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Abstract
Versatile strategies have been developed to construct electrospun fiber-based drug delivery systems for tissue regeneration 
and cancer therapy. We first introduce the construction of electrospun fiber scaffolds and their various structures, as well 
as various commonly used types of drugs. Then, we discuss some representative strategies for controlling drug delivery by 
electrospun fibers, with specific emphasis on the design of endogenous and external stimuli-responsive drug delivery sys-
tems. Afterwards, we summarize the recent progress on controlling drug delivery with electrospun fiber scaffolds for tissue 
engineering, including soft tissue engineering (such as skin, nerve, and cardiac repair) and hard tissue engineering (such as 
bone, cartilage, and musculoskeletal systems), as well as for cancer therapy. Furthermore, we provide future development 
directions and challenges facing the use of electrospun fibers for controlled drug delivery, aiming to provide insights and 
perspectives for the development of smart drug delivery platforms and improve clinical therapeutic effects in tissue regen-
eration and cancer therapy.
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Introduction

Living systems are based around complex and precise 
regulatory rules that modulate the on-demand release or 
alteration of important biologically active substances in 
a spatiotemporally controlled manner to maintain normal 
metabolic balance [1]. However, the limited capability 
of many human tissues to perform self-regulation and/or 

self-repair can cause the occurrence of many diseases [2]. In 
these cases, the assistance of biologically active substances 
or drugs is necessary to inhibit or eliminate the internal and 
external factors that are unfavorable to health, effectively 
treating diseases and promoting regeneration of damaged 
tissues [3]. As a key component of drug delivery systems 
(DDSs), drugs play pivotal roles and are responsible for 
achieving satisfactory therapeutic effects [4, 5]. However, 
most drugs are administered systemically, require frequent 
administration and are characterized by short-term effective-
ness, potentially leading to adverse cytotoxic side effects and 
the development of drug resistance. In addition, drug con-
centration and therapeutic effects at targeted tissues cannot 
be guaranteed [6]. Meanwhile, the tissue regeneration and 
cancer treatment involve complex physiological processes 
[7], so it is difficult for a single type of drug to achieve an 
ideal therapeutic effect; rather, effective treatment usually 
requires multiple types of drugs to be released in a coordi-
nated and periodically controlled manner.

With the rapid development of nanotechnology, various 
DDSs have been developed to address problems such as 
burst and discontinuous drug release, unsatisfactory drug 
loading efficiency, and low drug stability and utilization 
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efficiency in vivo [8–10]. Compared with DDSs based on 
liposomes, micelles, nanoparticles and hydrogels, electro-
spun fibers have attracted increasing attention as promising 
drug carriers [11]. DDSs based on electrospun fibers have 
been studied and explored due to the maneuverability of 
the electrospinning process and the subsequent customiz-
able design of the fiber-based scaffolds [12, 13]. Electro-
spun fiber scaffolds have characteristics that include simple 
preparation, high material universality, and favorable surface 
chemical properties for drug adsorption [14, 15]. In addition, 
the high porosity and large specific surface area of elec-
trospun fiber scaffolds make them beneficial to increasing 
drug-loading efficiency and the response speed of stimuli-
delivered drugs [16]. The extracellular matrix (ECM)-like 
morphology of electrospun fibers inherently guides cellular 
drug uptake [1]. These advantages allow multifunctional 
electrospun fiber scaffolds to support customizable drug 
delivery platforms that can achieve the sustained and pro-
grammed release of multiple drugs for tissue regeneration 
and cancer therapy.

In principle, almost all polymers and many additional 
functional components can be integrated into the electrospun 
fiber platform [13, 17]. As for drug delivery, a variety of 
technologies derived from electrospinning, including coaxial 
electrospinning [18], multiaxial electrospinning [19], elec-
trospraying [20], etc., have been developed to prepare drug-
loaded electrospun fiber platforms. In addition, electrospin-
ning can be used to fabricate porous micro- and nanofibers, 
as well as various types of hierarchically controlled fibrous 
structures, ranging from 1 to 3D fibrous scaffolds. A grow-
ing number of customized electrospun fiber scaffolds have 
been used for drug delivery to facilitate tissue regeneration 
and cancer therapy. By modifying loading strategies, drugs 
can be released in a fast, sustained, heterogeneous or con-
trolled manner by being combined with polymers, adsorbing 
on the fiber surface, or indirectly encapsulating onto electro-
spun fibers [21, 22]. Similarly, multifunctional electrospun 
fiber scaffolds that allow the sequential release of multiple 
drugs or in a spatiotemporally controllable manner, can be 
created to meet a variety of in vivo needs [23, 24].

Critically, a combination of strategies is needed for tis-
sue engineering and cancer therapy, including the devel-
opment of multifunctional scaffolds to provide biomi-
metic topographical cues and mechanical support, as well 
as the simultaneous delivery of small molecule drugs, 
growth factors, and other biochemical signals [25–27]. In 
addition to serving as a drug carrier, electrospun fibers 
can also be engineered to manipulate cell morphology and 
migration, neurite elongation, and stem cell differentia-
tion by controlling their structure and array. Given that 
the realization of multiple functions in the body requires 
high levels of temporal and spatial precision, electro-
spun fiber scaffolds that enable the precise delivery of 

drug doses with spatiotemporal control have received 
great attention [28, 29]. It is well known that responsive 
DDSs can exploit intrinsic endogenous stimuli in living 
systems to develop new strategies for drug delivery with 
electrospun fiber scaffolds based on factors such as drug 
sensitivity to pH [30], reactive oxygen species (ROS) 
[31], enzymes [32], and glucose [33]. Likewise, external 
stimuli such as temperature [34], light [35], electricity 
[36], magnetic fields [37], and ultrasound [38] have also 
been used to modulate cellular behaviors, inducing tissue 
regeneration, and to remotely control drug delivery [39]. 
Based on this, stimuli-responsive electrospun platforms 
can serve as precise on-demand drug release repositories 
to mimic the function of living systems as much as pos-
sible and develop new tissue regeneration methods via 
the design of fiber structural features, thereby expanding 
the application of electrospun fibers for drug delivery in 
the fields of tissue regeneration and disease treatment.

Herein, we summarize the recent progress on con-
trolling drug delivery from electrospun fiber scaffolds 
for tissue engineering, including soft tissue engineering 
(such as skin, nerve, cardiac, blood vessels) and hard tis-
sue engineering (such as bone, cartilage, musculoskel-
etal, dental), as well as for cancer therapy. Meanwhile, 
emerging strategies for combining drugs with electrospun 
fibers and the resultant mechanism of drug delivery are 
discussed, and the effects of endogenous and external 
stimuli on drug release are emphasized (Fig. 1). Typically, 
“drugs” refer not only to traditional small-molecule drugs 
but also to bioactive components with specific therapeu-
tic and regenerative functions, which can be divided into 
small molecular drugs and bioactive substances (e.g., 
growth factors, protein polypeptides, gene nucleic acids, 
and liposomes), as well as nanoparticles with therapeu-
tic effects. Finally, the future directions of electrospun 
fibers for controlled drug delivery in tissue regeneration 
and cancer therapy are prospected, providing insights and 
perspectives for the development of smart drug release 
and highlighting the challenges to accelerate clinical 
translation.

Construction of Electrospun Fibers for Drug 
Delivery

The setup of electrospinning consists of a high-voltage 
power supply, a syringe pump, a spinneret, and a conduc-
tive collector. Firstly, the solution is extruded from the spin-
neret and forms a hanging droplet due to surface tension. 
When the high voltage power supply is applied, electrostatic 
repulsion among the same charges formed on the droplet 
surface turns it into a Taylor cone, from which a charged jet 
is ejected. Because of the behavior of bending instability, the 
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jet undergoes a whipping motion after initially extending in 
a straight line. The jet will get slimmer and solidify quickly 
when the diameter of jet is optimal under the action of the 
electric field, then finally deposit on the surface of the con-
ductive collector [17]. To meet various applications, differ-
ent electrospun fiber sizes and morphologies can be obtained 
by changing the spinning process and parameters such as 
the voltage, solution composition, and collector design [40]. 
Meanwhile, satisfactory fiber structures can also be obtained 
by post-treatment procedures, such as weaving [41], twisting 
[42], foaming [43] and others. In this section, electrospun 
fibers are divided into three categories as follows: 1D pris-
tine fiber (an individual fiber with different morphologies 
and structures), 2D hybrid fiber (in which material is loaded 
on the lumen/surface of an individual fiber), and 3D fiber 
architecture (arrangement and combination of fibers in 3D 
space).

The morphology and structure of 1D pristine fibers 
are the most basic units, and the most common and eas-
ily obtained morphology is the fiber with a smooth surface 
(Fig. 2a), however, at the same time, its simpleness makes 
it unsuitable for many applications. Many emerging struc-
tures, such as beaded, grooved, multi-channel, core–shell, 
and porous structures, have been designed and constructed, 
with various advantages described. Contrary to previous per-
ception, beaded fibers tend to be produced due to a decrease 
in surface tension or an uneven distribution of solution con-
centration (Fig. 2b) [44], which is considered to be a struc-
tural defect that needs to be avoided and removed. However, 

it has been found that the presence of beads changes the sur-
face roughness of the fiber, and this high surface roughness 
can have some beneficial effects on cell differentiation [45]. 
The fabrication of fiber by multi-fluid control technology 
is a new method in recent years [46]. A porous or grooved 
structure can be formed by electrospinning and stretching 
two incompatible polymers, then removing one of the com-
ponents with a specific solvent [47] (Fig. 2c, d). Compared 
with the original fibers, both of these structures possess 
increased surface roughness and area, which are beneficial 
cell adhesion [48]. In addition, the grooved surface can pro-
vide topographic cues to promote the directional migration 
of cells. Meanwhile, some additional properties can be inte-
grated into the hollow lumen of core–shell structures [46] 
and multi-channel structures [49] to meet the unique condi-
tions for the regeneration of different tissues (Fig. 2e, f).

Distinct from pristine fibers, 2D hybrid fibers can com-
bine nanoparticles, cells, and bioactive factors to provide 
some specific effects. For example, embedding bioactive 
factors in fibers can promote cell migration, proliferation, 
and differentiation [50] (Fig. 2g). Packing cells in fibers can 
not only maintain high cellular activity and the ability to 
secrete immune molecules but can also provide a suitable 
environment for tissue regeneration [51] (Fig. 2h). In addi-
tion, embedding nanoparticles, such as iron oxide nanoparti-
cles [52], graphene and organic materials [53] in fibers, can 
increase the intensity of external signals, thereby enhanc-
ing stimulation to promote tissue repair (Fig. 2i). Attaching 
specific substances to the fiber surface by post-treatment or 

Fig. 1  Schematic illustration showing electrospun nanofiber scaffolds for controlling drug delivery and their biomedical applications in tissue 
regeneration and cancer therapy
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in-situ growth is also a common method for broadening the 
applications of electrospun fibers [54–56] (Fig. 2j–l). For 
example, the introduction of polydopamine (PDA) coatings 
to electrospun nanofiber membrane could provide nuclea-
tion sites and active centers for zinc oxide (ZnO) nano-seeds 
to form nanorod structures, endowing nanofiber membrane 

with excellent photocatalysis and antibacterial properties 
[56].

Compared with the 2D hybrid fibers, the growth, mor-
phology, differentiation, and function of cells in 3D scaf-
folds are closer to those found in in vivo microenvironments. 
Using the previously described pristine fibers or hybrid fib-
ers, 3D scaffolds with different structures can be fabricated, 

Fig. 2  The versatile structure of electrospun fibers. a Solid fiber. 
Reproduced with permission from Ref. [200]; Copyright 2020, 
Wiley–VCH Limited. b Beaded fiber. Reproduced with permission 
from Ref. [44]; Copyright 2008, Wiley–VCH Limited. c Porous fiber. 
Reproduced with permission from Ref. [47]; Copyright 2008, Wiley–
VCH Limited. d Grooved fiber. Reproduced with permission from 
Ref. [48]; Copyright 2020, Wiley–VCH Limited. e Core-sheath fiber. 
Reproduced with permission from Ref. [46]; Copyright 2010, Ameri-
can Chemical Society Limited. f Multi-channel fiber. Reproduced 
with permission from Ref. [49]; Copyright 2007, American Chemi-
cal Society Limited. g Fiber loaded with bioactive molecules. Repro-
duced with permission from Ref. [50]; Copyright 2014, Wiley–VCH 
Limited. h Cell-encapsulated fiber. Reproduced with permission from 
Ref. [51]; Copyright 2020, Elsevier Limited. i Nanoparticles-embed-
ded fiber. Reproduced with permission from Ref. [53]; Copyright 
2015, Elsevier Limited. j Nanoparticles anchored fiber. Reproduced 
with permission from Ref. [54]; Copyright 2020, Elsevier Limited. 
(k) Nanosheet-grown fiber. Reproduced with permission from Ref. 

