technical approaches and the environmental standards to be met to 
stabilize WTE residues. The principal characteristics of WTE residues (bottom ash and fly ash) and the possible solutions 
for their beneficial use in developed and developing countries are summarized. The leaching procedures and environmental 
standards for pH, heavy metals, and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) are compared. The current practice 
and engineering properties of materials using WTE residues, including mixtures with stone aggregate or sand, cement-based 
or hot-mix asphalt concrete (pavement), fill material in the embankments, substitute of Portland cement or clinker produc-
tion, and ceramic-based materials (bricks and lightweight aggregate) are comprehensively reviewed.
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Introduction

Municipal solid waste (MSW) is a heterogeneous source 
with significant energy and material potential. Worldwide, 
the generation of MSW is consistently increasing yearly, 
from 2.01 billion tonnes in 2016 to 2.59 billion tonnes by 
2030 and 3.40 billion tonnes annually by 2050 [1]. The 
MSW management depends on various factors, including 
MSW composition, gross domestic product (GDP), popu-
lation density, land source, education, policy/regulations, 
infrastructures, etc. [2–7]. After all possible recycling and 
composting (e.g., fermentation, anaerobic digestion, etc.), 
two options for a significant fraction are called the post-
recycled MSW: landfilling or waste-to-energy (WTE). The 
term waste-to-energy (or WTE) is now commonly used for 
all types of controlled combustion with energy and metals/
materials recovery. The disposal of MSW has become a high 
cost; thus, the order of priority of various waste manage-
ment methods indicated that sanitary landfilling is lower 
than WTE [8].

The combustion process converts chemical energy in 
postrecycled MSW to produce superheated steam to drive a 
turbine for electricity generation [9–13]. Grate combustion is 
the most common and simplest technology for MSW applied 
worldwide, operating at 850–1000 °C with complete oxida-
tion, which can reduce the MSW volume by 85%–90% and 
the mass by 80% [8, 14, 15]. WTE has many advantages over 
landfilling, including land saving, electricity generation, and 
reducing associated greenhouse gas (GHG) [16].

The combustion process of MSW produces two residues: 
bottom ash and fly ash, in the daily generation ratio of 6:1 
to 10:1 [17]. The bottom ash is the combustion residue dis-
charged from the end of the grate furnace, about 20% of the 
total MSW, classified as nonhazardous waste. In comparison, 
fly ash is the air pollution control (APC) residue, commonly 
about 1%–5% of the total MSW, which is classified as hazard-
ous waste because it contains heavy metals and polychlorin-
ated dibenzo-p-dioxins/furans (PCDD/Fs). The proper ben-
eficial uses of WTE residues as resourceful materials require 
environmental specifications, regulations, and local legislation 
related to specific leaching procedures and standards region-
ally that were used as a guideline to evaluate the treatment 
effectiveness [18]. However, the reuse of WTE fly ash is a 
challenging topic worldwide due to its hazardous character-
istics, which may require proper pretreatment [19–21].

As a renewable energy source, there were over 512 WTE 
plants in Europe in 2016, providing a total capacity of 93 
million tonnes [22]. In 2020, European Union 27 countries 
(EU-27), 61 million tonnes of MSW (27% of total MSW) 
were treated by WTE, estimated to generate 14 million tonnes 
of residues annually, as shown in Fig. 1 (fly ash is estimated 
to be about 3% of the total MSW for EU and the U.S.) [23]. 

Following the circular economy principles, the European 
Commission encourages the utilization of the mineral frac-
tion of WTE bottom ash (after proper ferrous and nonfer-
rous metals recycling) as secondary construction materials 
in the civil engineering sector [24, 25]. Even though a sig-
nificant variance is present in the reuse rate, from 0 to 100% 
in different countries, the overall reutilization rate in the EU 
in construction works is approximately 54%, as indicated by 
the previous findings that utilization does not depend on how 
well-regulated bottom ash utilization is, but as a result of 
political commitment to bottom ash recycling and economic 
interest [26]. Besides, European countries have restricted laws 
and legislation that prevent the mix of bottom ash and fly ash, 
and the management involves appropriate treatment prior to a 
final disposal of fly ash, including backfilling to underground 
mines or quarry, and chemical−physical stabilization with 
binding agents (commonly cement) followed by landfilling 
at the current stage [26, 27].

Currently, 75 WTE facilities are operated in the 25 states 
of the U.S., mainly in the Northeast, combusting about 
29 million tonnes (11% of total MSW) in 2018 and generat-
ing about 7 million tonnes of residues annually [28, 29]. A 
large amount of land, less dense population, and low eco-
nomic cost of MSW sanitary landfill caused the WTE facili-
ties in the U.S. to be less common than in the EU countries 
(Fig. 1). U.S. WTE industries process combined ash (the mix 
of fly ash and bottom ash in the daily generation ratios) as a 
single stream and dispose of it in the landfills after it passes 
the Toxic Characteristic Leaching Procedure (TCLP) [17, 
30]. About 10% of WTE combined ash is reused in road con-
struction and landfill cover [31, 32]. In recent years, research-
ers and scientists in the U.S. have been driving public atten-
tion to the GHG emissions from landfills to convert the waste 
management framework to WTE technologies and enhance 
the energy and metals/materials recovery, which requires the 
support and development from the legislation and interests 
in markets [33–39].

China has risen to 228 million tonnes of MSW generated 
nationwide in 2018, with 102 million tonnes of WTE capac-
ity; the MSW generation is concentrated in eastern coastal 
provinces due to the dense pollution, developed economy, 
and urbanization [40]. The annual generation of total resi-
dues in China is estimated to be about 26 million tonnes 
(fly ash is estimated to be 5% of the total MSW, consider-
ing that the differentials of combustion processes in China 
generated more residues from the APC system). Cement 
stabilization/solidification is the most common way of fly 
ash disposal in landfills, which can be implemented easily 
at a relatively low cost [41]. Besides, the existing cement 
kiln treats approximately 6% of the total fly ash generated 
in China [42]. However, there is no clear data source for the 
bottom ash reutilization rate [31].
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This review innovatively compared the beneficial uses of 
WTE residues in civil engineering applications from tech-
nical perspectives and their corresponding environmental 
standards in European countries, the U.S., and China, pre-
senting the opportunities and challenges to verify the effec-
tiveness of WTE residues stabilization, the gaps of promot-
ing WTE residues to reutilization, and the demands from 
construction. The overall characteristics of WTE residues 
(bottom ash and fly ash), and their  practice in civil engi-
neering applications, were also summarized, which indicates 
the possible solutions and framework to apply the beneficial 
uses of WTE residues in current and future scenarios to meet 
the demands of both developed and developing countries.

Common standards and speciation

Leaching procedure and standards

Heavy metals are the predominant concern for the environ-
mental impacts when the WTE residues are disposed of in 
landfills or reused as construction materials. Meanwhile, 
some elements or components (e.g., chlorine, dissolved 

organic carbon (DOC), etc.) also have environmental con-
cerns; if the waste is discharged to the landfills, it may 
generate pollutants in the soil or groundwater through the 
leaching. A comparison of the most commonly used leach-
ing procedures used in European countries (the UK is listed 
as a representative), the U.S., and China are shown in Fig. 2, 
where the detailed procedure and parameters are summa-
rized from the standards listed in Sects. “EU leaching pro-
cedure and standards”, “The U.S. leaching procedure and 
standards”, and “China leaching procedure and standards” 
[41, 43–49]. Owing to the pH being a primary influence 
on the leachability of heavy metals, the investigations and 
measurement of pH in the different regions are also included.

