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Abstract
Pathogenic bacteria can proliferate rapidly on porous fabrics to form bacterial plaques/biofilms, resulting in potential sources 
of cross-transmissions of diseases and increasing cross-infection in public environments. Many works on antibacterial modi-
fication of cotton fabrics have been reported, while very few works were reported to endow poly(ethylene terephthalate) 
(PET) fabrics with non-leaching antibacterial function without compromising their innate physicochemical properties though 
PET is the most widely used fabric. Therefore, it is urgent to impart the PET fabrics with non-leaching antibacterial activity. 
Herein, a novel N-halamine compound, 1-chloro-3-benzophenone-5,5-dimethylhydantoin (Cl-BPDMH), was developed to 
be covalently bonded onto PET fabrics, rendering non-leaching antibacterial activity while negligible cytotoxicity based 
on contact-killing principle. Bacterial was easily adhered to Cl-BPDMH finished PET fabrics, and then it was inactivated 
quickly within 10 s. Furthermore, the breaking strength, breaking elongation, tearing strength, water vapor permeability, 
air permeability and whiteness of Cl-BPDMH finished PET fabrics were improved obviously compared to raw PET fabrics. 
Hence, this work developed a facile approach to fabricate multifunctional synthetic textiles to render outstanding and rapid 
bactericidal activity without compromising their physicochemical properties and biocompatibility.
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Introduction

Poly(ethylene terephthalate) (PET) fabrics have been widely 
used in our daily clothes due to their excellent strength, easy 
processability, quick drying, dimensional stability, and 
wrinkle resistance [1]. However, pathogenic bacteria can 
proliferate rapidly on porous PET fabrics to form bacterial 

plaques/biofilms, resulting in irreversibly damaging their 
appearance, adversely affecting human health, and increas-
ing cross-infection in public environments [2], since bacte-
rial infection is one of the most serious threat to global safety 
especially drug-resistant bacteria [3–6]. To endow fabrics 
with antibacterial activity, ciprofloxacin [7], metal salts and 
nanoparticles [8–10], metallic oxide [11], rose Bengal [12], 
chitosan [13–15], betaine [16, 17], surface stereochemistry 
[18], quaternary ammonium salt(QAS) [19–21]. dopamine-
menthol [22], guanidine [23, 24], and N-halamine [25–27] 
have been developed, and impressive achievements have 
been gained. Among them, N-halamine has become a popu-
lar antimicrobial due to its remarkable antibacterial activ-
ity against wide-spectrum pathogens even drug-resistant 
pathogenic bacteria [25, 28], rapidly inactivating bacteria 
[29], and reproducible biocidal activity [30, 31]. Moreover, 
strenuous efforts have been made to develop N-halamine as 
disinfectants [32, 33] for water treatment [30], food packag-
ing [34, 35], hydrogel [25], and antibacterial fabrics [36, 37]. 
Siloxane [38–40] or epoxide [41] terminated N-halamines 
have been developed to fabricate antibacterial cotton fabrics 
through a powerful covalent-bonding method.
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The aforementioned strategies were suitable for natural 
fibers containing reactive  NH2 or OH group, while an effec-
tive finishing method to fabricate antibacterial PET fab-
rics without compromising their intrinsic physicochemical 
properties is still not satisfactory owing to no reactive group 
in the PET molecular skeleton [2]. To endow PET fabrics 
with permanent antibacterial, reactive  NH2, COOH, and 
OH groups were introduced by local destruction of polymer 
chains, and then the antibacterial constituents were cova-
lently bonded to the locally damaged PET molecular chain 
through surface coupling reaction [42]. However, those 
strategies would lead to significant decrease in the mechani-
cal properties and surface roughness of PET fabrics [43]. 
Therefore, it is urgent to develop a convenient strategy to 
fabricate permanent antibacterial PET fabrics with well-pre-
served physicochemical properties. Recently, we developed 
a benzophenone terminated quaternary ammonium salt (BP-
QAS) for PET fabric by a photochemical finishing method, 
rendering perdurable antibacterial, and anti-mite activities 
without compromising their physicochemical properties [2]. 
Therefore, the benzophenone terminated N-halamine may 
be an optimal antibacterial agent for durable antibacterial 
PET fabrics. However, hydrophilic surface is not suitable 
for protective textiles such as medical surgical masks and 
protective clothing with waterproof requirements.