[55]; Copyright 2021, Elsevier Limited. l Nanorod-grown fiber. 
Reproduced with permission from Ref. [56]; Copyright 2018, Else-
vier Limited. m Radially aligned fiber array. Reproduced with per-
mission from Ref. [57]; Copyright 2010, American Chemical Society 
Limited. n Bionic patterned fiber array. Reproduced with permission 
from Ref. [41]. Copyright 2020, Wiley–VCH Limited. o Complex 
pattern fiber array. Reproduced with permission from Ref. [58]; Cop-
yright 2011, Wiley–VCH Limited. p Fiber mat with grooved surface. 
Reproduced with permission from Ref. [59]; Copyright 2021, Ameri-
can Association for the Advancement of Science Limited. q Tubu-
lar conduit. Reproduced with permission from Ref. [60]; Copyright 
2017, Wiley–VCH Limited. r Multi-tubular conduit. Reproduced 
with permission from Ref. [61]; Copyright 2018, Wiley–VCH Lim-
ited. s 3D porous fiber scaffold. Reproduced with permission from 
Ref. [62]; Copyright 2019, American Chemical Society Limited. t 
Multifilament electrospun fiber yarns. Reproduced with permission 
from Ref. [42]; Copyright 2018, Elsevier Limited
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typically by changing the collector, or by post-processing 
procedures such as crimping, weaving, molding, and others. 
By using different collectors, such as rollers and conductive 
rings [57], fibers arranged in an orderly 3D direction can be 
prepared (Fig. 2m), and the collector substrate pattern can 
be changed to fabricate various patterned scaffolds (Fig. 2n, 
o), making these scaffolds conducive to the development of 
cells in vivo [41, 58]. In addition, post-treatment methods 
can be used to change the surface morphology of scaffolds. 
For example, molding and photoetching can form grooves 
on the surface, providing topographical cues for cell migra-
tion (Fig. 2p) [59]. Another simple method, rolling-up, is 
often used to fabricate conduits from fiber membrane to con-
nect defective nerves and build a bridge conducive to nerve 
regeneration (Fig. 2q) [60]. To improve the ability of bion-
ics to simulate physiological cues, several small tubes were 
sequentially embedded in a larger tube to simulate the multi-
fascicle structure of normal nerves, effectively avoiding mis-
aligned axons growth (Fig. 2r) [61]. Foaming technology is 
another important method to fabricate 3D scaffolds com-
posed of fibers. Scaffolds with radial arrangement structure 
can be fabricated through customizable control technology, 
which can effectively promote the migration of cells from 
the periphery to the center (Fig. 2s) [62]. Moreover, this 3D 
structure provides larger porosity and pore size, broaden-
ing the applications of electrospun fiber scaffolds in tissue 
engineering [62, 63]. Yarn can be made of electrospun fibers 
by weaving and twisting, leading to better permeability and 
drafting behavior (Fig. 2t), as well as increased suitability 
for tissue suturing [42].

Electrospun fiber scaffolds have wide application pros-
pects in tissue regeneration and cancer therapy due to their 
porosity, high loading capability, adjustable mechanical 
properties, and excellent biocompatibility [64]. The inte-
gration of emerging 3D printing technology can support 
the design of more scaffolds with different structures and 
patterns, which can play unique roles in specific tissue 
regeneration processes [65]. Furthermore, advanced 4D 
electrospun fiber scaffolds can be developed by incorporat-
ing shape memory or stimuli-responsive properties for bio-
medical applications [66]. Accordingly, the optimization of 
electrospun fiber scaffold-based DDSs has attracted increas-
ing attention. Therefore, it is believed that a wide variety of 
electrospun fibers will be developed to support better and 
multifunctional drug delivery platforms.

Drug Delivery for Tissue Engineering 
and Cancer Therapy

In recent years, the loading of functional therapeutic agents 
into electrospun fibers has attracted research attention. 
Functional therapeutic agents can be classified into (i) small 

molecular drugs, such as ciprofloxacin [67, 68], doxorubicin 
(DOX) [69], and ibuprofen [70], (ii) bioactive substances, 
such as peptides [71], proteins [72], nucleic acids [73], and 
liposomes [74], and (iii) nanoparticles with therapeutic effi-
cacy, such as Ag nanoparticles [75], mesoporous silica nano-
particles (MSNs) [76], nano-enzymes [77, 78], and bioglass 
[79, 80].

Small molecular drugs are typically signal transduction 
inhibitors that can treat diseases by blocking correspond-
ing signaling pathways [81–83]. Small molecular drugs 
are mainly chemically synthesized or derived from natural 
extracts, and their molecular weights are usually less than 
1,000 [84]. They have a wide range of applications due to 
their low cost, ease of storage and transport, high tissue 
permeability and minimal immunogenicity [85]. Although 
small molecular drugs have excellent therapeutic effects, 
most have poor pharmacokinetics and are easily metabo-
lized into other substances in the body [86]. Therefore, it is 
essential to effectively deliver small molecular drugs using a 
suitable platform. Loading small molecular drugs into fibers 
can significantly overcome the above challenges by improv-
ing water solubility and stability, increasing drug concentra-
tions at disease sites, and reducing side effects.

Compared with small molecular drugs, bioactive sub-
stances have relatively larger molecular weights, more 
complex structures, and better water solubility. The immo-
bilization or encapsulation of these bioactive substances 
onto the surface and into the interior of fibers can over-
come limitations associated with systemic administration 
or local injection. Proteins and growth factors are involved 
in many physiological processes in the human body. For 
example, bone morphogenetic protein-2 (BMP-2) and insu-
lin-like growth factor-1 [72, 87] have the ability to promote 
bone tissue repair, while vascular endothelial growth fac-
tor (VEGF) [88], epidermal growth factor (EGF) [89], and 
nerve growth factor (NGF) [90] can promote skin and nerve 
tissue repair. Unlike macromolecule proteins, peptides are 
not specifically absorbed by the reticuloendothelial system 
or liver, leading to fewer toxic side effects and more mature 
peptide synthesis technology. Therefore, many types of pep-
tides are widely used in tissue engineering repair, including 
ε-polylysine peptides with antibacterial properties [91] and 
peptides for angiogenesis [71], as well as many other types 
of anti-bacterial peptides. For the delivery of nucleic acids, 
the key outstanding issue is protecting nucleic acid activity 
from the surrounding environment [92–95]; currently, com-
monly used nucleic acids primarily include plasmid DNA, 
microRNA, and small interfering RNA, among others [96]. 
Most bioactive molecules are easily damaged by the exter-
nal environment due to their chemical instability, relatively 
short half-lives, and vulnerability, so it is often difficult to 
effectively encapsulate bioactive molecules in nanofibers 
with conventional electrospinning technology. Therefore, 
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it is particularly important to develop new technologies to 
enable the effective encapsulation and delivery of bioactive 
molecules by nanofibers.

In addition to the above-mentioned drugs, a number of 
functional nanoparticles have the ability to promote tissue 
repair and cancer treatments. For example, Ag nanoparti-
cles have excellent antibacterial effects [75], and manganese 
dioxide nanoparticles can effectively scavenge excess hydro-
gen peroxide in the body [91]. Similarly, metal–organic 
framework materials, such as magnesium organic frame-
works, can effectively scavenge ROS, slow down the inflam-
matory response, and promote angiogenesis [97]. Compared 
with small molecular drugs and bioactive substances, these 
therapeutic nanoparticles have more stable chemical prop-
erties and are easier to load into electrospun fibers. More 
importantly, they can also act as drug carriers to facilitate the 
controlled release of drugs from electrospun fibers [76, 98].

Manipulation of Electrospun Fibers 
to Control Drug Delivery

Strategies for Encapsulating Drugs in Electrospun 
Fibers

Due to their ECM-like structure, high specific surface area, 
high porosity, high drug loading capability, and controlled 
drug delivery function, electrospun fiber-based scaffolds 
have outstanding advantages for the delivery of functional 
therapeutic agents [99–102]. Functional therapeutic agents 
can be loaded into electrospun fibers by blending electro-
spinning, second carrier electrospinning, emulsion electro-
spinning, coaxial electrospinning, electrospraying, physi-
cal adsorption, and covalent immobilization. In selecting 
the fiber matrix for drug loading to achieve a typical drug 
release profile, the interaction between the drug and the fiber 
scaffolds should be considered. The composition, molecu-
lar weight, hydrophilicity, and degradation rate of the fiber 
polymer matrix all affect the drug release behavior. In addi-
tion, the relative molecular mass, crystallinity and solubility 
of the drug, and other properties of the drug also affect the 
release behavior. In addition to hydrogen bonds and electro-
static interactions, covalent bonds can also be used to link 
the drug with the fibers. Evaluations of the bioactivities of 
both the drug-loaded scaffolds and the released drug are 
necessary. Typically, the activities of both the drug-loaded 
scaffolds and the drug can be evaluated by co-culturing with 
cells or bacteria to observe the influence of the scaffolds 
on the adhesion, growth, migration and differentiation of 
cells or the growth of bacteria, depending on the applica-
tion direction.

Blend electrospinning is the most straightforward 
technique for loading drugs into nanofibers (Fig.  3a). 

Specifically, a number of drugs or functional nanoparticles 
with chemical stability and organic solvent resistance can be 
mixed with polymers to form a homogeneous electrospin-
ning solution. Then, micro- or nanofibers loaded with one 
or multiple drugs can be fabricated by electrospinning [70, 
103]. Due to the random distribution of drugs on the fiber 
surface and inside the fibers, the release process is generally 
characterized by an initial burst release and subsequent slow 
release [104]. Since most fibers have high specific surface 
area and large porosity, the drug is often completely released 
from the fibers within a few hours or days, incompatible 
with long-term administration at the tissue. In these cases, 
polymers that can form electrostatic adsorption interac-
tions with the drugs can be used to delay drug release. It 
is difficult to induce interactions between some chemical 
drugs or biologically active molecules and polymers, so new 
technologies are urgently needed to prolong release time. 
One solution is to load chemical drugs and bioactive mol-
ecules into a secondary carrier, after which the drug-loaded 
electrospun fibers can be prepared by blending electrospin-
ning. These secondary carriers can be nanoparticles [105, 
106], micelles [107], vesicles [108], microspheres and other 
forms. For example, drug-loaded halloysite clay nanotubes 
were doped into polycaprolactone (PCL)/gelatin nanofibers, 
achieving sustained drug release over 20 days, which was 
greatly extended compared to directly loading the drugs in 
pristine electrospun fibers [109].

Chemically unstable and easily inactivated bioactive 
factors, such as growth factors, proteins and nucleic acids, 
function only when they are able to enter cells. Therefore, it 
is important to avoid contact between bioactive factors and 
organic solvents, as well as to deliver bioactive molecules 
successfully to the cellular interior without inactivation 
[110, 111]. The above-mentioned problems can be solved 
using emulsion electrospinning technology [112]. In emul-
sion electrospinning, there is no direct contact between the 
molecules and the dissolved organic matter, as the bioac-
tive substances are partitioned into the aqueous phase, thus 
greatly enhancing molecular activity. The loading of drugs 
into the fiber interior by emulsion electrospinning effectively 
mitigates the explosive release of drugs at early stages. In 
addition, emulsion electrospinning enables the simultaneous 
loading of multiple drugs. Furthermore, emulsion electro-
spinning can realize the simultaneous loading of multiple 
drugs and alleviate the problem of explosive drug release 
in early stages [113]. For instance, emulsion electrospin-
ning was applied to fabricate nanofibers loaded with hydro-
phobic 10-hydroxycamptothecin (HCPT) in the sheath 
layer and with hydrophilic tea polyphenols in the core layer 
[114]. In the initial 4 days, the release of HCPT reached 
about 61.5%, while the release of tea polyphenols was only 
about 20.4%. Although emulsion electrospinning has sig-
nificant advantages, it still has some problems, including 



1381Advanced Fiber Materials (2022) 4:1375–1413 

1 3

poor solution stability and low drug-loading efficiency. In 
this case, microsol-electrospinning technology can be used 
to achieve efficient loading and slow release of hydrophilic 
drugs or easily deactivated biomolecules [115, 116]. For 
example, when microsol-electrospinning was used to load 
VEGF in electrospun nanofibers, only 36.8% of VEGF was 
released in the initial two days, followed by sustained release 
over 4 weeks [117].

Similar to emulsion electrospinning, coaxial electro-
spinning can successfully be used to encapsulate bioactive 
molecules with unstable chemical properties into electro-
spun fibers (Fig. 3b) [118]. For coaxial electrospinning, 
a core layer spinning solution composed of biomolecules 
and a sheath layer spinning solution composed of polymers 
form two separate jets from the coaxial needle to fabricate 
core-sheath nanofibers. Compared with commonly used 
electrospinning methods, coaxial nanofibers are prepared 
in a way that minimizes interactions between the organic 
polymer solution and the water-based biomolecules, main-
taining the biological activity of unstable biomolecules. 
Meanwhile, compared with blend electrospinning, coaxial 

electrospinning can reduce the explosive early-stage release 
of drugs, realize the simultaneous loading of hydrophilic 
and hydrophobic drugs, and avoid the biological toxicity 
caused by late crosslinking of hydrophilic polymers [18, 
119]. Since coaxial electrospinning can be used to prepare 
core-sheath electrospun fibers, it is feasible to load different 
drugs or bioactive molecules into the core and sheath layers, 
respectively. The drug in the core layer needs to pass through 
the sheath layer to be released, slowing its release rate com-
pared to that of the sheath layer [102]. As an example, an 
in vitro release study showed that the amount of doxoru-
bicin hydrochloride released from the sheath of nanofibers 
reached 62.2% in the first 200 hours, while the amount of 
matrix metalloproteinase-2 released from the core layer was 
only about 50% through 960 hours [120]. To further delay 
the rate of drug release, the drugs can also be encapsulated 
into a secondary carrier before preparation of the nanofiber 
membrane by coaxial electrospinning [121].

Electrospray technology can integrate nanoparticles 
loaded with bioactive molecules or drugs into and/or onto 
fibers (Fig. 3c) [122]. For electrospraying, it allows the 

Fig. 3  Schematic illustration showing the different fabrication meth-
ods of drug-loaded electrospun fibers, including a blend electro-
spinning, second carrier electrospinning, emulsion electrospinning, 

b coaxial electrospinning, c electrospinning combined with electro-
spraying, and d post-processing by physical adsorption and covalent 
immobilization
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deposition of particles loaded with bioactive molecules or 
drugs on the fibers. It can not only encapsulate drugs with 
bioactive molecules, microspheres, and micelles to protect 
their activity and prolong drug release but can also allow the 
design of on-demand DDSs responsive to external stimuli. 
Compared with the passive release of drugs from other elec-
trospun fibers, fibers that enable spatiotemporally controlled 
drug release can be prepared by integrating electrospinning 
and electrospraying technologies. For example, collagen par-
ticles loaded with neurotrophin-3 (NT-3) can be sandwiched 
between two nanofiber layers using electrospray technology, 
realizing the sustained and controllable release of NT-3 
[123]. In addition, the combination of masked electrospray 
technology and electrospinning can achieve a gradient distri-
bution of biomacromolecular particles on fibers [124].