EU leaching procedure and standards

The European Committee for Standardization (CEN) 
developed standards and guidance on the leaching tests and 
chemical analysis to evaluate the End-of-life waste materi-
als: CEN/TC 292 “Characterization of waste” and CEN/TC 
351 “Construction products-Assessment of the release of 
dangerous substances” [45, 50–52]. CEN/TC 292 consists of 

Fig. 1   MSW management framework and WTE residues reutilization status in the EU, the U.S., and China. MSW municipal solid waste, 
WTE waste-to-energy
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basic characterization (Liquid-to-solid ratio (L/S), leachant 
composition, pH redox, complexing capacity, and physi-
cal parameters), compliance testing, and onsite verifica-
tion. CEN/TS 16637-2 of CEN/TC 351 applied tank test: 
dynamic monolithic leaching test at liquid-to-surface area 
ratio (L/A) of 8 cm3/cm2 by demineralized water as a func-
tion of time [53]. The following specific tests are proposed 
for the leaching properties as summarized in Table 1 for (1) 
pH dependence tests (CEN/TS 14429, CEN/TS 14997) [54, 
55]; (2) Percolation tests (CEN/TS 14405, CEN/TS 16637-3 
of CEN/TC 351) [56, 57]; and (3) Batch tests (EN 12457–1, 
2, 3, 4) [50, 58–61].

The EU members are required by EU legislation to follow 
the CEN standards; thus, the individual countries derived 
their own regulations and criteria based on their specific 
situations [62]. One of the widely mentioned version in aca-
demic publications is the BS EN 12457–2 (Characterization 
of waste-Leaching-Compliance test for leaching of granular 
waste materials and sludges-Part 2): One-stage batch test at 
a liquid-to-solid ratio of 10 mL/g for materials with parti-
cle size below 4 mm (with or without particle size reduc-
tion) [44]. The leaching results by deionized water via BS 
EN 12457–2 are used to compare a solid to the UK waste 
acceptance criteria (WAC, Table 2), which classify landfill 
sites as suitable for hazardous, nonhazardous, or inert waste 
[43, 63, 64].

The U.S. leaching procedure and standards

TCLP and  Resource Conservation and  Recovery Act (RCRA) 
standards  The EPA Method 1311-TCLP is currently 

applied in the U.S. industry, as described in Table 3 [49]. 
It determines whether the waste is below the levels man-
dated by the RCRA and, thus, can be disposed of in non-
hazardous landfills [68]. The leaching results of the TCLP 
test are compared to eight RCRA metal regulatory standards 
(Table 4) to determine whether the wastes can be disposed 
of in nonhazardous landfills (MSW or sanitary landfills) or 
hazardous landfills in the U.S. [49, 69, 70].

Leaching Environmental Assessment Framework (LEAF)  The 
LEAF is useful in estimating the environmental impacts of 
utilizing secondary materials, primarily as construction 
materials or disposal scenarios [46]. The LEAF evaluation 
system consists of four leaching methods summarized in 
Table 1. Method 1313-Liquid–Solid Partitioning as a Func-
tion of Extract pH Using a Parallel Batch Extraction Proce-
dure; Method 1314-Liquid–Solid Partitioning as a Function 
of Liquid–Solid Ratio for Constituents in Solid Materials 
Using an Up-Flow Percolation Column Procedure; Method 
1315-Mass Transfer Rates of Constituents in Monolithic 
or Compacted Granular Materials Using a Semi-Dynamic 
Tank Leaching Procedure; Method 1316-Liquid–Solid Par-
titioning as a Function of Liquid–Solid Ratio Using a Paral-
lel Batch Extraction Procedure [48, 65–67].

Among these four methods, Method 1313 of pH depend-
ence (Table 1) is the most important test to investigate the 
leachability of constituents [48]. The parallel batch extrac-
tions of solid material receive equilibrium conditions over 
a wide range of eluate pH values (0.5–13). Specimens are 
crushed and milled to the particle sizes (Table 5) for differ-
ent minimum dry mass, contact time, and extracted with 

Fig. 2   Comparison of leaching procedure and standards for heavy metals in WTE residues used in Europe, the U.S., and China
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HNO3 solutions of various concentrations at a liquid/solid 
ratio of 10 mL solution per gram of dry sample. The samples 
are mixed in a turn-over-turn at 28 rpm and room tempera-
ture, 20 °C. The equilibrium (eluate) pH is recorded after the 
rotating reaction. The extracted solutions are filtered through 
0.45 �m filtration membranes for leachability analysis.

The UK WAC limits meet the BS EN 12457–2 leach-
ing test. A study by International Solid Waste Association 
(ISWA) stated that the leaching criteria for utilization of 
WTE residues must be at least the same as or lower than 
the leaching criteria (WAC) for disposal to landfill [32]. 
Currently, there are no criteria or landfill limits for the U.S. 
EPA LEAF tests, while the procedure and parameters of 
Method 1313 using water leaching are the same as BS EN 
12457–2. Thus, it is suggested by authors that using deion-
ized water leaching, following the Method 1313 procedure 
in their previous research, and the results were compared 
to the WAC limits as a reference for the future enaction 
of LEAF criteria [17, 30, 76, 77]. This comparison can 
contribute to estimating the environmental influence of 
reusing WTE residues as secondary construction materi-
als in the U.S.

China leaching procedure and standards

This section summarized the commonly used leaching 
procedure and standards by previous articles from China. 
The corrosivity of WTE residues is measured by the Solid 
Waste-Glass Electrode Test-Method of Corrosivity (GB/T 
15555.12–1995) by using 100 g-dry samples with 1 L dis-
tilled water (liquid-to-solid ratio (L/S) at 10 mL/g) mixing 
in a shaker for 8 h at room temperature, and settling down 
for 16 h before the pH value measurement. The residues 
were considered corrosive when pH value <2 or ≥12.5 [72, 
78]. Meanwhile, the Code for Fly Ash Test-Method (DL/
T5532-2017) is used for the pH value measurement of WTE 
residues, following the 10 g-dry samples immersed in the 
200 mL distilled water (L/S at 20 mL/g), mixed for 10 min 
on the shaker, settled down for 30 min before the pH value 
measurement [72, 79].

Table 2   UK Waste acceptance criteria (WAC) leaching limits as set 
in Council Decision 2003/33/EC (European Union) [43]

TDS Total dissolved solids

Elements Leachability (mg/kg) batch tests at  
L/S=10 mL/g

Acceptable for 
hazardous  
waste landfill

Acceptable for 
nonhazardous 
waste landfill

Inert  
waste 
landfill

As (arsenic) 25 2 0.5
Ba (barium) 300 100 20
Cd (cadmium) 5 1 0.04
Cr (chromium, total) 70 10 0.5
Cu (copper) 100 50 2
Hg (mercury) 2 0.2 0.01
Mo (molybdenum) 30 10 0.5
Ni (nickel) 40 10 0.4
Pb (lead) 50 10 0.5
Sb (antimony) 5 0.7 0.06
Se (selenium) 7 0.5 0.1
Zn (zinc) 200 50 4
Cl− (chloride) 25,000 15,000 800
F− (fluoride) 500 150 10
SO4

2− (sulfate) 50,000 20,000 1000
TDS 100,000 60,000 4000
Dissolved organic 

carbon
1000 800 500

Table 3   Summary of leaching tests: U.S. EPA Toxic Characteristic Leaching Procedure (TCLP) and China Solid Waste-Extraction Procedure for 
Leaching Toxicity-Acetic Acid Buffer Solution Method (HJ/T 300-2007) [49, 71]

Test Sample preparation Reaction Extraction fluid L/S Determination of appropriate  
extraction fluid

U.S. EPA TCLP [49] Crushed and sieved 
to <3/8 inch 
(9.5 mm)