Herein, 1-chloro-3-benzophenone-5,5-dimethylhydantoin 
(Cl-BPDMH) was developed to finish PET fabrics by cova-
lent bond via a photochemical hydrogen abstraction reaction. 
The Cl-BPDMH finished PET fabrics exhibited (i) excellent 
bactericidal activities against Gram-negative Escherichia 
coli (E. coli) and Gram-positive Staphylococcus aureus (S. 
aureus); (ii) greatly improved mechanical properties, soft-
ness, and air permeability; (iii) negligible cytotoxicity; (iv) 
rapidly attaching and killing bacteria; (v) well-preserved 
water vapor permeability and whiteness. This work proposed 
a potential avenue to develop non-leaching bactericidal syn-
thetic fabrics with great potential applications including but 
not limited to water purification, masks, home textiles and 
protective clothing.

Experimental

Materials

5,5-dimethylhydantoin (DMH, 99%), 4-(Bromomethyl) 
benzophenone (BP-Br, 99%), trichloroisocyanuric acid 
(TCCA, 99%), sodium hydroxide (NaOH, 99%), sodium 
hypochlorite (available chlorine ≥ 8.25%), sodium thiosul-
fate (Na2S2O3, 99%), and potassium iodide (KI, 99%) were 
purchased from Energy Chemical Co. Ltd., China. Ethyl 
acetate (EA, AR), hexane (AR), and acetone (AR) were pur-
chased from Guangzhou Chemical Reagent Factory, China. 

Gram-negative bacteria E. coli, (ATCC25922), Gram-pos-
itive bacteria S. aureus (ATCC6538) were purchased from 
Guangdong Institute of Microbiology, China. Cell Counting 
Kit-8 (CCK-8) was purchased from Beyotime Biotechnology 
Inc. China. NIH 3T3 mouse embryonic fibroblast cells were 
sent by Zhejiang University.

Synthesis of Cl‑BPDMH

The typical synthetic reaction of Cl-BPDMH was following. 
The intermediate product 3-benzophenone-5,5-dimethylhy-
dantoin (BPDMH, a pale yellow powder) was obtained by a 
nucleophilic substitution reaction of 5,5-dimethylhydantoin 
and 4-(bromomethyl) benzophenone (BP-Br) under constant 
stirring at 80 °C for 24 h (yield, 65%). Then, the crude prod-
uct Cl-BPDMH was prepared by the chlorination reaction of 
the BPDMH and trichloroisocyanuric acid under continuous 
stirring for 12 h at room temperature. And the final product 
Cl-BPDMH was obtained after being purified by silica gel 
column chromatography using petroleum ether as the eluent 
(yield, 84%).

Antibacterial Finishing

The PET fabrics were finished with Cl-BPDMH as follow-
ing. Typically, the commercial PET fabrics were sequen-
tially immersed in acetone solution for 2 min and purified 
water for 5  min under ultrasonic vibration, after being 
dried in blast drying oven at 50 ℃, the clean PET fabrics 
(defined as raw PET) were obtained. The raw PET fabrics 
were completely immersed in finishing solution containing 
Cl-BPDMH (liquor ratio 6:1) at room temperature, then 
the PET fabrics were irradiated under mild light (1.5 mW, 
λ = 365 nm) for 1 min. Finally, the Cl-BPDMH finished PET 
fabrics were obtained after being washed with purified water 
and air-dried. The PET fabrics finished with different Cl-
BPDMH content were defined PET-2 (20 mg/ml), PET-3 
(30 mg/ml), and PET-4(40 mg/ml), respectively.