In addition to the above methods, a number of drugs can 
also be loaded onto fibers by physical adsorption (Fig. 3d) 
[125, 126]. Especially for certain biomolecules, physical 
adsorption is not only the simplest way to load biomolecules 
into fibers but can also effectively maintain the activity of 
the biomaterials. Although this method of drug loading is 
relatively simple, the drugs cannot be released in a sustained 
manner [127]. In particular, drugs and bioactive molecules 
that do not make electrostatic interactions with nanofib-
ers are difficult to load by this method [15]. For example, 
recombinant human BMP-2 was adsorbed on the surface of 
poly(D,L-lactide-co-glycolide)/hydroxylapatite composite 
nanofibers by the physical adsorption method [128]. The 
in vitro BMP-2 release profile showed that 75% of BMP-2 
was released within the first 5 days. In addition, layer-by-
layer self-assembly (LBL) is another common physical 
adsorption method for drug loading onto fibers based on 
the alternating adsorption of polyelectrolytes on the matrix 
through electrostatic interactions, hydrogen bonds or other 
interactions. For example, positively charged chitosan and 
negatively charged type I collagen can be assembled onto 
electrospun silk fibroin fiber membrane by LBL technology 
for scar-free wound repair [129].

In addition to physical absorption, drugs or biomacro-
molecules that can react with functional groups on the fiber 
surface can be bound to nanofibers by covalent immobiliza-
tion [125, 129]. Such drugs and biomacromolecules can also 
be released in vivo by endogenous stimuli. For example, a 
polypeptide containing a carboxyl group reacted with the 
amino group on the surface of chitosan hydrogel nanofibers 
to form an amide bond; thus, the polypeptide was success-
fully loaded onto the nanofibers [71].

At present, the development of a multi-functional elec-
trospinning platform is conducive to the delivery of multi-
ple drugs. Sequential electrospinning is a technique used to 
construct multilayer nanofibers, and a variety of drugs can 
be loaded into the different nanofiber layers, so as to con-
trol the release rates of different drugs [130]. For example, 

sequential electrospinning was used to prepare a three-layer 
nanofiber scaffold in which the inner and middle layers were 
loaded with microRNA-126 and microRNA-145, respec-
tively, leading to the sequential release of microRNA-126 
followed by microRNA-145 [131].

Stimuli‑Responsive Drug Delivery Systems

Electrospun fiber platforms incorporating stimuli-response 
are emerging as a major driving force in the development of 
smart drug delivery [132]. Just like many important func-
tions in the human body are achieved in a site-specific and 
time-controlled manner, the responses to intrinsic endog-
enous and external stimuli provide more possibilities for the 
development of new drug delivery strategies [29, 39]. To this 
end, it can be realized to significantly improve the selectivity 
and targeting of drugs, deliver appropriate drug concentra-
tions to the target site at a specific time, effectively reduce 
side effects, and meet the requirements of tissue regeneration 
and cancer treatment. Herein, typical endogenous and exter-
nal stimuli are summarized, and their potential to deliver 
precise amounts of drugs in a spatiotemporally controllable 
manner is also described.

Endogenous Stimuli‑Responsive Drug Delivery Systems

Differences in pH, enzyme expression, ROS levels, and glu-
cose content in pathological environments compared to nor-
mal physiology can provide some ideas for the development 
of smart drug delivery platforms. Indeed, various types of 
nanofiber delivery systems responsive to endogenous stimuli 
have been developed based on microenvironmental changes 
in cells or tissues [68, 133].

By selecting the appropriate type of polymer and post-
processing method, electrospun fibers can be endowed with 
pH-responsive drug release characteristics [134, 135]. pH-
sensitive polymeric nanofibers change their own volume in 
response to external pH changes, enabling intelligent and 
responsive drug delivery [136]. Some nanofiber membranes 
contain chemical groups that are sensitive to hydrogen and 
hydroxide ions, enabling the controlled release of drugs by 
changing intermolecular forces of the polymers when exter-
nal pH changes. For instance, under acidic conditions, the 
amino and acetyl amino groups of chitosan undergo a pro-
tonation reaction to form an amine cation [137]. Swelling 
of the nanofiber membrane is increased due to mutual repul-
sion between ammonia cations and hydrogen ions. Thus, the 
interaction forces between allicin and chitosan or polyvinyl 
alcohol (PVA) are weakened, accelerating the release of alli-
cin from the fibrous membrane into the surrounding environ-
ment (Fig. 4a). However, in alkaline environments, inter-
actions between hydroxide ions, chitosan and PVA are not 
obvious, reducing the degree of fiber membrane swelling. 
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In addition to fiber swelling, pH-responsive drug release can 
be triggered by external pH change through chemical bond 
breakage. For example, IL-4-loaded liposomes containing 
aldehyde groups were grafted onto the surface of fibers 
containing amino groups via Schiff base reactions (Fig. 4b) 
[138]. In acidic environments, these chemical bonds were 
broken due to hydrolysis reactions, and the liposomes were 
released from the nanofibers. The in vitro release profile 
showed that the release rate of liposomes was significantly 
faster at pH = 5.8 than at either pH = 7.4 or pH = 6.6.

In addition to the above methods for preparing pH-
responsive nanofibers, a number of pH-responsive nano-
materials, such as liposomes, micelles and others, can also 
be encapsulated into nanofibers to realize controllable and 

responsive drug release. For example, electrospun PVA 
nanofibers were loaded with a reduction-responsive Pt (IV) 
prodrug micelle and dichloroacetate [139]. Simulation of the 
cancer cell state with s acetate buffer solution and sodium 
ascorbate better triggered the release of Pt (II), and levels of 
cleaved Pt rapidly accumulated to 50% within 24 h.

Enzymes play important roles in different biological pro-
cesses and usually have high specificity, with various species 
of enzymes distributed across different tissues at specific 
concentrations. Therefore, in response to abnormal concen-
trations of enzymes, enzyme-responsive DDSs provide a 
way to increase selectivity and sensitivity [140]. In inflam-
matory locations and tumor tissues, some specific enzymes 
are significantly different from those in normal tissues, 

Fig. 4  Endogenous stimuli-responsive drug delivery fiber systems. 
a Schematic illustration and SEM image showing the microstructure 
of CS/PVA/GO/Alli fiber mat, and the release of Alli from the fiber 
mat at different pH values. Reproduced with permission from Ref. 
[137]; Copyright 2020, Elsevier Limited. b Schematic illustration 
showing the pH-responsive release of liposomes from the surface of 
a nanofiber, and the release curves of liposomes from the electrospun 
fiber mat at different pH values. Reproduced with permission from 
Ref. [138]; Copyright 2020, Springer Nature Limited. c Schematic 
illustration showing the degradation-triggered release of esterase-
sensitive prodrug from electrospun fiber mat followed by the enzyme-

triggered release of IBU from the prodrug, and the release curve of 
IBU from the different types of scaffolds in the presence or absence 
of enzyme. Reproduced with permission from Ref. [143]; Copyright 
2015, Elsevier Limited. d Schematic illustration showing that the 
thioketal linkers in polyurethane containing thioketal (PUTK) can be 
cleaved in response to ROS, and the cumulatively released percent-
age of MP in vitro from the electrospun fiber patch in PBS solution 
(pH = 7.4) and 1  mM  H2O2 solution at 37  °C, respectively. Repro-
duced with permission from Ref. [31]; Copyright 2020, Elsevier Lim-
ited
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so it is feasible to exploit this feature to enable enzyme-
responsive controlled drug release [141, 142]. For exam-
ple, an esterase-sensitive prodrug was loaded in electrospun 
nanofibers to realize enzyme-triggered release of ibuprofen, 
an anti-inflammatory drug [143]. As shown in Fig. 4c, in 
the presence of lipase, nanofibers loaded with prodrug-of-
ibuprofen exhibited enzyme-triggered drug release, and 
the cumulative release of ibuprofen reached 100% within 
14 weeks; in contrast, only a small amount of drug was 
released in the absence of the lipase enzyme.

ROS can regulate intracellular biological behaviors as 
signaling molecules [144, 145]. However, excessive ROS 
production usually causes severe oxidative damage to cells 
and tissues. At present, due to the high concentrations 
of ROS in pathological environments, a variety of ROS-
responsive DDSs have been developed [146, 147]. As shown 
in Fig. 4d, ROS-responsive nanofibers can be prepared by 
electrospinning a biodegradable elastomer containing thiok-
etone [31]. Nanofibers loaded with glucocorticoid methyl-
prednisolone (MP) were incubated in 1 mM  H2O2 solution 
for 2 weeks, and the release of MP was significantly higher 
than that of any other groups.

Since hyperglycemia patients have excess blood glucose 
in their plasma, a glucose-responsive DDS can be estab-
lished based on a gradient in blood glucose levels [148]. 
At present, many researchers have realized the release of 
insulin triggered by hyperglycemia and have applied glucose 
oxidase to reduce the pH or oxygen content in hypergly-
cemic regions through an enzymatic reaction, thereby pro-
moting insulin release [149, 150]. These glucose-responsive 
nanofibers are mostly used for monitoring blood glucose. 
By encapsulating glucose oxidase or glucose dehydrogenase 
into nanofiber scaffolds, blood glucose levels can be quickly 
and sensitively monitored [28]. Obviously, a system respon-
sive only to an individual type of endogenous stimulus is 
unable to meet current needs. Therefore, to deliver thera-
peutic agents to the right place at the right time in physi-
ologically relevant doses, it is particularly critical to develop 
endogenous stimuli-responsive nanofiber scaffolds that can 
respond synergistically to multiple signals.

External Stimuli‑Responsive Drug Delivery Systems

External stimuli, such as heat, light, electricity, magnetic 
fields, and ultrasound, have attracted much attention due 
to their non-invasive nature, high tissue penetration depth, 
and spatiotemporal controllability [38]. All these strategies 
can be combined with electrospun drug-loaded scaffolds to 
enable stimuli response and synchronize drug release pro-
files under real physiological conditions by manipulating 
the external environment, providing new avenues for tissue 
regeneration and cancer therapy.

Temperature controls almost all physical, chemical, and 
biological reactions, in addition to being critical regula-
tory parameter for the human body. Temperature-respon-
sive materials can enable the controlled release of drugs 
by modulating the critical solution temperature (LCST) of 
thermosensitive polymers through volumetric phase tran-
sitions. As shown in Fig. 5a, a mixture of PCL and tem-
perature stimuli-responsive nanogel was used to form the 
outer shell [151]. The nanogel was composed of temper-
ature-responsive poly(N-isopropylacrylamide) copolymer-
ized with acrylic acid, which could shrink or expand with 
ambient temperature changes. Therefore, the existence or 
disappearance of nanochannels between the nanogel and 
PCL could be controlled by varying the temperature. In this 
case, the drug-encapsulating shell acted as a valve to control 
ordered drug release. Three-cycle low-to-high temperature 
transition images of drug release demonstrated better tem-
perature-responsive drug release properties when nanogels 
were encapsulated in the shell compared to when nanogels 
were omitted.

Considering the advantages of long-range and stronger 
penetration, near-infrared (NIR) light has been increas-
ingly adopted as a light source in drug release-assisted 
tissue regeneration [152]. By introducing photothermal 
agents, electrospun fibers can be endowed with excellent 
photothermal properties, enabling the effecting delivery of 
nutrients and drugs [52]. Gold-based nanorods (GNRs) can 
also generate heat through the plasmonic resonance effect 
under NIR irradiation. As shown in Fig. 5b, GNRs-loaded 
poly(N-isopropylacrylamide) (PNIPAM) composite nanofib-
ers were used to allow the controlled release of drugs by NIR 
irradiation [153]. The heat generated by the GNRs ensured 
the shrinkage of thermally responsive PNIPAM nanofibers 
to allow for the drug release, and this on-demand DDS could 
be regulated by the NIR power density. This convenient, 
remote-controllable, non-invasive approach provides new 
ideas for the on-demand delivery of required doses of drugs.

Magnetic fields, electric fields, and ultrasound are also 
research foci due to their relevance to corresponding stimuli 
and ease of operation. For magnetic fields, superparamag-
netic iron oxide nanoparticles (IONPs) have been applied 
for osteogenic differentiation and axon extension [154, 155]. 
The hyperthermia caused by IONPs under magnetic field 
is also beneficial for reducing drug transmission loss and 
enhancing targeted delivery [37]. In one study, a nanofiber 
scaffold composed of temperature-responsive polymers, 
magnetic nanoparticles (MNPs), and an anticancer drug 
(DOX) was designed (Fig. 5c) [156]. The MNPs generated 
heat under an alternating magnetic field (AMF), which dis-
sociated the polymer network in the nanofibers and allowed 
the release of DOX. By switching the “on–off” properties of 
the magnetic field, the drug could be delivered on demand. 
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The generated heat and chemotherapeutic effects of the 
released DOX rapidly induced cancer cell apoptosis.

External electrical stimulation has also been used for 
bone repair [157], nerve regeneration [158], and drug deliv-
ery [159]. For example, electrical stimulation can modu-
late curcumin (CUR) delivery through volume changes 

induced by the voltammetric response of PEDOT nanopar-
ticles [160]. A PPy-PVDF electrospun system was used as 
a carrier to load growth factor complexed with streptavi-
din, and the release curve of the growth factor showed an 
obvious electro-sensitive release behavior [161]. As shown 
in Fig. 5d, dexamethasone (DEX) was released from the 

Fig. 5  External stimuli-responsive drug delivery fiber systems. a 
Schematic illustration showing the mechanism of thermal switch-
controlled drug release system, and the release rate of drug upon 
multiple cycles of low-to-high temperature transitions. Reproduced 
with permission from Ref. [151]; Copyright 2015, Wiley–VCH Lim-
ited. b Schematic illustration showing the thermal-responsive release 
of fluorescein from nanofibers containing gold nanorods upon NIR 
irradiation, and the release curves with NIR irradiation at different 
power densities. Reproduced with permission from Ref. [153]; Copy-
right 2021, Multidisciplinary Digital Publishing Institute Limited. c 
Schematic illustration showing the temperature-responsive release of 
DOX, and the cumulatively released percentages of DOX with alter-
nating cycles of “ON–OFF” switching of AMF. Reproduced with 
permission from Ref. [156]; Copyright 2013, Wiley–VCH Limited. 

d Schematic illustration showing the electrical-responsive release 
of DEX from PLGA nanofibers, and the cumulative mass release of 
DEX under the control of electrical stimulation. Reproduced with 
permission from Ref. [162]; Copyright 2006, Wiley–VCH Limited. 
e Schematic illustration showing the multimodal-responsive release 
of DEX from piezoelectric nanofibers by breaking the silica  (SiO2) 
capsules under the action of ultrasound, the images showing the situ-
ation after 60 s of sonication. Reproduced with permission from Ref. 
[32]; Copyright 2018, American Chemical Society Limited. f Sche-
matic illustration of synergistic sono-photodynamic therapy for breast 
cancer via 808 nm laser and 1 MHz ultrasound, as well as the live/
dead staining images. Reproduced with permission from Ref. [166]; 
Copyright 2020, American Chemical Society Limited
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PEDOT nanotubes by controlling the contraction or expan-
sion of PEDOT by electrical stimulation [162]. The blue 
curve represents the cumulative mass release of DEX from 
PEDOT-encapsulated poly (lactic-co-glycolic acid) (PLGA) 
nanofibers when 1 V electrical stimulation was applied at 
five specific times.