Turn-over-
turn TCLP 
apparatus for 
18 h

Two extraction acid solutions were 
prepared by acetic acid/sodium 
hydroxide: Extraction Fluid #1  
at pH = 4.93±0.05 and Extraction  
Fluid #2 at pH = 2.88±0.05

20 mL/g 5 g samples react with 96.5 mL 
reagent water and stir for 5 min. 
If the pH < 5.0, use extractant 
#1 and proceed with the leaching 
test. If the pH > 5.0, add 3.5 mL 
1 mol/L HCl slurry briefly, cover 
with a watch glass, heat to 50 °C, 
and hold at 50 °C for 10 min, then 
measure the pH of the solution. 
Cooled to room temperature: if 
the pH < 5.0, use extractant #1 for 
leaching test; if the pH > 5.0, use 
extractant #2 for leaching test

China HJ/T 300–
2007 [41, 71–74]

Oven-drying, 
crushing, 
and sieving 
to <9.5 mm

Turn-over-turn 
rotator at 
30 rpm for 
18± 2 h

Two acidic extraction solutions  
were prepared with acetic acid  
and sodium hydroxide solution: 
extractant #1 at pH = 4.93±0.05 and 
extractant #2 at pH = 2.64±0.05

20 mL/g
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The procedure measures the total concentration of heavy 
metals in WTE residues: Soil Quality-Analysis of Soil 
Heavy Metals-Atomic Absorption Spectrometry with Aqua 
Regia Digestion (NY/T 1613–2008) [80]. Previous research-
ers adjusted the procedure, using 1 g of WTE residue sam-
ples (sieved less than 0.149 mm) added with 10 mL of aqua 
regia (HNO3:HCl=1:3 in volume, L/S=100 mL/g), setting in 
the boiling water bath for 2-h of heating, shaking 1–2 times, 
then cooling the digested solutions to room temperature and 
using the supernatant for Inductively coupled plasma optical 
emission spectroscopy (ICP-OES) measurement [72].

The leaching toxicity of WTE residues was measured 
by the Solid Waste-Extraction Procedure for Leaching 
Toxicity-Acetic Acid Buffer Solution Method (HJ/T300-
2007) [41, 71–74]. The procedure of HJ/T300-2007 is 
compared to that of the U.S. EPA TCLP test, as shown 
in Table 3. The heavy metals leaching toxicity measure-
ment in Chinese standards is similar to that in U.S. EPA 
TCLP standards. Landfill Site of Municipal Solid Waste 
(GB 16889–2008) is used as the standard to evaluate the 
leachability of heavy metals of WTE residues after proper 
treatment for safe disposal in nonhazardous landfills in 
China (Table 4) [75].

Dioxin‑related procedure and speciation

Dioxin refers to a group of toxic chemical compounds 
sharing certain chemical structures, and biological 

characteristics, including PCDDs, polychlorinated diben-
zofurans (PCDFs), and certain polychlorinated biphenyls 
(PCBs), those with chlorines at positions 2,3,7 and 8 are 
toxic [81]. The public perception of WTE fly ash is some-
times negative because it contains dioxins, another challenge 
of reusing it in civil engineering applications [82–85]. The 
U.S. EPA established a comprehensive dioxin database, 
methods, and tools to monitor and measure dioxin for con-
trolling emissions and preventing exposure [86].

EPA Method 1613B measures tetra-through octa-chlo-
rinated dioxins and furans (PCDD/Fs) by high-resolution 
gas chromatography/high-resolution mass spectrometry 
(HRGC/HRMS) using isotope dilution to quantify very 
low concentrations of individual PCDD/Fs congeners 
[87]. This method has been widely applied as pretreat-
ment steps (extraction, concentration, and column separa-
tion) for dioxins concentration measurement of WTE fly 
ash in academic research papers in recent years [88–90]. 
Besides, EPA Method 8280B (detection limit 1–5 ppm in 
ash samples) and Method 8290A (detection limit at parts-
per trillion (ppt) to parts-per quadrillion (ppq)), while less 
sensitive than Method 1613B, were also used in the previ-
ous papers [91–93].

For landfill disposal, the concentration of dioxins in 
WTE fly ash must meet the environmental standard of 
3 ng/g in China according to the China national standard 
GB 16889–2008, which is significantly lower than the 
U.S. hazardous limit of dioxin disposal at 10 ng/g and 
EU Statutory Order on Persistent Organic Pollutants at 
15 ng/g [41, 74, 75, 77, 94]. However, due to WTE fly 
ash being categorized as hazardous waste, there is still 
a long journey to be beneficially reused as a resource-
ful material in civil engineering applications. A previous 
study also mentioned that dioxins and furans do not easily 
leach, while releasing these contaminants is of major con-
cern because of their toxicity [95]. In August 2020, China 
launched the first technical specification (HJ 1134–2020) 
for reusing treated WTE fly ash as a resource for further 
application, which required the total remaining dioxins 
(not exceeding 50 ng-TEQ/kg-dry via the treatment pro-
cesses, including low-temperature thermal decomposi-
tion, high-temperature sintering, or high-temperature 

Table 4   The comparison of the U.S. EPA Resource Conservation and 
Recovery Act (RCRA) standards for heavy metals by Toxic Char-
acteristic Leaching Procedure (TCLP) test and the China Ministry 
of Ecology and Environment Standard for Pollution Control on the 
Landfill Site of Municipal Solid Waste (GB 16889–2008) by Solid 
Waste-Extraction Procedure for Leaching Toxicity-Acetic Acid Buffer 
Solution Method test (HJ/T 300–2007) for safe disposal in nonhaz-
ardous landfills [49, 70, 71, 75]

Heavy metals  
standards

U.S. EPA RCRA 
(mg/L)

China GB 16889–
2008 (mg/L)

Ag (silver) 5.0
As (arsenic) 5.0 0.3
Ba (barium) 100.0 25
Be (Beryllium) 0.02
Cd (cadmium) 1.0 0.15
Cr (chromium) 5.0 (Total Cr) 4.5

(Cr6+) 1.5
Cu (copper) 40
Hg (mercury) 0.2 0.05
Ni (Nickel) 0.5
Pb (lead) 5.0 0.25
Se (selenium) 1.0 0.1
Zn (zinc) 100

Table 5   U.S. EPA LEAF Method 1313 and 1316 extraction param-
eters as a function of maximum particle size [48, 67]

Particle size 
(< 85% in weight) 
(mm)

Minimum dry 
mass (g-dry)

Contact time  
(h)

Suggested 
vessel size 
(mL)

0.3 20±0.02 24±2 250
2.0 40±0.02 48±2 500
5.0 80±0.02 72±2 1000
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melting, etc.), heavy metals leachability (standards GB 
8978 by using HJ 557), total Cl (<2%, preferred to <1%), 
the standards for reuse as a cement manufacturing feed 
material (GB 30485 and HJ 662), and not allowed to be 
used in sintering brick [96–100].

Characteristics of WTE residues

For bottom ash, the ash discharge system after the com-
bustion chamber significantly influences its characteristics 
(Table 6) and potential beneficial uses. The wet-discharge 
system by Ulrich Martin drops the combusted ash parti-
cles from the end of the moving grate into a water tank for 
quenching and forming agglomerated bottom ash, which is 
the most common ash discharge process [101, 102]. The 
water and air sealing wall in the discharger prevents the 
flue gas and other pollutants from being released outside 
the furnace. The ram continuously pushes the bottom ash 
to the drop-off edge. The freshly quenched bottom ash was 
characterized by amorphous and microcrystalline calcium-
silicate-hydrate phases and the formation of quench products 
(e.g., calcite, Friedel’s salt, hydrocalumite, portlandite, etc.) 
were controlled by very fine particles (<0.425 mm) [103]. 
The processing parameters in the quenching water tank (e.g., 
water content, etc.) may also influence the characteristics of 
bottom ash. The bottom ash in the U.S. (Fig. 3a) are stone-
like granulate particles, while the bottom ash in China WTE 
facilities is dustier and looser.

The wet-discharged bottom ash commonly contains 
moisture of about 10%–60%, which is classified as a non-
hazardous material; except for moisture, the bottom ash 
typically contains 50%–70% mineral fraction, 15%–30% 
glass and ceramics, 5%–13% ferrous metals, 2%–5% non-
ferrous metals, and 1%–5% unburned organics [17, 31, 68, 
104–106]. Modern WTE facilities commonly apply ferrous 
(magnetic separation) and nonferrous (eddy current) metal 
recycling units to extract metal scraps from bottom ash; 
thus, the remaining stone-like fractions after metal recycling 
can be used in civil engineering applications depending on 
the ash characteristics [107]. The particle size distribution 
of bottom ash is significant when the material is used as a 
substitute for secondary building material or other utiliza-
tion purposes [108]. A previous review study reported that 
60%–90% of ash is found in 0.02–10 mm, whereas 0–30% 
bottom ash may contain >10 mm larger particles, which 
are ferrous and nonferrous metals, slag, and construction-
type waste materials, which can be further recycled in metal 
separation processes [31]. Tian 2022 also found that 80% of 
the bottom ash after metal recycling is 1–20 mm, as shown 
in Fig. 3 [17].

To increase the mechanical metal recycling rate, the dry 
discharge system was developed in WTE facilities in Japan 
and Switzerland, which showed a 45% increase in ferrous 
metals and a 50% increase in nonferrous metals over the wet-
discharge method, also resulting in a significant fine fraction 
generated (approximately 45% of total bottom ash) due to 
the absence of water during quenching [109].

Table 6   Summary of WTE bottom ash and fly ash characteristics

Characteristics Bottom ash [17] Fly ash [110]

Classification Nonhazardous waste Hazardous waste
Particle size Wet-discharged: agglomerated particles with 

wide particle size distribution (around 
0.1–30 mm)

Dry-discharged: a significant amount of fine 
fraction (about 45% of total bottom ash)

High-moisture process: 0.03–30 mm (large ash size due to the agglomeration 
of particles in the presence of water)

Low-moisture process: 0.02–0.2 mm

Moisture 10%–60% High-moisture process: 20%–30%
Low-moisture process: 2%

Components 
(except of 
moisture)

50%–70% mineral fraction, 15%–30% glass 
and ceramics, 5%–13% ferrous metals, 
2%–5% nonferrous metals, and 1%–5% 
unburned organics

Collected residues discharged from the boiler, scrubber, and fabric-filter 
baghouse in the APC system, containing particles from the furnace carried 
in the process gas and the newly-formed particles when absorbents enter the 
scrubbers, including hydrated lime/lime slurry and activated carbon

Possible mineral 
phases

Amorphous phases (76%), quartz (SiO2), 
calcite (CaCO3), anhydrite (CaSO4), aker-
manite (Ca2Mg[Si2O7]), corundum (Al2O3), 
alunite (KAl3(OH)6(SO4)2), magnetite 
(Fe3O4), gehlenite (Ca2Al[AlSiO7])

Amorphous phases (50%–55%), portlandite (Ca(OH)2), calcite (CaCO3), 
vaterite (CaCO3), halite (NaCl), sylvite (KCl), chloromagnesite (MgCl2), 
calcium hydroxide chlorides (CaClOH), anhydrite (CaSO4), bassanite 
(CaSO4 ⋅ 0.5H2O), alunite (KAl3(SO4)2(OH)6), wurtzite (ZnS), tricalcium 
aluminate (Ca3Al2O6), Ye’elimite (Ca4Al6O12SO4), hemicarboaluminate 
(Ca4Al2(CO3)0.5(OH)13 ⋅ 5.5H2O), ettringite (Ca6Al2(SO4)3(OH)12 ⋅ 26H2O), 
Friedel’s salt (Ca2Al(OH)6(Cl,OH) ⋅ 2H2O), quartz (SiO2), wollastonite 
(CaSiO3), tricalcium silicate (Ca3SiO5), diopside (MgCaSi2O6), gehlenite 
(Ca2Al[AlSiO7])
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Table 7 presents the elemental concentrations of WTE 
bottom ash and fly ash [17, 110]. Fly ash is dominant in  
Si (202  g/kg, average value, same as followed) and  
Ca (150 g/kg), and has a high concentration of Ca (222 g/kg) 
and Cl (145 g/kg) due to the hydrated lime slurry injection 
in the APC system and its reaction with HCl in the flue gas.  
Pb (3513 mg/kg), Zn (9 g/kg), and Cd (178 mg/kg) are mainly 
considered as the concern of leaching of toxicity, which may 
release into the soil or groundwater and cause environmental 
risks. Tian et al. systematically investigated the detailed char-
acteristics of fly ash [110].

The ternary composition reviewed from the literature is 
normalized and presented in Fig. 4, when compared with the 
composition of ordinary Portland cement (OPC), the com-
mon cementitious supplementary materials from industrial 
residues (blast-furnace slag, coal fly ash Class C/F, coal bot-
tom ash), waste glass, silica fume, and some clays commonly 
applied in cement material (bentonite, kaolin, metakaolin) 
[166–173]. The experience of utilizing other industrial resi-
dues or aluminosilicate materials also references the benefi-
cial uses of WTE residues.

Beneficial uses of WTE residues in civil 
engineering applications

Numerous studies (Fig. 5) of the uses of WTE residues are 
categorized based on demands of civil engineering applica-
tions. The applications of WTE bottom ash are more widely 
accepted and discussed in this review study than fly ash 

because it is a nonhazardous material, and its generation is 
6–10 times the latter.

Alternative aggregates in concrete or cement‑based 
concrete pavement

U.S. American Society for Testing and Materials (Interna-
tional standards organization, ASTM) C33/C33M Stand-
ard Specification for Concrete Aggregates defines the 
requirements for grading and quality of the coarse and 
fine aggregates for use in concrete with different nomi-
nal sizes (sieves with Square Openings) [174]. Typically, 
the coarse aggregate sizes are larger than 4.75 mm and 
generally range between 9.5 mm and 37.5 mm; the fine 
aggregate sizes are less than 4.75 mm, and the limit for 
material finer than the 75 μm (No. 200 sieve) shall be 
5.0% maximum [174–176]. Natural coarse aggregate is 
extracted from mines, consisting of gravel (deposits), 
crushed gravel, and crushed stone for particle size, angu-
larity, and texture demands. In addition to stone, sand, as 
another essential industrial construction material, is the 
most consumed natural resource in the world after water 
and has become a limited resource in recent years due 
to exhausted extraction. The sand (fine aggregates) is 
classified as fine sand (0.075–0.425 mm), medium sand 
(0.425–2 mm), and coarse sand (2–4.75 mm), consisting 
of pit sand (2–4.75 mm), river sand (0.06–2 mm), sea sand 
(0.06–2 mm, containing salt, so it is avoided for concrete 
structure), manufactured sand (0.6–4.75 mm) [177–180]. 
Industrial residues in similar particle size ranges and 

Fig. 3   As-received bottom ash after ferrous and nonferrous metal recycling: a. photo (by the corresponding author, 2019, Columbia University, 
New York, USA); b. particle size distribution (D10, D50, D90: the portion of particles with diameters below this value is 10%, 50%, and 90%)
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strengths are expected to be used as supplementary sand 
materials to relieve the shortage of sand.