As for ultrasound, it usually provides a sustained thermal 
effect from continuous oscillation of microbubbles and a 
mechanical effect upon rupture [163]. Ultrasound has been 
shown to trigger the release of drugs, as well as promote 
deep drug penetration with minimal thermal damage to sur-
rounding tissues [164]. By encapsulating drugs into ultra-
sound-sensitive microcapsules, scaffolds can be effectively 
combined for multimodal triggered release [32]. Figure 5e 
shows that silica microcapsules in the fibers were destroyed, 
and TRITC-BSA was effectively released under the stimula-
tion of ultrasonic waves. This approach can be extended to 
both exogenous (NIR irradiation, electrical stimulation) and 
endogenous (enzymatic treatment) stimuli to improve the 
precise delivery of multiple drugs.

Recently, attention has been drawn to the idea of applying 
multiple stimuli synergistically to deliver drugs. For exam-
ple, a smart hyperthermic nanofiber has been developed with 
the ability to simultaneously switch two-stage drug release 
in response to AMF and heat [34]. In addition to their own 
effects on cell behavior and tissue regeneration, some related 
therapies, such as photothermal therapy, magnetothermal 
therapy, electromagnetic thermotherapy, and sonodynamic 
therapy, have also been derived from these strategies and 
show to have synergistic effects with drugs [165]. As shown 
in Fig. 5f, the synergistic sono-photodynamic therapy sig-
nificantly promoted the generation of ROS and achieved a 
95.8% inactivation rate of breast cancer cells under 808 nm 
NIR irradiation and 1 MHz ultrasound treatment [166]. 
These potential integrative mechanisms should be incorpo-
rated into drug-loaded electrospun fiber scaffolds to facilitate 
the development of future nanomedicines and promote tissue 
regeneration and cancer therapy.

Applications for Tissue Regeneration 
and Cancer Therapy

Electrospun fibers for DDSs have been developed and 
explored based on the diversity and simplicity of the prepa-
ration methods for drug-loaded electrospun fiber scaffolds, 
as well as the design of fiber structures, the selection of 
electrospinning parameters, post-treatment methods, and the 
combination of various stimuli. These products have been 
widely applied to tissue regeneration, including soft tissues 
(such as skin, nerve, cardiac, and blood vessels) and hard 
tissues (such as bone, cartilage, and musculoskeletal and 
dental systems), as well as cancer therapy.

Skin Tissue Engineering

Skin regeneration and wound healing are dynamic and com-
plex processes that usually include four overlapping and 
different periods: hemostasis, inflammation, proliferation, 
and remodeling [167]. To promote wound repair, functional 
drug-loaded fibrous scaffolds can be prepared through elec-
trospinning technology, which can effectively avoid wound 
infection, shorten the inflammatory stage, promote tissue 
proliferation and remodeling, and prevent granulation tissue 
proliferation and scar formation.

Bacterial infection is an inevitable and urgent prob-
lem during wound healing [168, 169]. Therefore, many 
researchers have loaded antimicrobial agents or nanopar-
ticles into nanofibers by blending electrospinning technol-
ogy to improve antibacterial function [170, 171]. For exam-
ple, tetracycline hydrochloride has been loaded into poly 
(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan 
nanofibers to achieve excellent antibacterial effects against 
gram-positive and gram-negative bacteria [172]. However, 
given the increasing bacterial resistance and the burst release 
of drugs, it remains a great challenge to achieve sustained 
and efficient antibacterial activity at the wound site using the 
aforementioned methods [173]. In addition to exploring and 
synthesizing new types of alternative antimicrobial agents, 
antimicrobial peptides have also been incorporated in fib-
ers to achieve deep bactericidal effects [174]. For instance, 
a Janus-type antibacterial dressing loaded with antimicro-
bial peptides was prepared by combining electrospinning 
nanofiber membranes with dissolvable microneedle arrays 
[175]. This antibacterial dressing could penetrate bacterial 
biofilms to effectively kill bacteria. To further enhance the 
antibacterial effect of these materials, as well as to achieve 
the controlled release of drugs, some drug-loaded fiber plat-
forms have been explored with respect to external stimuli 
[176]. The obtained nanocomposite fiber scaffolds exhib-
ited excellent NIR light-triggered controlled drug release 
behavior. As shown in Fig. 6a, the dressing caused irrevers-
ible damage to bacterial biofilms under NIR irradiation, thus 
effectively inhibiting infection by drug-resistant bacteria.

Hemostasis is a critical period in the wound healing 
process. Although the body has an inherent hemostatic sys-
tem, it cannot stop bleeding quickly [43]. Therefore, many 
hemostatic agents have been incorporated into hemostatic 
dressings by electrospinning technology, and this approach 
has attracted wide attention. For example, an ultralight 3D 
gelatin sponge prepared by conjugate electrospinning tech-
nology was able to aggregate a large number of activated 
platelets and accelerate the formation of platelet clots [177]. 
An in vivo study showed that this gelatin nanofiber sponge 
could rapidly induce stable blood clots in a rabbit ear model 
of artery injury and was associated with reduced bleeding 
compared to gelatin nanofiber membrane (Fig. 6b).
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Sustained inflammation also seriously postpones wound 
healing [178–180]. Especially in chronic wounds, high ROS 
levels often result in a failure of wound healing. Therefore, 
removing excessive ROS can reduce oxidative stress to effec-
tively promote collagen deposition and ECM remodeling 
[181]. For example, poly (l-lactide-co-caprolactone)/gelatin 
core-sheath nanofibers loaded with epigallocatechin-3-O-
gallate (EGCG) exhibited excellent ROS-scavenging abil-
ity, promoting skin regeneration and inhibiting subsequent 
wound infection [180].

In addition to excessive ROS, high expression of various 
pro-inflammatory chemokines, such as interleukin-6 (IL-6) 
and tumor necrosis factor-α (TNF-α), which are secreted 

by neutrophils and macrophages, can also severely delay 
wound healing [182]. It has been shown that anti-inflamma-
tory drugs released at a wound can effectively down-regulate 
expression of IL-6 and TNF-α [183]. At the same time, this 
approach can reduce inflammatory response at the wound, 
promote fibroblast proliferation, and accelerate the recon-
struction of granulation tissue. For example, PCL nanofib-
ers loaded with dimethyloxalylglycine can significantly 
promote angiogenesis and improve the re-epithelialization 
ratio [184]. Meanwhile, at the molecular level, this approach 
promoted wound healing by enhancing the expression of 
anti-inflammatory factors (IL-4) and reducing the expression 
of pro-inflammatory factors (IL-6) (Fig. 6c).

Fig. 6  Drug delivery systems based on electrospun fiber scaffolds 
for skin tissue engineering. a Illustration of dual stimuli-responsive 
fibrous membranes for drug-resistant bacterial infection, and SEM 
images of E. coli and MRSA incubated with or without NIR irradia-
tion. Scale bar = 5 μm. Reproduced with permission from Ref. [176]; 
Copyright 2022, Elsevier Limited. b Illustration and macroscopic 
images of the different samples after in  vivo hemostasis in an ear 
artery injury model and a liver trauma model of rabbits. Reproduced 
with permission from Ref. [177]; Copyright 2021, Wiley–VCH Lim-
ited. c Schematic illustration of PCL nanofibers loaded with dimethy-
loxalylglycine can significantly promote angiogenesis and re-epithe-
lialization, and expression levels of IL-6 and IL-4 were detected in 
macrophages cultured for 2 days. Reproduced with permission from 
Ref. [184]; Copyright 2017, American Chemical Society Limited. 
d Schematic illustration of H&E, Masson’s and CD31 immunohis-

tochemical staining images of different groups of wound areas at 
14 days. The black arrow indicates the blood vessel, the semi-black 
arrow indicates the keratinous basal cells, and the dotted circle shows 
the epithelial spike. Reproduced with permission from Ref. [185]; 
Copyright 2019, American Chemical Society Limited. e Schematic 
diagram of the synthesis of careob-like 5-Fu@dMBG/PEO@PEEUU 
nanofibers (((F@B)/P)@PU) and the quantitative analysis of relative 
occupied area of collagen I at post-surgery. Reproduced with permis-
sion from Ref. [189]; Copyright 2022, Elsevier Limited. f Schematic 
of the fabrication of on-skin electronic devices and temperature-
sensitive on-demand drug release, the release profiles of MOX, and 
photographs of agar plates onto which S. aureus suspensions. Repro-
duced with permission from Ref. [196]; Copyright 2019, Wiley–VCH 
Limited
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Tissue regeneration and remodeling involve angiogenesis, 
granulation tissue formation and re-epithelialization [167]. 
During the process of wound healing, angiogenesis is ben-
eficial for the continuous delivery of oxygen and nutrients 
to the wound. As shown in Fig. 6d, an oriented, aligned PCL 
nanofiber membrane loaded with tazarotene promoted angi-
ogenesis and significantly accelerated wound healing and 
re-epithelialization ratio [185]. In addition, various types of 
growth factors, peptides, and RNA can be delivered from 
electrospun nanofibers to promote angiogenesis [71, 74]. 
During the tissue regeneration stage, loading growth fac-
tors into nanofibers is an effective way to improve the wound 
healing rate. For example, PCL/PEG core–shell nanofibers 
loaded with EGF and basic fibroblast growth factor can sig-
nificantly promote fibroblast proliferation and enhance col-
lagen deposition and keratin synthesis [186].

If a wound is not treated properly, scar formation is very 
likely. Scar formation is primarily due to excessive inflam-
mation, myofibroblast proliferation, and over-deposition of 
collagen [187]. Loading of nanofibers with scar inhibitors 
can effectively inhibit the formation of scars. At present, 
common scar inhibitors include TGF-β inhibitor [188], 
5-fluorouracil [189], α-lactalbumin [190], 20(R)-ginsenoside 
Rg3 [191], palmatine, and triamcinolone acetonide [192, 
193]. Typically, 5-fluorouracil (5-Fu)-loaded dendritic 
mesoporous bioglass nanoparticles (dMBG) are loaded in 
electrospun nanofibers by coaxial electrospinning, and the 
obtained scaffolds can significantly promote wound healing 
and inhibit scar formation (Fig. 6e) [189].

Currently, another challenge for wound dressings is that 
it is difficult to monitor the real-time state of wound repair 
while simultaneously meeting the needs of wound healing 
treatment [194]. With the emerging development of bioel-
ectronics, many integrated electronic dressings have been 
developed to integrate diagnosis, monitoring, and treat-
ment [195]. These techniques also allow the monitoring of 
wound status and on-demand controlled drug delivery based 
on changes in the wound microenvironment. As shown 
in Fig. 6f, a flexible and breathable thermal-responsive 
nanofiber membrane can monitor the temperature of wound 
tissue in real time and trigger the on-demand release of anti-
biotics from the fibers according to temperature changes 
[196].

Nerve Tissue Engineering

Injuries to the nervous system, including both the periph-
eral nervous system and the central nervous system, often 
lead to nerve cell death and tissue destruction, resulting in 
permanent loss of nerve function [197]. Although recent 
developments are promising, it nevertheless remains a great 
challenge to treat nerve injuries using tissue engineering 
scaffolds.

For peripheral nerve repair, nerve guidance conduits 
(NGCs) constructed from electrospun fibers are considered 
to be optimal nerve graft substitutes because of their excel-
lent biocompatibility, tunable mechanical properties, poros-
ity, and capacity to provide guidance cues [64]. Unmodi-
fied fiber-based NGCs often fail to overcome the barriers of 
limited regenerative capacity and disordered axonal growth, 
especially when used to repair thick nerves with large gaps 
[198]. To this end, integrating NGCs with topographic cues 
[48, 197] and biological signals [123, 124, 199, 200] is 
often done to overcome these barriers. One current potential 
strategy is to create nerve conduits based on topographical 
cues in combination with drugs, with different drug loading 
modes controlling drug release [3, 16]. For example, drugs 
physically attached to a scaffold usually have faster release 
rates, while drugs embedded in microspheres or fibers are 
hindered by complex cross-linking networks [201, 202].

Typically, gradient structures can provide chemotactic or 
haptotactic cues for accelerating cell migration and neurite 
extension. As shown in Fig. 7a, a concentration gradient of 
active functional groups was first generated on nanofiber 
surface, after which an NGF density gradient was success-
fully constructed based on the amphiphilic nature of heparin, 
ultimately promoting the directional outgrowth of neurites 
from DRG along the direction of increasing NGF concentra-
tion [200]. In addition to the adsorption or immobilization of 
growth factor on the fiber surface, bioactive particles have 
also been deposited on fibers. Figure 7b shows the applica-
tion of a masked electrospray method to construct a density 
gradient of biomacromolecular nanoparticles on the surface 
of uniaxially aligned fibers by manipulating the deposition 
period with a movable physical mask [124]. The aligned fib-
ers could guide neurite extension along the fiber alignment, 
while the density gradient of biological macromolecules fur-
ther promoted directional extension of neurites along the 
direction of increasing particle density.

Another therapeutic approach is to combine external 
stimuli, such as light [203], electricity [204, 205], or mag-
netic field [206], to regulate cell behavior and induce tissue 
regeneration. Under the action of AMF, superparamagnetic 
iron oxide nanoparticles could be uniformly distributed in 
fibers, and the fabricated hybrid fibers could respond to a 
magnetic field and promote neurite extension (Fig. 7c) [206]. 
In addition, as electrically active tissues, neurite extension 
can be promoted by applying electrical stimulation at an 
appropriate intensity. For example, electrically conductive 
electrospun fibers can be loaded with NGF and combined 
with electrical stimulation to further accelerate the exten-
sion of neurites from PC12 cells along the direction of the 
electrical field (Fig. 7d) [158].

For peripheral nerve repair, some researchers rely on 
different drug release rates to design NGCs. As shown in 
Fig. 7e, core-sheath fibers loaded with two growth factors 
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were prepared by coaxial electrospinning [207]. The fast 
release of VEGF from the sheath layer promotes the migra-
tion, proliferation, and differentiation of endothelial cells, 
while the slow release of NGF promotes long-term axonal 
elongation. With the release of VEGF, intraneural vascu-
larization, an important prerequisite for nerve regeneration 
[208], could be achieved. More importantly, the generated 
blood vessels could provide guidance for cell migration and 
transport oxygen and nutrients to axons and Schwann cells 
[60, 209], which is particularly significant for the repair of 
thick nerve defects. Polymer microspheres [210] and inor-
ganic nanoparticles [211] can also serve as carriers of neu-
rotrophic factors and be incorporated with electrospun fibers 
to regulate conduit delivery behavior.

Furthermore, hydrogels can encapsulate a variety of 
bioactive substances, and their degradability can be var-
ied by regulating the degree of cross-linking [2, 212]. In 
addition, hydrogels can simulate the ECM of natural tissues 
and generate a 3D microenvironment conducive to nerve 
tissue regeneration [213]. Therefore, the development of 
electrospun fiber-hydrogel drug loading systems has signifi-
cant potential. Multiple small conduits can be sequentially 
embedded within a larger conduit to simulate the multi-
bundle structure of human nerves, effectively reducing side 
effects associated with disordered axon growth [61]; further-
more, this type of NGC can be combined with drug loaded-
hydrogels to additionally promote nerve repair. Distinct 
properties can be introduced into each lumen to optimize 
conduit performance, so this highly bionic structure will be 
ideal for nerve tissue regeneration.

Distinct from peripheral nerves, neurons of the central 
nervous system (CNS) can hardly regenerate axons due to 
the harsh microenvironment after CNS injury [138, 214]; 
therefore, remodeling the microenvironment can support 
CNS regeneration [215]. Furthermore, more endogenous 
cells should be promoted to migrate, infiltrate into the dam-
aged area and differentiate into neurons to rebuild the dam-
aged neural circuit network [216]. The main approach is to 
release anti-inflammatory drugs to reduce inflammation and 
regulate the acidic microenvironment. MP, a strong anti-
inflammatory drug, can be loaded on the electrospun fiber 
scaffold with polysialic acid to promote axonal regeneration 
[217]. As shown in Fig. 7f, MP can effectively inhibit inflam-
matory reactions and glial cell proliferation while ensuring 
axon growth. In contrast to direct release, anti-inflammatory 
drugs can be loaded in liposomes and grafted onto scaffolds 
by chemical bonds that can be broken in response to the 
acidic pH of the inflammatory environment [138], thereby 
reducing the risk to benign areas. In addition, proteoglycans 
in the ECM of neurons condense around neurons to prevent 
the influence of harmful substances. However, proteoglycan 
condensation becomes a physical barrier to nerve recovery 
after spinal cord injury, so the addition of proteases could 

decompose these proteoglycans and break down this barrier 
[214]. Thus, protease- and neurotrophic factor-based fiber 
scaffolds can build renewable bridges in spinal cord defects. 
In summary, electrospun fiber scaffolds for the repair of spi-
nal cord injury require a combination of multiple optimiza-
tion factors to regulate the microenvironment and promote 
nerve regeneration [218].

Brain tissue is a complex nerve tissue, and common brain 
diseases include traumatic brain injury [219, 220], stroke 
[221] and others. In the repair of brain injury, it is also 
important to promote endogenous cells to migrate toward the 
damaged area and differentiate into neurons to rebuild the 
damaged nervous system [216]. Neurotrophic factors play an 
important role in the protection and migration of nerve cells. 
However, they cannot be delivered to injured sites because 
of their lack of permeability through the blood–brain bar-
rier (BBB) [222, 223]. Engineering bioactive electrospun 
fiber scaffolds can enable the treatment and repair of brain 
diseases. Monosialotetrahexosylganglioside (LysoGM1) is 
one kind of drug that can protect neurons and promote nerve 
regeneration [224]. By chemically grafting LysoGM1 onto 
fiber scaffolds, its biological activity can be maintained, and 
the diffusion effect could be weakened to some extent [220]. 
As shown in Fig. 7g, the scaffold could continuously deliver 
drugs to the injured area in a traumatic brain injury model, 
contributing to a reduction in the number of astrocytes and 
good regeneration of nerve tissue. Meanwhile, neurodegen-
erative diseases, including Alzheimer's disease [225] and 
Parkinson's disease [226], are common mental disorders 
caused mainly by the decreased ability of neurons and glial 
cells to secrete nutritional factors. Therefore, the ability of 
electrospun fibers to deliver nutritional factors to brain tis-
sue is highlighted again, and the release profile of factors is 
more suitable than that associated with current clinical drug 
administration methods; thus, the frequency of drug admin-
istration could be reduced [227]. Of note, electrospun fibers 
also play an important role in detecting diseases, including 
potential diagnosis of neurodegenerative diseases through a 
variety of physiological indicators [228, 229]. For instance, 
coupling dopamine receptors to electrospun fibers can ena-
ble the detection of neurodegenerative disorders with high 
sensitivity and rapid responsiveness [229].

Great progress has been achieved in applying drug-loaded 
electrospun fiber scaffolds to promote nerve regeneration, 
but some side effects remain due to fast drug diffusion, 
resulting in high local drug concentrations. In addition, 
short drug half-lives also present a major challenge for 
nerve repair [209]. Therefore, the long-term maintenance 
of drug activity in vivo and precise response to microen-
vironmental changes at various stages remain the key foci 
of follow-up research. Moreover, axonal myelin formation 
is another key factor in functional recovery, and ways to 
regulate the phenotype of Schwann cells should be included 
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Fig. 7  Drug delivery systems based on electrospun fiber scaffolds 
for nerve tissue regeneration. a Schematic illustration showing the 
construction of concentration gradient of NGF on aligned fibers by 
amino and heparin functionalization, and fluorescence micrographs 
showing the extension of neurites from DRGs on the uniform and 
gradient scaffolds. Scale bar = 500 μm. Reproduced with permission 
from Ref. [200]; Copyright 2020, Wiley–VCH Limited. b Schematic 
illustration showing the generation of density gradient of biomolecu-
lar nanoparticles on the surface of uniaxially aligned electrospun fib-
ers using masked electrospray method, and fluorescence micrographs 
showing the extension of neurites from DRGs on the uniform and 
gradient scaffolds. The neurites were stained with Tuj1 (green). Scale 
bar = 500  μm. Reproduced with permission from Ref. [124]; Copy-
right 2020, Wiley–VCH Limited. c Schematic of external stimula-
tion device, SEM images showing the morphology of pristine fibers 
and SPION-grafted fibers, and fluorescence micrographs showing the 
extension of neurites from DRGs on the blank and SPION-grafted 
scaffolds. The neurites were stained with neurofilament (green). Scale 
bar = 500  μm. Reproduced with permission from Ref. [206]; Copy-
right 2021, Elsevier Limited. d Fluorescence micrographs showing 
the extension of neurites from PC12 cells on the scaffolds without/

with electrical stimulation, and the chart showing the promoting 
effect of electrical stimulation on neurite growth. Scale bar = 50 μm. 
Reproduced with permission from Ref. [158]; Copyright 2014, The 
Royal Society of Chemistry Limited. e Schematic illustration of 
simultaneous loading of NGF and VEGF in the scaffold, the chart 
showing the different diffusion rate of different growth factors, and 
both of SFI value and Tissue section staining images showing the 
scaffold with NGF and VEGF has a good ability to promote repair. 
Scale bar = 25  μm. Reproduced with permission from Ref. [207]; 
Copyright 2018, Elsevier Limited. f Schematic illustration of scaffold 
loaded with MP and polysialic acid (PSA) implanted in the model of 
spinal cord injury in mice, and both of BBB score and Tissue sec-
tion staining images showing the scaffold has the abilities to inhibit 
inflammation and promote spinal regeneration. Scale bar = 100  μm. 
Reproduced with permission from Ref. [217]; Copyright 2018, 
Elsevier Limited. g Schematic illustration of scaffold containing 
LysoGM1 implanted in traumatic brain injury model, and the scaffold 
have abilities to promote cell migration and differentiation. Tissue 
section staining image also present the enhancement of nerve regen-
eration. Scale bar = 500 μm. Reproduced with permission from Ref. 
[220]; Copyright 2020, American Chemical Society Limited
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in future scaffold design [230]. In addition, scaffold neuro-
imaging will have great potential in future applications, as 
it is indisputable that non-invasive imaging helps monitor 
nerve regeneration and enables real-time adjustments based 
on individual regeneration differences.

Cardiac Tissue Engineering

Due to the limited regenerative capacity of cardiac tissue, it 
is difficult for ischemic myocardial tissue to repair itself after 
myocardial infarction (MI) [231]. Although heart transplan-
tation is the most effective way to restore cardiac function, 
the shortage of donor organs and side effects after trans-
plantation seriously limit its application [232]. Electrospun 
nanofibers can mimic the natural ECM structure, provide 
temporary physical support for damaged heart tissue, and 
limit ventricular dilatation and remodeling [233]. Therefore, 
it is possible to use nanofibers for cardiac tissue engineering 
because of their controllable fiber structure and capacity to 
improve the retention rate of bioactive substances.

During the necrotic phase after MI, a large number of 
cardiomyocytes necrotize while releasing excessive ROS 
and other cellular contents into the surrounding micro-
environment [234, 235]. As a result, many immune cells 
are recruited to the damaged cardiac tissue. After MI, this 
inflammatory environment disrupts cell homeostasis, lead-
ing to more severe oxidative damage. Therefore, to avoid 
the occurrence of inflammation, scavenging of excessive 
ROS can effectively inhibit pathological remodeling of the 
left ventricle. For example, MP-loaded polyurethane fiber 
patches can release anti-inflammatory drugs to remove 
excess ROS [147]. As shown in Fig. 8a, fiber patches con-
taining MP could significantly promote cardiac functional 
repair and angiogenesis while reducing fibrosis and cardiac 
remodeling. In addition to the local delivery of anti-inflam-
matory drugs by nanofibers to reduce inflammation, many 
anti-inflammatory nanoparticles can be loaded into nanofib-
ers to effectively remove excessive ROS and relieve inflam-
mation. For example, a cerium oxide nanoparticles-loaded 
PCL/gelatin nanofiber scaffold can significantly reduce ROS 
levels in the MI area and inhibit cardiomyocyte hypertrophy 
[236].

After MI, the hypoxic state is highly susceptible to oxida-
tive stress and irreversible cardiomyocyte death, so the res-
toration of oxygen supply is extremely important [237–239]. 
Therefore, a bilayer cardiac patch loaded with calcium per-
oxide and adipose stem cell exosomes was fabricated to 
enable continuous oxygen supply, alleviate oxidative stress, 
and promote angiogenesis [240]. In addition to reducing 
inflammation, an ideal cardiac patch also needs to provide 
adequate blood supply to the left ventricle. To this end, a 
cardiac patch was prepared by covalently combining nitrate 

pharmacological functional groups with biodegradable PCL 
[241]. To further reduce cardiac fibrosis, an alternative strat-
egy induces fibrotic cardiomyocytes into new cardiomyo-
cytes. In particular, functionalized nanofibers can effectively 
support the proliferation and adhesion of cardiomyocytes 
to promote the self-repair of cardiac tissue. For example, 
PLGA nanofibers covalently coupled with two adhesion pep-
tides, YIGSR and RGD, could promote the adhesion and 
proliferation of cardiomyocytes [242].

Functionalized nanofibers also support the adhesion and 
proliferation of other cells that can differentiate into cardio-
myocytes. For example, a VEGF-coated nanofiber scaffold 
can significantly promote the differentiation of human mes-
enchymal stem cells into cardiomyocytes [243]. In addition, 
as shown in Fig. 8b, a chitosan/serin protein-modified cel-
lulose nanofiber patch not only improved the survival rate 
of adipose tissue-derived mesenchymal stem cells but also 
reduced myocardial fibrosis and inhibited ventricular remod-
eling after MI [244]. Beyond exogenous cell therapy, two 
muscle-specific microRNAs can be delivered using nanofib-
ers with different topologies, after which they reprogram 
cardiac fibroblasts into cardiomyocyte-like cells and reduce 
myocardial fibrosis [245].

After MI, the electrical microenvironment usually under-
goes pathological changes, such as abnormal contraction, 
disruption of the conductive network, and irregular propaga-
tion of electrical signals, which severely limit repair of the 
damaged myocardium [246]. Usually, various conductive 
agents can be added to improve the electrical microenviron-
ment in the MI area [247]. However, it is difficult to achieve 
real electrical anisotropy matching the natural myocardium 
by simply loading conductive materials or adjusting the 
orientation of the fiber structure. In one study, a reduced 
graphene oxide functional silk fibroin nanofiber patch was 
developed with a similar anisotropic conductivity to natural 
myocardium to improve the electrical microenvironment of 
infarcted myocardium (Fig. 8c) [248]. In addition to improv-
ing the electrical microenvironment of the myocardium, it 
is particularly important for the myocardium to beat syn-
chronously and rhythmically [249]. Although it has been 
verified that spontaneous cardiomyocyte contraction can be 
observed when cardiomyocytes are cultured on fibers, it is 
also essential that they beat synchronously with the natural 
myocardium. The mechanical properties, arrangement struc-
ture, chemical composition and electrical conductivity of 
fibers significantly affect the beating of cardiomyocytes on 
fibers [250]. When cultured on parallelly aligned conductive 
polyaniline/PLGA nanofibers, all cardiomyocytes within a 
single cluster were found to beat synchronously [251].