The granulated WTE bottom ash is used extensively to 
replace coarse aggregates due to the increasing environmen-
tal cost of natural mining stone. In contrast, the sorting of 
sizes in WTE bottom ash varies depending on the applica-
tions of the particle size ranges discussed above. Most of the 
previous studies explored the performance of WTE bottom 
ash in particle sizes >4.75 mm [111, 181, 182]. Some mod-
ern WTE facilities use a 9.5 mm screen to separate the sizes 
of WTE bottom ash mainly for enhancing the recovery of 
nonferrous metals; therefore, bottom ash <9.5 mm to replace 
coarse aggregate was investigated in a previous study [183].

In Denmark, UK, the Netherlands, and Norway, the 
utilization rate of the mineral fraction of bottom ash is 
more than 60% in concrete structures or cement-based 
concrete pavement [31, 32, 184, 185]. The compres-
sive strength varies from 17 MPa (2500 psi) to 28 MPa 
(4000 psi) and is higher in residential and commercial 
structural concrete. Research using mixed bottom ash 
and f ly ash (ratio 90/10) completely replacing both 
natural coarse and fine aggregates showed a compres-
sive strength above 15 MPa, which is suitable for use 
as nonstructural concrete [24]. A prior study by the 
author examines the performance of WTE combined ash 
(the mix of bottom ash and fly ash in the daily genera-
tion ratio) after washing and crushing in the sizes of 
9.5–25 mm and 2–9.5 mm as coarse aggregate 100% sub-
stitute natural crushed stone received exceeding 28 MPa 
of compressive strength in produced structural concrete 
[30]. To produce granulate aggregate materials with 
low dust and chloride and higher mechanical strength, 
typical pretreatments of bottom ash involve washing and 
natural weathering before further processing [24, 183, 
186–188], which results in significant improvements in 
the quality of the mineral fractions for cement-based 
concrete production [189].

As for the replacement of fine aggregate, the fine 
size previous studies widely investigated the size range 
of bottom ash <4.75 mm or 5 mm [181, 182, 190–194], 
and some studies investigated the performance of bottom 
ash <2.36 mm or 2 mm [112, 195, 196]. The fine size bot-
tom ash is a lightweight porous material containing metal-
lic aluminum, which caused the reaction with alkaline 
compounds in cementitious phases and generated hydrogen 
gas, resulting in bubbling and swelling in cement products 
[17, 30]. The highest cumulative amount of hydrogen gas 
collected in the particle size ranges (<0.6 mm, 0.6–1 mm, 
1–2 mm, 2–4.75 mm) within 20 days was 8.4–39.4 L/kg-
dry bottom ash [197]. To relieve the swelling, academic 
research has explored alkaline treatment for bottom ash 
(immersion in sodium hydroxide solutions for 15 days), 
resulting in up to 50% replacement and exhibiting 

Table 7   Elemental concentrations of WTE bottom ash [24, 103, 111–
134] and fly ash [24, 63, 118, 121, 134–165]

Elemental concen-
tration (g/kg)

Bottom ash Fly ash

Min Max Ave Min Max Ave

Ca 69 250 150 52 397 222
Cl 3 14 8 7 356 145
S 5 164 38 7 115 36
Si 168 224 202 0.1 132 55
K 3 190 29 3 91 37
Na 9 38 22 10 221 53
Mg 6 17 13 2 30 11
Zn 0.3 8 2 0.01 49 9
Al 30 70 48 3 74 29
P 3 6 4 0.5 59 7
Fe 11 109 39 2 37 12
Ti 7 7 7 0.4 12 6
Elemental concen-

tration (mg/kg)
Min Max Ave Min Max Ave

Pb 23 5,195 912 50 19,000 3513
Mn 100 1246 679 100 3540 738
Cu 36 6532 1833 90 5400 1420
Sr 219 366 293 196 1408 469
Ba 1240 2239 1758 70 1590 757
Cr 79 1224 281 12 14,916 659
Cd 0 101 11 0.3 610 178
Ni 13 2107 163 9 1889 138
Se 0.1 130 22
As 4 138 48 1 460 101
Hg 0.03 0.8 0.14 1 16 5
Ag 1 40 19

Fig. 4   CaO–Al2O3–SiO2 ternary diagram for the composition of 
industrial residues and other aluminosilicate materials data reviewed 
by the author (Tian 2022) [17]



334	 Waste Disposal & Sustainable Energy (2023) 5:323–350

1 3

compressive strength of 25 MPa [111, 182]. A previous 
study by the author found that the compressive strength 
of 28 MPa was obtained in cement mortar using <2 mm 
combined ash as a fine aggregate up to 50% volume 
replacement in the mixture design with water compensa-
tion to the absorption rate (13%) of ash, reaching 50% of 
the compressive strength by only using natural sand [17]. 
Similar mixture adjustments were also concluded in the 
recent T.-P Huynh et al. [194] study when the fine bottom 
ash was adjusted to the saturated surface dry condition 
before use and the novel method (densified mixture design 
algorithm [198]) was used as the mixture design, using 
fine bottom ash as a 30%–50% replacement for natural 
sand in mortar mixtures caused 35% loss of compressive 
strength, and 100% replacement caused 48% loss in the 
compressive strength.

Cement stabilization/solidification can effectively encap-
sulate the heavy metals from WTE residues and prevent their 
leaching into the environment. The ash-derived construc-
tion products comply with civil engineering and stringent 

environmental standards related to the leachability of metals 
and are used commercially [45, 123, 199, 200].

Alternative aggregates in hot‑mix asphalt/
bituminous concrete pavement

Unlike Portland cement concrete, which is made of cement, 
stone aggregate, sand, and water and is used as the surface 
course of rigid pavement, flexible pavement is used asphalt 
or bituminous to bind aggregates in a hot mix for the surface 
course. The bitumen encapsulation mechanisms are applied 
in hot-mix asphalt concrete to solidify and utilize WTE bot-
tom ash as the stone aggregate and be used as pavement 
for road construction [201–203]. Numerous studies have 
investigated the performance of bitumen-bound bottom ash 
asphalt mixture, indicating that the ash−concrete mixture 
needed higher asphalt content than the mixture of a com-
mercial asphalt concrete pavement [204–206]. Another 
research found that the increase in bottom ash substitution 
in the asphalt pavement mixture lowered the tensile strength 

Fig. 5   The framework of beneficial uses of WTE residues in civil engineering applications
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and concluded the optimal formula of 10%–40% bottom ash 
as a substitute for natural aggregate and 3.5%–9.5% bitumen 
as the binder [201]. Some studies indicated that the percent-
age of bottom ash substitution was limited to 20% to control 
the tensile strength ratio within 75% [185, 201].

The TCLP leaching test results showed that heavy metal 
concentrations were below the detectable levels [201, 206, 
207]. The low leachability of in bottom ash-containing 
asphalt mixture resulted in the hydrophobic nature of the 
binding system and the surface cover, which prevented the 
contact of bottom ash with water and significantly decreased 
infiltration and element mobility [185, 208].

Base, subbase, and subgrade soil for pavement 
construction

Besides its uses as alternative aggregates, WTE bottom ash 
is widely used as an unbound or hydraulically bound struc-
tural material for the base, subbase, and subgrade soil, which 
has been widely investigated in numerous field experiments 
[209–213]. In unbound form, the shear strength, elastic 
modulus, and bearing capacity of bottom ash showed simi-
lar performance to natural sand, and the California bearing 
ratio (CBR) values of bottom ash are 20%–30% higher than 
the recommended subbase values [214]. The size of unbound 
bottom ash generally fulfills the grading requirement as the 
Type 1 unbound mixture, but grading adjustments can be 
required. It has been found that unbound bottom ash pro-
vided 70% of the strength of crushed rock as a desirable 
subbase material in field tests [213]. Additionally, the water 
content as the critical factor of aging reactions was less than 
0.1–0.5 L/kg after ten years; thus, the aging phenomenon 
was not observed in deformation properties under loaded 
conditions [211].