Congenital heart disease is a congenital disease distinct 
from MI [252], and autologous cardiomyocyte therapy is 
the main treatment method. Due to the low retention rate of 
injected cells, one promising solution for the treatment of 
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congenital heart disease is the delivery of c-Kit cardiac pro-
genitor cells via nanofiber scaffolds [253, 254]. For example, 
nanofibers coated with gelatin and/or fibronectin effectively 
enhance the metabolism of c-Kit + cardiac progenitor cells 
[255]. However, the quality of c-Kit+ progenitor cells dif-
fers significantly across patients. To solve these problems, 
a computational modeling approach has been used to deter-
mine the repair mechanisms of cardiac-derived c-Kit cells 
and understand how these mechanisms can be used to design 
biomaterials to improve cardiac patch performance [256]. 
As shown in Fig. 8d, a nanofiber patch for pediatric heart 
failure patients was designed and prepared by computational 
methods and was confirmed to effectively achieve antifibro-
sis and angiogenesis.

DDSs based on electrospun nanofiber scaffolds can be 
engineered with anti-inflammatory capabilities to promote 
myocardial cell adhesion and proliferation and achieve car-
diac phenotype and function for cardiac tissue engineering. 
To enable versatility and achieve these functions simul-
taneously and comprehensively, multiple regulatory sig-
nals need to be integrated on a single platform. Moreover, 

achieving synchronized contraction and electrical anisotropy 
that matches the natural myocardium remain major chal-
lenges. Electrically active biomaterials can combine elec-
trical stimulation with scaffolds to promote cardiac tissue 
regeneration and maintain synchronized beating contractions 
of heart tissue. Continuous delivery of different bioactive 
factors at typical time points is also important to improve 
repair efficacy. In situ measurement of delivered drug con-
centrations during the delivery period remains difficult. In 
addition, real-time monitoring of the regeneration process 
is important. The integration of imaging techniques can fur-
ther address both issues and has important implications for 
the exploration of physiological processes in cardiac tissue 
regeneration, as well as the study of the regulatory behaviors 
of materials in vivo.

Bone Tissue Engineering

As a typical hard tissue, bone tissue exhibits a complex and 
highly stratified structure with high density and involves 
various growth factors and endogenous signals [257]. Bone 

Fig. 8  Drug delivery systems based on electrospun fiber scaffolds 
for cardiac tissue engineering. a Schematic illustration showing the 
application of a methylprednisolone (MP)-loaded PUTK fiber patch 
to suppress inflammation, and Masson and Sirius red staining shows 
the pathological examination of the hearts. Reproduced with permis-
sion from Ref. [31]; Copyright 2020, Elsevier Limited. b Schematic 
illustration showing the application of chitosan/silk fibroin-modified 
nanofiber patch seeded with mesenchymal stem cells for prevent-
ing heart remodeling post-MI in rats. Reproduced with permission 
from Ref. [244]; Copyright 2018, Elsevier Limited. c Schematic and 
cross-sectional SEM images illustrating the structure of the rGO/
silk fibroin scaffolds, from the bottom to the top, consisting of a ran-

domly arranged layer, randomly oriented layer and oriented layer, 
the thickness between different layers, and the conductive anisotropy 
that can be transmitted through the patch through implantation were 
used to reconstruct the anisotropic electrical microenvironment of 
the infarcted myocardium. Reproduced with permission from Ref. 
[248]; Copyright 2022, Elsevier Limited. d Schematic illustration of 
using computational methods to design patient-specific electrospun 
fiber-based cardiac patches for pediatric heart failure, representative 
images of patches attached to the RV in tissue sections collected after 
4 weeks following implantation, and quantification of vessel density 
and myocyte hypertrophy. Scar bar = 200 μm. Reproduced with per-
mission from Ref. [256]; Copyright 2022, Elsevier Limited
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tissue engineering also involves many aspects, including 
osteogenic differentiation, angiogenesis, bone healing, and 
the treatment of bone-related diseases [258]. Electrospun 
fiber scaffolds provide a structure that simulates the bone 
environment and have drug-delivery advantages (for small 
molecule drugs and growth factors, etc.), which are expected 
to solve problems related to limited donor sites for autolo-
gous transplantation and to provide a promising avenue for 
bone tissue engineering.

To promote bone tissue regeneration, the primary task is 
to enhance osteogenic activity. To this end, researchers have 
investigated a series of electrospun fibers combined with the 
delivery of bioactive substances that promote osteogenesis 
[259–261]. For example, a layered micro/nanofiber biomi-
metic periosteum with sustainable release of VEGF has been 
developed (Fig. 9a) [117]. VEGF was encapsulated in hyalu-
ronan (HA)-poly(l-lactide) acid (PLLA) core-sheath fibers 
and released in a sustained manner to promote angiogenesis, 
and collagen self-assembly on the fibers greatly mimicked 
the microenvironment necessary for intramembranous osteo-
genesis. The 3D reconstruction images of the defect at 4 and 
8 weeks post-surgery showed that the repair effect of the mat 
was the most satisfactory, suggesting a synergistic effect of 
hierarchical structure and VEGF in promoting osteogenesis. 
In view of the complexity of the bone repair process, co-
delivery or sequential delivery of multiple drugs is generally 
required, so it is particularly important to design electrospun 
fiber scaffolds that can carry multiple drugs and allow their 
release in a controlled manner [262]. Coaxial electrospin-
ning and LBL provide good methods for this. For exam-
ple, a nanofiber mat made of core-sheath fibers with PVA 
as the core and SF/PCL as the shell was prepared, BMP-2 
introduced into the core, and connective tissue growth factor 
(CTGF) was bound to the surface of the nanofibers through 
LBL technology (Fig. 9b) [263]. Fluorescent labeling in vivo 
showed the sustained release of BMP-2 over 30 days, while 
CTGF rapidly dropped to minimum levels within 6 days, 
indicative of an early, transient release. In vivo studies 
showed that areas of alkaline phosphatase (ALP) positive 
tissues and angiogenesis were both significantly increased 
compared with a single BMP-2 release system. Similarly, 
the combination of DEX and BMP-2 also had a synergistic 
effect on ALP expression and osteogenesis [264].

The regulation of the activity balance between osteo-
blasts and osteoclasts is another important factor to be 
considered in bone repair [265]. As shown in Fig. 9c, the 
scaffold could achieve the simultaneous dual delivery of 
alendronate (ALN) and silicate to further adjust the balance 
between bone resorption and bone formation, thus acceler-
ating bone repair. ALN encapsulated in MSN was released 
from nanofibers and inhibited the bone resorption process 
by preventing the expression of GTP-related proteins, while 
silicate released upon MSN hydrolysis accelerated the bone 

formation process by promoting angiogenesis and bone cal-
cification [106]. Coaxial electrospinning can also provide 
a similar dual-delivery system to modulate the osteogen-
esis–osteoclastogenesis balance. In particular, the rapid 
release of substance P enhanced the migration and osteo-
genic differentiation of BMSCs, while the sustained release 
of ALN reduced bone resorption [266]. Of note, delivery 
systems programmed to match the spatiotemporal specificity 
of bone healing are increasingly being developed.

The ability of exogenous stimuli to regulate cells is gradu-
ally being appreciated. Most commonly, bioelectrical sig-
nals in native bone serve as key factors in regulating bone 
growth, structural reconstruction, and healing [36]. Some 
studies have confirmed that electrical stimulation treatment 
promotes the adhesion, growth, and proliferation of osteo-
blasts, as well as significantly enhancing calcium and phos-
phorus deposition [267, 268]. Similarly, the heat generated 
by NIR not only penetrates the tissue but also regulates the 
expression of heat shock proteins (HSPs) and enhances the 
expression of osteogenesis-related proteins [269]. By incor-
porating  MoS2, an osteogenesis promoter and photothermal 
agent, into electrospun fibers, the obtained scaffold exhibits 
stronger cell growth and osteogenic ability in combination 
with photothermal therapy [270]. Under NIR-triggered mild 
photothermal treatment for 30 or 60 s, the expression lev-
els of OPN and OCN, osteogenesis-related genes, were up-
regulated in BMSCs after 7 and 14 days of culture, and the 
ability to accelerate osteogenesis and bone healing was also 
demonstrated in vivo in a rat tibial defect model (Fig. 9d). In 
addition to the introduction of stimulatory components, the 
design of 3D-structured fiber scaffolds can also better simu-
late the bone environment. For example, a radial 3D scaffold 
obtained by  NaBH4 foaming not only provides topographical 
clues and a good bone repair environment but also allows the 
loading of various growth factors to promote the bone heal-
ing process [63]. In the future, it remains a key challenge to 
incorporate stimulation into 3D electrospun fiber scaffolds 
to develop 4D bone tissue scaffolds.

One of the main causes of bone defects is bone tumors, so 
the design of bone tissue scaffolds requires the consideration 
of bone repair and prevention of bone tumor recurrence. For 
example, DOX was intercalated into lamellar hydroxyapatite 
and dissolved in PLGA for electrospinning, after which the 
surface of the electrospun fibers was further coated with 
PDA to obtain a PDA@DH/PLGA scaffold. The PDA coat-
ing prolonged the drug release (Fig. 9e) [271]. More impor-
tantly, the PDA@DH/PLGA scaffold significantly inhibited 
tumor cells growth initially, then subsequently improved 
osteoblast proliferation and promoted the repair of bone 
defects caused by tumor resection in vivo. The development 
of electrospun drug-loaded fiber scaffolds for bone tumor 
treatment is still worthy of further investigation, while the 
extensive ability to incorporate drugs into electrospun fibers 
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provides a good alternative for bone tumor treatment and 
postoperative repair.

Cartilage Tissue Engineering

Articular cartilage, which is primarily composed of chon-
drocytes and ECM, is responsible for reducing interface 
friction and assisting in bearing loads. Due to its low level 
of regeneration and limited self-healing capacity [272], the 
clinical pressures of cartilage-related diseases have been 
increased with population aging. Thus, there is an urgent 
need to develop new biomaterial scaffolds to treat cartilage 
damage, and various drugs and growth factors have been 

explored for application to cartilage regeneration. To avoid 
rapid drug clearance and ensure controlled release [273], 
electrospun fibers are widely applied due to their customiz-
able structures and selectable properties with regards to drug 
binding, enabling these scaffolds to mimic the different mor-
phologies of cartilage ECM and control drug delivery [274].

In general, PLLA [275–277] and PLGA [278, 279] are 
rarely used due to their potential to cause inflammation dur-
ing degradation, while PCL [280–282] and polyhydroxybu-
tyrate [283] can be applied after modification or blending. 
Methylsulfonylmethane, a typical drug to inhibit inflamma-
tion and promote chondrocytes differentiation [284, 285], 
was loaded on PLGA fiber mats to accelerate cartilage 

Fig. 9  Drug delivery systems based on electrospun fiber scaffolds for 
bone tissue engineering. a Schematic illustration showing the con-
struction of a nanofiber-based biomimetic periosteum for periosteum 
and bone regeneration and 3D reconstructed images of the regener-
ated bone after implantation for 4 and 8 weeks, respectively, in a rat 
calvarial critical size defect model. Reproduced with permission from 
Ref. [117]; Copyright 2020, Elsevier Limited. b Spatiotemporally 
controlled release of BMP-2 and CTGF for bone repair by combining 
coaxial electrospinning and LBL technology, and in  vivo tracing of 
fluorescent dye-labeled BMP-2 and CTGF, as well as ALP-positive 
tissue areas in a model of ectopic osteogenesis. Reproduced with per-
mission from Ref. [263]; Copyright 2019, American Chemical Soci-
ety Limited. c Schematic illustration showing design of nanofiber for 
simultaneously dual delivery of ALN and silicate, as well as tuning 

the balance between bone resorption and bone formation. Reproduced 
with permission from Ref. [106]; Copyright 2019, The Royal Society 
of Chemistry Limited. d Schematic illustration showing PCL/MoS2 
nanofibrous mat with photothermal property, the relative expressions 
of OCN, OPN, and HSPs genes with or without NIR irradiation, as 
well as photos of the rat tibias with implants and H&E staining of the 
tissues after implanting with PCL/1%MoS2 electrospun mat for 4 and 
8  weeks with or without NIR irradiation, respectively. Reproduced 
with permission from Ref. [270]; Copyright 2021, Wiley–VCH Lim-
ited. e Schematic illustrations showing a dual function nanofibrous 
scaffold for tumor suppression and bone repair by loading DOX and 
modifying PDA, as well as the release route of DOX from the scaf-
fold. Reproduced with permission from Ref. [271]; Copyright 2021, 
American Chemical Society Limited
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regeneration [279]. However, the release curve reached sta-
bility within 24 h after the initial burst release, indicating a 
deficiency in sustained release. Candidate drugs [278] and 
effective natural plant components [286] have faced similar 
problems. To this end, the design of fiber structures and in-
depth exploration of drug combinations remain under way. 
For example, Kartogenin [287, 288], has been shown to pro-
mote cartilage defect repair, was loaded into coaxial fibers 
[289]. As shown in Fig. 10a, the existence of the PCL sheath 
successfully alleviated burst release and lengthened the drug 
release process to more than 20 days. At 14 days, levels 

of glycosaminoglycan deposited on the coaxial fibers were 
lower than those found on monoaxial ones, but they were 
modestly higher at 21 days, implying the advantages of long-
lasting sustained release. For the same purpose, nanoparti-
cles loaded with small molecular drugs [290] and growth 
factors [277] have been combined with electrospun fiber 
scaffolds to maintain bioactivity and enable long-term con-
trollable delivery. Multidrug delivery systems have also been 
developed to recruit endogenous cells and promote cartilage 
regeneration [291]. Cartilage-derived extracellular matrix 
(cECM), which contains various growth factors and natural 

Fig. 10  Drug delivery systems based on electrospun fiber scaffolds 
for cartilage tissue engineering. a Schematic of kartogenin-loaded 
monoaxial and coaxial nanofibers, and comparison of their release 
profile. Reproduced with permission from Ref. [289]; Copyright 
2020, Elsevier Limited. b The gross view and H&E staining images 
of regenerated cartilage after implanting the cECM-loaded PCL 
membrane into mice. Reproduced with permission from Ref. [292]; 
Copyright 2020, Elsevier Limited. c Gas-foamed chondroitin sulfate 
crosslinked PLCL/SF-based three-dimensional scaffold enhances car-
tilage regeneration, with gross view at 12 weeks and stain results of 
COL-II revealing its effects. Reproduced with permission from Ref. 

[295]; Copyright 2021, Elsevier Limited. d Schematic illustration 
of the structure of the biomimicking multilayer scaffold loaded with 
FGF-2, BMP-2, as well as some other components promotes deep 
cartilage defect from regenerating, and results of micro-CT examina-
tion at different time points. Reproduced with permission from Ref. 
[296]; Copyright 2018, Elsevier Limited. e PCL nanomembranes 
realized sustained release of lignin, thus suppress inflammation fac-
tors, scavenge ROS, restrain osteoarthritis from deteriorating by sup-
pressing expression of IL-1β, MMP13 and Keap1, at the same time 
upregulate the expression of ATG4 to adjust autophagy. Reproduced 
with permission from Ref. [301]; Copyright 2020, Elsevier Limited
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components, possesses an imaginably unique potential. In 
one study, cECM was mixed with PCL for electrospinning, 
and the as-obtained scaffold was seeded with chondrocytes 
and implanted into nude mice [292]. Figure 10b shows the 
repair effects, as well as H&E staining at different times, 
indicating that cECM has a positive effect on regenerated 
cartilage after 24 weeks, and more interestingly, the Young’s 
modulus of the regenerated cartilage reached approximately 
native auricular levels.

It is well known that larger pores are favorable to cell 
infiltration and proliferation [293]. Nevertheless, 2D mem-
branes are relatively dense and unsuitable for deep defects. 
As a result, studies aiming at developing 2D membranes 
to 3D scaffolds have arisen. For instance, 3D structures 
fabricated using  NaBH4 exhibit large pores that facilitate 
cell attachment and proliferation [294]. Chondroitin sulfate 
(CS), a common component extracted from cartilage, can 
be grafted to the matrix by chemical modification to further 
enhance the effects of 3D scaffolds [295]. The lowest levels 
of inflammatory cytokines and the highest glycosaminogly-
can content were detected in 3D scaffolds crosslinked with 
CS in vitro, and the optimal repair effects were confirmed 
by the results of morphological analysis and immunohisto-
chemical staining, as shown in Fig. 10c. With respect to deep 
osteochondral defects, multilayer scaffolds can be developed 
to meet variable needs. A four-layer hydrogel-fiber compos-
ite was fabricated in which a fibrous membrane was used as 
a barrier to limit cell migration [296], and BMP-2 loaded 
coaxial fibers were incorporated to promote subchondral 
bone formation. Micro-CT images in Fig. 10d reveals that 
the boundaries between the defect and surrounding tissues 
almost disappeared at 12 weeks, with the exception of the 
blank group. In addition, electrospun fibers can be combined 
with freeze-drying [284, 297, 298] and 3D printing [299, 
300] approaches to develop multi-dimensional scaffolds that 
promote cartilage regeneration.

Injured cartilage gradually leads to osteoarthritis, with 
inflammation serving as the main culprit. As a durable 
antioxidant, lignin can efficiently alleviate excessive oxi-
dative stress. In one study, modified lignin was mixed 
with PCL for electrospinning to prevent the development 
of osteoarthritis. As shown in Fig. 10e, non-significant 
differences were found among the groups without  H2O2 
stimulation, while PCL-lignin50 increased the expres-
sion of inflammatory factors (MMP13 and IL-1β) after 
 H2O2 treatment, thereby effectively preventing hydrogen 
peroxide-induced chondrocyte inflammation. Moreover, 
lignin can upregulate the relative expression of allied 
enzyme under the influence of  H2O2, and higher expres-
sion of ATG4 indicated that lignin can also prevent chon-
drocytes from experiencing excessive oxidative stress by 
activating autophagy. Their work also demonstrated that 
low intensity pulsed ultrasound (LIPUS) may further 

enhance regeneration capacity [301]. With the deepening 
of research on injectable hydrogels, it is becoming pos-
sible to disperse electrospun fibers in hydrogels to form 
injectable DDSs, which is an excellent potential approach.

Other Tissue Engineering

In addition to the above-mentioned applications, drug-loaded 
electrospun fiber scaffolds have also been developed for the 
engineering of vascular, dental and musculoskeletal tissues, 
among others. The high specific surface area and porosity of 
electrospun fiber scaffold ensure excellent gas exchange and 
nutrient transport properties, making it to become a good 
choice for artificial vascular grafts [302]. Considering the 
structure of natural blood vessels, tubular morphologies with 
multilayered vessel walls have attracted much attention due 
to their mimicry. As shown in Fig. 11a, a conduit composed 
of a tri-layer electrospun fiber (R-126/R-145/PCL) was pre-
pared by encapsulating microRNA-126 and microRNA-145 
in the inner and middle layers of poly(ethylene glycol)-b-
poly(l-lactide-co-ε-caprolactone) fibers, respectively, in 
combination with an outer layer of PCL fibers [131]. The 
fiber mat enables the fast release of microRNA-126 and slow 
release of microRNA-145. Tri-layered electrospun grafts can 
promote the growth and intracellular nitric oxide production 
of vascular endothelial cells, modulate the phenotype of vas-
cular smooth muscle cells, and suppress calcification. More 
importantly, color doppler ultrasound imaging demonstrated 
prominent vascular patency in the fiber graft. Although the 
functions of electrospun fiber-based vascular scaffold are 
continuously optimized, thrombosis and intimal hyperplasia 
still inevitably occurred [303]. The addition of a variety of 
bioactive substances can be beneficial to accelerating the 
replacement of autologous blood vessels and improving the 
treatment of cardiovascular diseases [304].

As described above for bone tissue, a combination of 
electrospun fibers and osteogenic factors can also be used 
to guide dental bone regeneration [305–307]. In this case, 
it is necessary to consider the impact of the oral environ-
ment [308]. Guided bone regeneration membranes with 
dual functions of anti-infection and osteogenesis have been 
extensively studied [309–312]. In particular, in addition to 
the good antibacterial properties of metronidazole, some 
inorganic particles can exhibit good anti-infective effects 
[313]. For example, ZnO can endow PCL fiber membrane 
with good osteo-conductivity and antibacterial properties 
(Fig. 11b) [314]. The number of Colony forming units 
of Pseudomonas gingivalis on the membrane surface was 
reduced, and micro-CT analysis of the rat maxilla con-
firmed the effectiveness of ZnO-loaded PCL fibers in 
periodontitis-related bone regeneration. This drug-loaded 
electrospun fiber membrane can also be applied as an 
oral drug delivery patch for the treatment of oral diseases 
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[315], this approach not only maintains good oral adhe-
sion but also provides continuous and controllable drug 
delivery capabilities to kill bacteria and eliminate inflam-
mation [316–318].

Tendon is an important part of musculoskeletal tis-
sues, and tendon grafts and tendon sutures used in surgical 
treatment cannot satisfy requirements relating to flexibil-
ity, anti-adhesion, and permanent remodeling [319]. To 
address these problems, electrospun drug-loaded scaffolds 
can serve as a potential alternative for the treatment and 
regeneration of injured tendon tissue. In one study, thy-
mosin β4 (Tβ4)-loaded oriented fibers not only mimicked 
the ultrastructure of natural tendon tissue but also showed 
28-day sustained release that promoted the migration and 
proliferation of human adipose-derived mesenchymal 
stem cells and supported tendon differentiation [320]. In 
addition to direct drug delivery, nanoparticles can also be 

doped in electrospun fibers to deliver therapeutic ions for 
tendon repair. For example, inspired by the structure of 
cowpea, lithium was loaded in MSNs and doped in electro-
spun poly(ester urethane) urea (PEUU) nanofibers  (Li+@
MSNS/PEUU), allowing the slow release of  Li+ to inhibit 
rotator cuff fat penetration and promote tendon and bone 
healing (Fig. 11c) [321]. Western blotting results showed 
that Gsk3β was inhibited, while Wnt5a and β-catenin 
were up-regulated under the influence of  Li+ ions. At the 
proximal tendon-bone junction, the osteogenic effects of 
the  Li+-containing fiber patch were significantly higher 
than those of the fiber patch without  Li+ ions. Micro-CT 
analysis showed that the bone mineral density (BMD) and 
bone volume fraction (bone volume/total volume, BV/TV) 
of the group using  Li+@MSNS/PEUU nanofiber patch 
were significantly higher than those in other groups after 
implanted for 2 and 8 weeks, respectively.

Fig. 11  Drug delivery systems based on electrospun fiber scaffolds 
for other tissue engineering. a Illustration of three-layered vascular 
grafts prepared by successive three-step electrospinning to encapsu-
late miR-126 and miR-145 in the inner and middle layers of fibers, 
respectively, as well as its multiple efficacies, including of patency 
testing after in vivo implantation for 4 weeks. Arrows indicate blood 
flow (yellow) and suture sites (blue). Reproduced with permission 
from Ref. [131]; Copyright 2020, American Chemical Society Lim-
ited. b Depiction of periodontal defect in rats with fibrous membrane 
implantation, P. gingivalis colony forming units (CFUs) on mem-
brane surface and micro-CT analysis of rat maxilla after implantation 
for 6  weeks. Reproduced with permission from Ref. [314]; Copy-
right 2018, Wiley–VCH Limited. c Schematic illustration of pea-like 

bi-stranded nanofibers prepared by electrospinning in the repair of 
chronic rotator cuff tears, the effect of lithium ion on the expression 
of osteogenesis and adipogenic-related proteins in vitro was indicated 
by western blotting, and the repair effect of each group was shown 
by micro-CT image after implantation for 2  weeks and 8  weeks. 
Reproduced with permission from Ref. [321]; Copyright 2020, Else-
vier Limited. d Schematic diagram of the preparation of HCPT and 
diclofenac sodium (DS) composite membrane and the synergistic 
anti-adhesion combined with physical isolation and drug treatment, 
as well as H&E and Masson’s trichome staining of repair sites after 
14  days. Reproduced with permission from Ref. [324]; Copyright 
2018, American Chemical Society Limited
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Tissue anti-adhesion is another research hotspot, espe-
cially with respect to tendon tissues. By loading engineered 
growth factors and related small molecular drugs into elec-
trospun fibers, not only can the purpose of controlled release 
be achieved, but also the formation of adhesion can also be 
inhibited [322, 323]. As shown in Fig. 11d, the synergistic 
prevention of peritoneal adhesions can be enabled by loading 
HCPT and diclofenac sodium (DS) into the sheath and core 
of nanofibers, respectively, to exert anti-fibrin proliferative 
and anti-inflammatory effects [324]. Histological staining 
confirmed that collagenous tissue was compartmentalized 
in the group loaded with HCPT and DS, with little adhesion 
formation. Although electrospun drug-loaded scaffolds have 
widespread applications in tissue engineering, it is worth-
while to continue to develop new DDSs based on electro-
spun fiber scaffolds to broaden tissue regeneration strategies.

Cancer Therapy

Surgical resection of the tumor in combination with sys-
temic chemotherapy is one of the most common strategies 
for cancer treatment [325–327]. However, as a result of its 
systemic administration and poorly targeted delivery, con-
ventional chemotherapy often causes serious side effects to 
other normal tissues [328, 329]. Therefore, it is urgent to 
develop a new anticancer drug delivery platform to solve the 
above problems. Electrospun fibers can allow the local deliv-
ery of anticancer drugs, so they have been widely applied in 
tumor therapy [12]. In a recent study, CUR was incorporated 
into MSNs and embedded into PLGA nanofibers by blending 
electrospinning [76]. The nanofibers had an excellent ability 
to scavenge tumor cells. In addition to the passive release 
of anti-cancer drugs from drug-loaded nanofibers, many 
researchers have designed pH-responsive fibers to deliver 
anti-cancer drugs based on the acidic tumor microenviron-
ment [12]. For instance, DOX-loaded MSNs were doped 
into nanofibers, and  CaCO3 was used as an “inorganic cap” 
to control the opening of the MSN hole inlet [330]. In the 
acidic tumor microenvironment,  CaCO3 reacted with hydro-
gen ions to generate carbon dioxide, promoting the release 
of DOX from MSNs. This type of intelligent-response drug 
delivery can be further endowed with targeting capacities to 
enhance the utilization efficacy of chemotherapeutic drugs. 
Hydrophobic DOX was first encapsulated in folic acid-cou-
pled PCL self-assembled micelles, after which core–shell 
nanofibers loaded with the micelles were prepared by coax-
ial electrospinning (Fig. 12a) [331]. Compared with repeated 
intravenous injection, the delivery of targeted micelles can 
greatly reduce the dose, administration frequency, and side 
effects of chemotherapy drugs.

Compared to chemotherapy with a single type of 
drug, multi-drug combination chemotherapy has obvious 
advantages [332]. Combination chemotherapy allows the 

use of multiple chemotherapeutic drugs to improve the 
therapeutic effects of chemotherapy. Meanwhile, combi-
nation chemotherapy can induce apoptosis of tumor cells 
through different signaling pathways, exerting a synergis-
tic effect in killing tumor cells [333]. For example, plu-
ronic F127-modified nanofibers loaded with camptothecin 
and CUR could achieve the simultaneous and sustained 
release of the two drugs [334]. Camptothecin can convert 
topoisomerase I into a cytotoxic agent by inhibiting the 
movement of replication forks, leading to tumor death, 
while CUR inhibits tumor cell growth by inhibiting the kB 
and Wnt signaling pathways [335, 336]. The use of com-
bination chemotherapy can effectively inhibit the growth 
of colon cancer cells by inhibiting different signal path-
ways in tumor cells. Drug delivery platforms loaded with 
multiple drugs can facilitate different therapeutic effects 
and avoid drug toxicity and side effects associated with 
prolonged overuse of a single drug. For instance, hierar-
chical nanofibers loaded with DOX and matrix metallopro-
teinases-2 were fabricated through coaxial electrospinning 
[120]. With this approach, the rapid release of DOX from 
the fibrous nuclear layer could kill remaining tumor cells, 
while the loading of matrix metalloproteinase-2 inhibi-
tor disulfiram in the fibrous shell could effectively inhibit 
tumor erosion and prevent metastasis. In addition, the 
time-programmed release of multiple drugs is the most 
critical factor in combination chemotherapy. For exam-
ple, as shown in Fig. 12b, DOX formed periodic chambers 
inside the fibers, while the double walls of the fibers were 
made of polylactic acid and PCL containing the angiogen-
esis inhibitor apatinib. In vivo experiments showed that a 
good synergistic effect was obtained by transplanting the 
fiber into subcutaneous tissue near the tumor site in mice 
[337].