Hydraulically bound bottom ash utilizes cement or other 
binders to improve the mechanical performance of the pave-
ment base, which requires a compact to 95% of the max-
imum dry density to meet the SHW Series 800 standard 
[214]. Adding cement or lime can improve the compres-
sive strength and elastic modulus of bound bottom ash to 
receive the confining pressure at 70 kPa [212, 214, 215]. The 
leachability of heavy metals of unbounded and hydraulically 
bounded bottom ash in road construction was widely studied 
in a previous study, which indicated that although the asphalt 
on the top layer prevents infiltration of rainwater, the large 
surface area of unbonded/bounded bottom ash in the base/
subbase/subgrade soil resulted in the susceptible exposure 
of contaminant to the environment [213, 216, 217].

Zimar et al. [218] explored WTE fly ash for treating 
expansive/high-plastic clays and utilized the WTE fly ash 
stabilized clay as subgrade or subbase soil to improve 
the performance of highway pavement when wetted and 
shrunk during drying. Due to the increasing cost of raw 

construction materials, multiple studies have investigated 
the utilization of stabilized industrial residues as subgrade 
soils for road constructions [219–222]. With the develop-
ment of effective stabilization technology for WTE fly ash, 
it is promising to develop stabilized WTE fly ash in road 
constructions rather than disposing of it in landfills. For 
instance, Colangelo et al. developed the preliminary washed 
WTE fly ash mixed with 20% of cement for road base con-
structions [223].

Filling material in embankment construction

Another essential practical reuse option for bottom ash is 
embankment construction [224]. Embankments are com-
pacted soil or rock-based earth material barriers with stabil-
ity to avoid terrain level changes, typically near the roadway 
or railway to provide structural support. Based on the types 
of construction materials, embankments are classified into 
reinforced embankments, earthfill embankments, and rock-
fill embankments [225]. When the mechanical properties of 
bottom ash are similar to those of a controlled low-strength 
material with a compressive strength of 8.3 MPa or less, bot-
tom ash is a suitable alternative to conventional compacted 
fill [31, 226]. Compacted bottom ash at the optimum water 
content has a lower density value. It yields a higher friction 
angle and cohesion value than most construction fills, result-
ing in higher shear strength. The permeability of WTE bot-
tom ash is also comparable to that of sand, allowing the free 
drainage of water and preventing the buildup of pore water 
pressures [227]. Reusing WTE bottom ash in embankment 
construction also prevents direct exposure to humans and 
reduces leaching risk to water suppliers. In several European 
countries, including Germany, France, the Netherlands, and 
Denmark, the WTE bottom ash has been widely used in 
practice as an embankment fill with reuse rates of 83% in 
Germany, 75% in France, and 90% in the Netherlands [224].

Supplementary cementitious material

Portland cement is the most common type of cement, a 
hydraulic binder that can set and harden via the hydration 
reaction with water. The supplementary cementitious mate-
rials are used either as substitute cement (blended cement) 
or added separately to the mixture, contributing to the prop-
erties of hardened cementitious phases through hydrau-
lic or pozzolanic activity or filler effects (inert materials) 
[166]. The most commonly used commercial supplemen-
tary cementitious materials contain silica fume, coal fly ash 
(Class C/F), blast-furnace slag (a byproduct from pig iron 
production), fine limestone, metakaolin, and natural poz-
zolans [166].

Because the large sizes of WTE bottom ash can be suc-
cessfully used as a stone aggregate substitute in concrete 
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production, the fine bottom ash with high porosity has 
been widely investigated as a supplementary cementitious 
material. Li et al. [228] found that the cementitious reac-
tivity is lower than that of Portland cement, and its addi-
tion to cement may lead to retardation of cement hydra-
tion. The replacement was controlled below 30%, resulting 
in the blended cement of strength class 32.5 according to 
GB 175–2007 (Chinese National Standard), and the leach-
ability of heavy metal is far lower than GB 5085.3–2007 
[228–230]. Also, the function of potential filler material 
(minor additional constituent, 5% in weight) by using milled 
fines (0.125–3 mm) was discussed by Loginova et al. [231]. 
The pozzolanic reactivity via the Si and Al components in 
ash (mainly amorphous phases) reacts with hydration prod-
ucts, Ca(OH)2, to form calcium silicate hydrate gel [228, 
232, 233]. It is acknowledged that the presence of metal-
lic aluminum causes deleterious expansion due to hydro-
gen evolution. Therefore, Carsana et al. [124] proposed 
the wet-grinding of bottom ash to a fine slurry to react the 
metallic aluminum particles with water, and then added it to 
the mix, which received even higher compressive strength 
in self-compacting concrete due to the pozzolanic reac-
tion. Other pretreatments were mentioned in the previous 
research before the fine bottom ash was used as supplemen-
tary cementitious materials to enhance the ash properties, 
including thermally treated (550–800 °C) [234, 235] and 
chemically activated by hydroxides [120]. Garcia-Lodeiro 
et al. [135] investigated the performance of hybrid cement 
with bottom ash (83%) and fly ash (17%) in the replace-
ment of 40% of cement clinker, which exhibited an upward 
trend of 32.5 MPa for 28-day compressive strength. Tian 
[17] also concluded that the washed fine combined ash pow-
der that received 50% compressive strength of the reference 
group by 25% replacement cement.

Using WTE fly ash as supplementary cementitious mate-
rial has been widely investigated due to its advantages in 
chemical composition and particle sizes. Different from 
the single purpose of stabilization/solidification for landfill 
disposal or foundation reinforcement soil, via the mix of 
fly ash, cement, water, and sometimes adding the accelerat-
ing admixtures or activators [236–239], structural aggre-
gate materials were used in the civil products to receive 
the required mechanical strength. It is found that about 
10% replacement of Portland cement by WTE fly ash can 
receive even higher mortar strength, and 25% replacement 
is the suggested maximum dosage, which can also pass the 
leaching standards in different countries [77, 141, 240]. 
Ground granulate blast-furnace slag (GGBFs) is popular to 
be used with Portland cement and mixed with cement in a 
ternary hydration system for better heavy metal stabilization 
effects and is eco-friendly [241, 242]. A previous study by 
the author concluded that the reactive compounds in WTE 
fly ash chemically reacted with water and enhanced the 

hydration degrees of the cementitious system [77]. Aubert 
et al. developed three successive steps for WTE fly ash pre-
treatment: water washing, phosphating with phosphoric acid 
to stabilize heavy metals, and to calcinate at a temperature 
higher than 600 °C to eliminate organic compounds [243]. 
Tian et al. [77] proved that the phosphoric acid stabilized 
fly ash could still react with the cementitious hydration 
products and received the optimal cement replacement at 
25%. To control the leachability of heavy metals, melting 
(1300–1500 °C) was applied to fly ash before it was blended 
into cement by Wang et al. [244]. Ren et al. [245] investi-
gated the pretreatment of WTE fly ash with CO2 via slurry 
carbonation and dry carbonation with subsequent water 
washing, resulted in the CO2-pretreated WTE fly ash can 
replace cement by up to 30% without sacrificing the long-
term strength and mechanical properties, which are also far 
below the regulatory limits.