Although chemotherapy has great advantages in cancer 
treatment, the tolerance of tumors to chemotherapy drugs 
highlights the urgency of integrating these approaches with 
other types of technologies. The delivery of photothermal 
agents or photosensitizers by nanofibers can effectively kill 
tumor cells [338–340]. As illustrated in Fig. 12c, the efficacy 
of nanofiber scaffolds loaded with albumin-chloro-6-manga-
nese dioxide nanoparticles (ACM) for tumor treatment was 
evaluated using an in situ rabbit model of esophageal cancer 
[341]. In the presence of endogenous hydrogen peroxide, a 
nanofiber scaffold implanted into the area of tissue damage 
could produce oxygen and alleviate tumor hypoxia. At the 
same time, ACM nanoparticles gradually diffused out from 
the scaffold to the tumor, resulting in effective photodynamic 
therapy for cancer treatment.

For tumors in the skin, bone and breast, surgical resec-
tion causes serious tissue defects. Therefore, the removal 
of remaining tumor cells needs to be accompanied by the 
promotion of tissue regeneration [342]. Therefore, it is 
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particularly important to functionalize nanofiber scaffolds 
to enable them to scavenge tumor cells and promote tissue 
regeneration. In the study shown in Fig. 12d, drug-loaded 
copper silicate hollow microspheres were loaded into 
nanofiber scaffolds, which exhibited excellent photothermal 
effects and the capability to trigger drug release under NIR 
irradiation [343]. Upon NIR irradiation, the scaffold could 
both eliminate tumors and promote skin tissue healing.

Circulating tumor cells are cancer cells that are shed 
from the tumor and enter the circulatory system; therefore, 
capturing circulating tumor cells is critical to delaying can-
cer metastasis [344]. However, it is quite difficult to cap-
ture tumor cells from circulating blood in vivo. Due to the 
advantages of high specific surface area and flexible surface 

modification of nanofibers, the targeted aptamer-modified 
nanofiber surface can be used to capture circulating tumor 
cells. For example, coating anti-CD146 antibodies-to-
melanoma on the surface of PLGA nanofibers can enable 
the capture of circulating melanoma cells [345]. As shown 
in Fig. 12e, to achieve cancer treatment, tumor metastasis 
inhibition, and magnetic resonance imaging, DOX-loaded 
PLGA fiber mats were immersed in a salt solution to form 
fibrous rings [346]. The fibrous rings were functionalized 
with the chelating agent gadolinium and DNA aptamers via 
the ethylenediamine-mediated coupling reaction. Analysis 
showed that the multifunctional fibrous rings could simul-
taneously deliver tumor chemotherapy, enable magnetic 

Fig. 12  Drug delivery systems based on electrospun fiber scaffolds 
for cancer therapy. a Mechanism diagram of tumor clearance by the 
implantable DOX loaded active-targeting micelle-nanofiber platform 
and the micelles transfer from nanofiber matrix to tumor tissue, and 
finally to tumor cells. Reproduced with permission from Ref. [331]; 
Copyright 2015, American Chemical Society Limited. b The release 
of dual drugs from fibers and their synergistic treatment of tumor, 
and CLSM image of cavity and fluorescence colocalization analy-
sis. Reproduced with permission from Ref. [337]; Copyright 2020, 
Wiley–VCH Limited. c Schematic illustration of chemical relief of 
the hypoxia environment with in  situ release of ACM nanoparticles 
for oesophageal cancer photodynamic therapy as well as Ki-67 and 

TUNEL-stained slices of oesophageal cancer of each group. Black 
arrows indicate tracheas. Reproduced with permission from Ref. 
[341]; Copyright 2019, Wiley–VCH Limited. d Schematic illustration 
of the application of Tra-CSO-PP scaffolds and representative pho-
tographs of tumors and skin wounds on days 0, 4, 8, and 14. Repro-
duced with permission from Ref. [343]; Copyright 2018, American 
Chemical Society Limited. e Schematic illustration of DOX@PLGA 
fibrous rings for simultaneous tumor therapy and metastasis inhibi-
tion, and T1-weighted MR images at different time points. Repro-
duced with permission from Ref. [346]; Copyright 2022, Elsevier 
Limited
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Table 1  Representative types of drug-loaded electrospun fiber scaffolds for tissue engineering and cancer therapy

Polymers Drugs Techniques Applications References

PCL Tazarotene (TA) Blend electrospinning Skin tissue engineering [185]
PLCL/gelatin Epigallocatechin-3-O-gallate 

(EGCG)
Coaxial electrospinning Skin tissue engineering [180]

PLA Curcumin (Cur) Physical adsorption Skin tissue engineering [176]
PCL/PEG Epidermal growth factor (EGF); 

basic Fibroblast growth factor 
(bFGF)

Coaxial electrospinning Skin tissue engineering [186]

PEO/ PEEUU 5-Fluorouracil (5-Fu); dendritic 
Mesoporous bioglass nanoparticles 
(dMBG)

Coaxial electrospinning Skin tissue engineering [189]

PCL Collagen; Fibronectin Electrospray Nerve tissue engineering [124]
PCL Methylprednisolone (MP);

Polysialic acid
Blend electrospinning Nerve tissue engineering [217]

PLLA Nerve growth factor (NGF);
Vascular endothelial growth factor 

(VEGF)

Emulsion electrospinning; Physical 
adsorption

Nerve tissue engineering [207]

PVP/RLPO Levodopa (LD); Carbidopa (CD) Coaxial electrospinning Nerve tissue engineering [227]
PUTK Methylprednisolone (MP) Blend electrospinning Cardiac tissue engineering [31]
PCL/gelatin Cerium oxide nanoparticles (nCe) Blend electrospinning Cardiac tissue engineering [236]
PCL/gelatin Vascular endothelial growth factor 

(VEGF)
Blend electrospinning or Coaxial 

electrospinning
Cardiac tissue engineering [243]

PCE Bone morphogenetic protein-2 
(BMP-2); Dexamethasone (DEX)

Blend electrospinning Bone tissue engineering [53]

PLGA/gelatin Substance P (SP); Alendronate 
(ALN)

Coaxial electrospinning Bone tissue engineering [266]

SF/PCL/PVA Bone morphogenetic protein 2 
(BMP-2); Connective tissue growth 
factor (CTGF)

Coaxial electrospinning;
Physical adsorption

Bone tissue engineering [263]

PLGA Doxorubicin (DOX) Blend electrospinning Bone tissue engineering [271]
PCL/gelatin Metronidazole (MNA) Blend electrospinning Bone tissue engineering [309]
PLGA Methylsulfonylmethane (MSM) Blend electrospinning Cartilage tissue engineering [279]
PGS/PCL Kartogenin (KGN) Coaxial electrospinning Cartilage tissue engineering [289]
PCL/gelatin Chondrocyte Electrospray Cartilage tissue engineering [282]
PLCL/SF Chondroitin sulfate (CS) Covalent immobilization Cartilage tissue engineering [295]
PCL Kaempferol/Dexamethasone (KAE/

DEX)
Second carrier electrospinning Cartilage tissue engineering [290]

PCL MicroRNA-126; MicroRNA-145 Blend electrospinning Vascular tissue engineering [131]
PCL Epigallocatechin gallate (EGCG); 

Dexamethasone (DEX)
Covalent immobilization; Physical 

adsorption
Vascular tissue engineering [303]

PCL Zinc oxide (ZnO) nanoparticles Blend electrospinning Dental tissue engineering [314]
PVP Lysozyme Blend electrospinning Oral tissue engineering [317]
PLGA Thymosin beta-4 (Tβ4) Blend electrospinning Tendon tissue engineering [320]
PCL Mechano-growth factor (MGF) Covalent immobilization Tendon tissue engineering [322]
PEUU Lithium-containing mesoporous 

silica  (Li+@MSNs)
Blend electrospinning Musculoskeletal tissue engineering [321]

PLLA Mitomycin-C (MMC) Blend electrospinning Anti-adhesion [323]
mPEG-b-PLGA 10-Hydroxycamptothecin (HCPT); 

Diclofenac sodium (DS)
Blend electrospinning Anti-adhesion [324]

mPEG-b-PLGA 10-Hydroxycamptothecin (HCPT); 
Hydrophilic tea polyphenols (TP)

Emulsion electrospinning Cancer therapy [334]

PCL Epigallocatechin-3-O-gallate 
(EGCG)

Blend electrospinning Cancer therapy [327]
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resonance imaging, and anchor circulating tumor cells, ulti-
mately inhibiting the migration and erosion of tumor cells.

Conclusions and Perspectives

Over the past decades, electrospun fibers have been increas-
ingly applied for controlled drug delivery in the fields of 
tissue regeneration and cancer therapy. To meet the needs of 
target tissues, electrospinning provides customizable process 
parameters, collection devices, and post-processing proce-
dures. Correspondingly, electrospun fiber scaffolds with 
multiple structures, architectures, and dimensions, including 
aligned, core-sheath, porous, grooved, and gradient features, 
have been fabricated to regulate cellular states and match the 
anatomical structures of regenerating tissues. By combining 
various therapeutic drugs, electrospun fiber-controlled drug 
delivery platforms with customizable characteristics have 
gradually broadened the potential applications of soft tissue 
engineering, hard tissue engineering and cancer treatment. 
Thanks to the unremitting efforts of scientific researchers 
and developments in nanoscience, advances have been made 
to the design of electrospun fiber structures, the in-depth 
exploration of combinations of electrospun fibers and drugs, 
and the combination of stimuli with controlled properties. 
Herein, some representative examples of electrospun fibers 
loaded with functional therapeutic agents and their applica-
tions are listed in Table 1. It is believed that the electrospun 
fiber drug-loading platform can provide continued possi-
bilities for the development of new drug delivery strategies, 
characterized by the valuable capacity to deliver precise 
amounts of drugs at specific locations and times in tissue 
regeneration and cancer therapy.

For smart drug-loading platforms, electrospun fiber scaf-
folds are offering predictable potential. The emergence of 
technologies such as special collectors and gas foaming has 
enabled 3D electrospun fiber scaffolds to maintain their 
original nano-morphology with larger porosity and pore 
size, broadening the applications of electrospun drug-loaded 
scaffolds in tissue engineering [347, 348]. In addition, by 
introducing stimuli-responsive components, drugs can be 
precisely programmed for release in vivo. The combination 
of drugs with photothermal therapy, photodynamic therapy, 

magnetothermal therapy, sonodynamic therapy and multiple 
therapies trigger by exogenous stimuli can achieve better 
therapeutic effects. Similarly, the introduction of unique 
imaging properties enables drug delivery to simultaneously 
support long-term stable tracking and real-time monitoring, 
thereby greatly advancing the process of drug visualization 
therapy [346, 349–351]. Furthermore, artificial intelligence 
(AI) has also expanded the future of intelligent DDSs. Some 
strategies integrating electronic components into scaffolds 
have been recently proposed, and these techniques allow 
remote monitoring of tissue function and intervention 
through stimulation and controlled drug release [352, 353]. 
We foresee that the integration of microelectronic devices 
into electrospun drug-loaded scaffolds will provide a better 
way to monitor patient health [354–356]. These additional 
advantages are likely to further optimize electrospun fibers-
controlled DDSs as ideal disease treatment platforms and 
individually customizable therapeutic regimens.

Although the design of DDSs based on electrospun fiber 
scaffolds has reached a new stage, there is still a long way 
to go to translate into clinical and commercial applications. 
The first consideration is the biosafety of drug-loaded elec-
trospun fiber scaffolds. All components should be stable and 
nontoxic, and the long-term immune and host responses 
after in vivo implantation should be well understood. It 
is also a great challenge to match the degradation proper-
ties of electrospun fiber scaffolds with tissue repair rates 
in practical applications, which is expected to be solved 
by optimizing combinations of substrate materials, adding 
other components or modifying the scaffolds. During these 
processes, the implanted scaffold material can be adjusted 
by monitoring tissue repair through real-time imaging. In 
addition, the fate and pharmaceutic kinetics of drugs after 
entering the body remain unclear. More detailed studies of 
fiber- and drug-induced inflammatory responses and healing 
mechanisms are also required. Furthermore, the design of 
drug-loaded systems is currently based mostly on experi-
mental trials and experience, so great advances could be 
made by applying in-depth machine learning and AI to 
predict interactions between drugs and fibers and optimize 
drug selection, release behavior, and simulation of tissue 
degradation, among other factors, to direct system construc-
tion. Finally, there is still a gap in the industrialization of 

Table 1  (continued)

Polymers Drugs Techniques Applications References

PLA; PGA Matrix metalloproteinases-2 (MMP-
2); Doxorubicin hydrochloride 
(DOX·HCl)

Coaxial electrospinning Cancer therapy [120]

PLGA Curcumin (CUR); Mesoporous silica 
nanoparticles (MSNs)

Second carrier electrospinning Cancer therapy [76]

PLGA Anti-CD146 antibodies Covalent immobilization Cancer therapy [345]
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drug-loaded electrospun fiber scaffolds. It is important to 
realize the high-throughput preparation of electrospun fibers 
and maintain quality control during the scale-up process, 
as this also determines the effectiveness and repeatability 
of drug release behavior. In the chain of manufacturing-
experimental validation-clinical trial-commercialization, it 
encourages more dialogue and in-depth cooperation among 
scientists working in the areas of materials science, nano-
technology, pharmacy, biomedicine, and clinical medicine 
to solve these challenges.
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