Alkali‑activated material

Alkali-activated materials (also known as geopolymers), 
including natural aluminosilicate clay or inorganic industrial 
residues (containing aluminate and silicate components) as 
precursors, added to strong alkaline solutions (NaOH, KOH, 
Na2SiO3, Na2CO3, or their mixtures) as activators, form 
highly amorphous binding phases which can form hardened 
structures through geopolymerization [246]. Every kilogram 
of Portland cement manufactured emitted 0.66–0.82 kg of 
CO2, resulting in the cement industry contributing to 5%–7% 
of global anthropogenic CO2 emissions [247]. The alkali-
activated binders are identified to have the potential for 
sustainable utilization in the construction materials indus-
try, offering a like-for-like replacement of Portland cement 
across its full applications [248].

Zhang et al. [249] started the attempts to use ground 
WTE bottom ash as a precursor with the increasing inter-
est in alkali-activated materials, followed by Lancellotti 
et al. [250] and Chen et al. [251] as two representative 
studies to understand the reaction mechanisms of WTE 
bottom ash; then, it has flourished in the last five years, 
widely investigated WTE bottom ash and fly ash as alkali-
activated materials [252, 253]. 8 mol/L alkaline NaOH 
was suggested in the study by Chen et al. by only using 
bottom ash as the precursor, forming Si–O or Si–O ring 
structure in final products with 1–3 MPa compressive 
strength in the hardened pastes, while most of the heavy 
metals except Cr were effectively immobilized [251]. 
Zhu et al. [254] used mixed sodium hydroxide (8 mol/L) 
and sodium silicate solution at a mass ratio of 1:2 as the 
alkali-activator to react with bottom ash. To enhance the 
mechanical strength, the WTE bottom ash was mixed 
with other geopolymer precursors, such as metakaolin, or 
coal fly ash, observed in the combination of C–(A)–S–H, 
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(C,N)–A–S–H, and N–A–S–H gels depending on the addi-
tion ratios, and received optimal replacement at about 
40%–50% [255, 256]. Maldonado-Alameda et al. [257] 
investigated the effects of WTE bottom ash particle size 
on alkali-activated binder performance. Zhu et al. [258] 
used the separated glass materials from WTE bottom ash 
and received the heist compressive strength of 70 MPa in 
the hardened paste products. Suescum-Morales et al. [259] 
investigated the accelerated CO2 curing effects on WTE 
bottom ash-coal fly ash mix and resulted in the formation 
of aragonite.

An essential reason to incorporate WTE fly ash with 
geopolymer precursors (coal fly ash, metakaolin, GGBFs, 
etc.) is to effectively immobilize the heavy metals in 
the fly ash and reduce the leachability in civil products 
[149, 260–265]. Tan et al. [266] developed a co-disposal 
of construction and demolition waste and WTE fly ash, 
and Ye et al. [267] developed a co-disposal of Bayer red 
mud and WTE fly ash via alkali activation. The compres-
sive strength of WTE fly ash-alkali-activated products 
mostly received the compressive strength of 1–10 MPa 
(a few studies exceeded 30 MPa) varied by different fly 
ash addition, the types of other precursors involved, and 
the composition of alkali activators [268]. The stabilized 
products by alkali activation can pass the limits recom-
mended by regional standards (e.g., Chinese CSEPA GB 
5085.1–2007) [269, 270].

Geopolymer artificial aggregates and geopolymer bricks 
as green manufacturing processes, compared to the tradi-
tional sintered lightweight aggregate or fired bricks at tem-
peratures over 1000–1200 °C, have been explored in several 
previous studies [271–274]. Tian et al. 2022 [76] utilized the 
WTE challenging tailings, including fine combined ash (30% 
in volume) and filter cake ash (15% in volume) collected 
from wastewater of combined ash water washing, to mix 
with metakaolin and react through alkali activation, result-
ing in the leachability of products that can pass the very 
restricted UK WAC nonhazardous limits.

Feed material for Portland cement production

Portland cement is produced by heating limestone and 
clay silicate materials at higher temperatures of about 
1400–1500  °C in a rotating kiln, mixing with gypsum 
after it is cooled, and finally ground to a highly uniform 
fine power [275]. Numerous studies have investigated the 
usage of WTE residues as a replacement for raw materi-
als in cement production because of the advantages of their 
chemical composition [15, 20, 276, 277]. Clavier et al. [278] 
assessed the feasibility of incorporating WTE bottom ash 
into raw cement kiln feed materials at 2.8%; leaching tests 
of characterization data of a cement product were compara-
ble to the results from OPC, which ventured WTE bottom 

ash-amended cement production in North America, that 
assisted the navigation of a new recycling market for WTE 
bottom ash. Clavier et al. [20] concluded from the existing 
studies that the untreated WTE ash (bottom ash or fly ash) 
addition in raw materials is limited to below 10%, while 
may increase viable addition to 30%–50% to control harmful 
substances with some exceptions.

Besides, the high temperature of the cement kiln is effi-
cient in decomposing the harmful organic compounds in 
the WTE residues, especially the PCDD/Fs in the WTE fly 
ash, which motivates the recycling of WTE fly ash to be 
beneficially used in civil engineering applications. The Cl 
concentration in Portland cement is regulated as <0.02% 
or <0.035% in certain countries to minimize steel corrosion 
in the reinforced concrete or industrial equipment (cement 
kiln, flue gas ducts, and fans) [156]. Thus, it may downgrade 
the cement quality without the pretreatments of WTE fly 
ash for reducing total Cl and heavy metals [279–281]. The 
allowable limits of Cl in the WTE fly ash and bottom ashes 
were 1.75% and 3.5%, respectively, compared to its average 
concentrations of 15% and 0.8% in Table 2 [126]. Washing is 
the most common pretreatment method to reduce water-sol-
uble chlorides and leachable heavy metals [137, 184, 282]. 
The uses as the raw material replacement for cement clinker 
production ranged from 5%–10% to 25% WTE bottom ash 
[20, 283, 284]. The washed WTE fly ash can be used up to 
35% for cement manufacturing [285, 286].

Ceramic‑based materials

Ceramic materials contain products, including tiles, bricks, 
refractories, etc., manufactured at high temperatures 
(900–1200 °C), used in numerous civil engineering appli-
cations due to their good insulation, high hardness, and 
chemical resistance [287]. Ceramics are commonly used 
in construction, and are made from a mixture of minerals, 
typically silica sand, clay, or other materials, mixed with 
water (~ 30%) [288]. Incorporating WTE residues with clay 
in ceramic-based materials manufacturing reduces the usage 
of clay and the environmental cost of mineral extraction.

Using WTE bottom ash in the bricks production has 
been widely investigated by the previous researchers, indi-
cating that the mechanical strength of bricks is affected 
by the sintering temperature, sintering method, bottom ash 
percentage, and bottom ash chemical composition [289]. 
Increasing the sintering temperature up to 950 °C increases 
the density of sintered bricks, and higher temperatures  
( ≥1000 ◦C ) can cause an increase in the concentration of 
coarse pore, which is known as bloating phenomenon. The 
increase in bottom ash percentage also leads to a higher 
percentage of porosity, which causes a decrease in the 
mechanical properties [290]. Both flexural strength and the 
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elastic modulus are reduced to about half when bloating 
occurs [291]. However, the presence of pores can provide 
special thermal and acoustic insulation characteristics, and 
the compressive strength values obtained passed European 
standards even for 100% bottom ash brick, with a significant 
reduction in the leaching of heavy metals by leaching test 
(UNE-EN 772–5) [292].

It is noted that the reactive heavy metals and transition 
metals in bottom ash can promote the sintering process and 
save energy during the firing process [293]. As for the trans-
formation of bottom ash, calcination changes the crystalline 
phase, thereby giving higher green density and low firing 
shrinkage, and giving the high density, low water absorption, 
and high Vickers microhardness to sintered ceramics [62, 
294]. The pH-dependent leaching results of ceramics pro-
duced by calcinated untreated bottom ash were compared, 
and the leachabilities of heavy metals were reduced through 
encapsulation [294]. Leaching results showed a low risk for 
metal contamination as heavy metals were well fixed into 
the coexistence system of amorphous and crystalline phases 
[295].

Zhang et al. [296] found that the optimal mixture for 
WTE fly ash in ceramic bricks was fly ash:red ceramic 
clay:felspar:gang sand=20:60:10:10 by mass, and the opti-
mal sintering temperature was 950 °C, while leachability 
of As, Hg, Pb, Zn, and Cd exceeded the China standard 
limit (GB5085.3–2007) by Horizontal Vibration Extraction 
Procedure (HVEP) and Available Leaching Toxicity (ALT) 
leaching procedures [230]. Zhang et al. 2007 [297] found 
that WTE fly ash (20% in the mix) can be mixed with cream-
colored clay, fired clay, and limestone to produce ceramic 
tiles, which received a compressive strength of 18.6 MPa 
after sintering at 960 °C, reaching the requirements of China 
GB4100-83 and effectively immobilizing the heavy met-
als. Researchers have been aiming to improve the quality 
of the WTE fly ash ceramic bricks in recent years [298]. 
For example, the fired bricks developed by Sun et al. [299] 
incorporated 10% washed fly ash, and their heavy metals 
leachability could satisfy regulation limitations and can be 
used in harsh scenarios. Another improvement in the qual-
ity and environmental safety of ash-ceramic bricks by Chen 
et al. [300] was adding electric arc furnace slag (EAFS) as 
the pore plugger to overcome the disadvantages brought by 
involving WTE fly ash. However, Chinese technical speci-
fication for WTE fly ash HJ 1134-2020 specified WTE fly 
ash, and its treated products cannot be used for sintering 
bricks production at the current legislation stage due to there 
being no well-developed APC in most of the brick factories 
to capture the toxic emission from the sintering process of 
the WTE fly ash.

Starting from Bethanis and Cheeseman [301] and Cheese-
man et al. [302], WTE bottom ash fine fractions (<8 mm) 
were used to produce sintered lightweight aggregate in the 

temperature range of 900–1140 °C. The sintered lightweight 
aggregate pellets were produced in a pelletizer with a con-
trolled water amount of 24%, mixing the WTE bottom ash 
with other clay or industrial residue (previous studies used 
rice husk, pulverized fuel ash, red mud, etc.), dried overnight 
at 105 °C, fired at various temperatures, then received the 
density of 1.55–2.6 g/cm3 and crushing strength of 4–7 MPa 
[301–303]. Sun et al. [304] increased the crushing strength  
of sintered lightweight aggregate to 27 MPa with 1046.73 kg/m3  
of bulk density and 1783.44 kg/m3 of apparent density by 
the mix ratio of WTE bottom ash:red mud=1:1 at 1070 °C. 
Shao et al. [305] improved the strength of fly ash-lightweight 
aggregate by preheating (at 400 °C), received optimal raw 
material ratio of WTE fly ash, civil sludge, contaminated 
soil, and flint clay at 30%:40%:15%:15%, and its leach-
ing of heavy metals was far less than the Chinese standard 
GB5085.3–2007 [230]. Han et al. 2022 [306] developed the 
super-lightweight aggregate (bulk density < 500 kg/m3) by 
mixing 70% WTE fly ash and 30% bentonite with 0.3% SiC 
addition as a bloating agent, and the sintered products could 
pass HJ 1134–2020 [96].

Conclusions

This paper summarized WTE residue characteristics, leach-
ing procedure and environmental standards, and the current 
practice, challenges, and opportunities of WTE residues 
beneficially used in civil engineering applications. It is esti-
mated that about 46.3 million tonnes of WTE residues are 
generated in the EU, the U.S., and China; currently, 7.3 mil-
lion tonnes (16%) are used beneficially in construction.

WTE generates two residues: bottom ash (nonhazardous 
waste, about 20% of MSW) and fly ash (hazardous waste 
with leachable heavy metals, high chloride content, and 
minor PCDD/Fs, about 1%–5% MSW). The particle size 
distribution primarily influences the applications of bottom 
ash beneficial uses. The stabilization effects of heavy metals 
in fly ash are the dominant concern during the utilization, 
with the second concern controlling the potential emis-
sion of PCDD/Fs during product manufacturing or practice 
scenarios.

European standardization committees developed stand-
ards and guidance on the leaching tests and chemical analy-
sis to evaluate End-of-life waste materials. Individual Euro-
pean countries adopted the procedure and established limits 
based on regional conditions. The derived civil engineer-
ing products must be examined by leaching tests to prevent 
potential environmental risks. The U.S. widely applies the 
TCLP procedure to fit with RCRA limits for landfill dis-
posal. At the same time, EPA LEAF consists of four leaching 
methods to estimate the environmental impacts of utilizing 
secondary materials, primarily as construction materials or 
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disposal scenarios. It is highlighted that China launched the 
first technical specification (HJ 1134–2020) for reusing the 
treated WTE fly ash as a resource for further applications.

For the beneficial uses of WTE residues, coarse-size frac-
tions of bottom ash and combined ash after washing can 
be used as coarse aggregate to substitute crushed stone in 
structural concrete, cement-based, or asphalt hot-mix con-
crete pavement. Fine fractions can partially replace sand as 
fine aggregates; however, swelling due to the metallic alu-
minum in fine ash mainly challenges its utilization in cemen-
titious phases. Attributed to the particle size and strength 
advantages, bottom ash can also be applied as an unbound 
or hydraulically bound structural material in the base, sub-
base, or subgrade soil in the pavement. Utilizing chemically 
stabilized fly ash as pavement subgrade soil is a future trend 
for avoiding landfill disposal. Embankment construction is 
also an essential practical reuse of bottom ash as compacted 
soil/rock for structural support.

Fly ash presents higher reactivity and mechanical 
strength when used as supplementary cementitious mate-
rial than bottom ash. Bottom ash exhibits reactivity as an 
alkali-activated material, in contrast to the alkali-activation 
studies about fly ash is more related to the effects of heavy 
metals stabilization. Portland cement production assists in 
navigating a new recycling market for bottom ash and fly 
ash, which also contributes to destroying the PCDD/Fs. 
Washing is required to reduce the Cl content, and substi-
tuting raw feed materials is strictly limited to guarantee 
cement quality. Ceramic brick is another option for bot-
tom ash reuse, while it may be limited in China due to 
technical speciation. Sintered lightweight aggregate can 
be produced by both bottom ash and fly ash. Innovative 
geopolymer aggregate or cold-binding cement aggregate 
was also investigated.

Future perspectives

•	 WTE opportunities in developing countries: there are 
several completed or under development of WTE pro-
jects in Africa (e.g., Morocco, South Africa, Ethiopia, 
Ghana, etc.), South Asia (e.g., Indonesia, Malaysia, 
India, Thailand, Philippines, Vietnam, etc.), middle east 
(e.g., Turkey, Iran, etc.), and South America (e.g., Brazil, 
Chile, Mexico, etc.), which also combined international 
support and collaboration [307–315].

•	 Current studies focus on MSW management regionally 
to meet the rapid urbanization and electricity demands. 
Establishing the economically viable WTE residues 
management system and beneficial uses strategies in 
the meantime of WTE facilities infrastructure benefits 
the sustainable operation of WTE plants at the next 
stage.

•	 The acceleration of meeting the environmental standards 
with the construction standards for WTE residues will 
increase the utilization rate and stimulate the interests of 
markets that require comprehensive technical speciation 
and legislation.
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