Structural Characterization

Fourier transform infrared (FTIR) spectra of BP-Br, MDH, 
BPDMH, and Cl-BPDMH were recorded on a Nicolet 6700 
FTIR spectrometer with a scan range of 400–4000  cm−1 at a 
resolution of 4  cm−1 and 32 scans. The proton magnetic res-
onance (1H-NMR) spectra of BPDMH and Cl-BPDMH were 
collected on a Bruker Avance-400 spectrometer at 400 MHz 
by using  CDCl3 and DMSO-d6 as solvents, respectively, and 
tetramethylsilane (TMS) was used as the internal standard. 
The morphologies of the raw PET and Cl-BPDMH finished 
PET fabrics were observed by field emission scanning elec-
tron microscope (FE-SEM, Hitachi SU-70). The chemi-
cal element compositions of the raw PET and Cl-BPDMH 
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finished PET fabrics were determined by energy dispersive 
X-ray spectroscopy (EDS) elemental mapping. The oxidative 
chlorine content of Cl-BPDMH finished PET fabrics were 
determined by the iodimetric/thiosulfate titration method as 
compared with raw PET fabrics[44, 45].

Comprehensive Performance Evaluation

The tearing strength, bursting strength, breaking strength, 
breaking elongation, water contact angle (WCA), moisture 
permeability and air permeability of raw PET and PET-3 
were characterized according to our previous work[16, 46], 
and the detailed test processes were provided in support-
ing information. The whiteness of raw PET and PET-3 was 
evaluated by the AATCC 110–2015 test method on a WSB-
3A Intelligent Whiteness tester.

Antibacterial and Biocompatibility

The quantitative antibacterial activity of the Cl-BPDMH fin-
ished PET fabrics against E. coli and S. aureus was evalu-
ated by flask oscillation method and the plate count method 
according to FZ/T 73,023–2006 standard [20]. The antibac-
terial kinetics were carried out using the above experimen-
tal operation method while the shaking time was replaced 
by other predetermined time. The diameters of the inhibi-
tion zone (DIZs) were measured by the agar plate diffusion 
method to evaluate release behavior of the antibacterial con-
stituent from the Cl-BPDMH finished PET fabrics [17]. To 
investigate the washing durability of antibacterial activity, 
the antibacterial rates of PET-3 compared with raw PET 
(control) against E. coli and S.aureus after being washed 

for 5, 10 and 20 laundering times, respectively, were per-
formed according to FZ/T 73,023–2006 standard method. 
Each experiment was carried out in triplicate and the mean 
results were reported for analysis [2].

To further visualize the antibacterial process of the Cl-
BPDMH finished PET-3 fabrics, E. coli was stained using 
the live/dead BacLight Bacterial Viability Kit [47, 48]. 
Afterward, the dynamic process of stained E.coli contact-
ing with PET-3 fabrics compared with raw PET fabrics was 
observed by rotating confocal fluorescence microscope 
(Olympus IX explore SpinSR10 instrument). Living E.coli 
was green and dead E.coli was red.

The cytotoxicity of Cl-BPDMH finished PET fabrics was 
evaluated by a CCK-8 assay using NIH 3T3 mouse embry-
onic fibroblast cells, and rabbit skin irritation was carried 
out to evaluate their skin irritation according to our previous 
work[24].

Results and Discussion

Preparation and Structural Characterization

The Cl-BPDMH was synthesized by two step typi-
cal chemical reactions as showed in Fig. 1a. The FTIR 
spectra of DMH, BP-Br, BPDMH and Cl-BPDMH were 
shown in Fig. 1b. A peak at about 1650 cm −1 assigned 
to C=O characteristic peaks of diaryl ketone appeared 
in the FTIR spectra of BP-Br, BPDMH and Cl-BPDMH. 
While a peak at 3240  cm−1 assigned to the N–H charac-
teristic peaks of Hein ring appeared in the FTIR spectra 
of DMI and BPDMH. Compared with BDMMH, a new 
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peak at 752  cm−1 assigned to N-Cl group appeared and 
the characteristic peak of N–H group at 3240 cm −1 dis-
appeared in the FTIR spectrum of the Cl-BPDMH[49]. 
The molecular structures of BPDMH and Cl-BPDMH 
were further confirmed by 1H-NMR spectra (Fig. 1c, d). 
1H-NMR of BPDMH (400 MHz,  CDCl3, TMS, Fig. 1c): 
δ6.38–6.53 (s, 1H), 4.58–4.86(s, 2H), 1.40–1.54(s, 6H), 
7.40–7.89(m, 9H). 1H-NMR of Cl-BPDMH (400 MHz, 
DMSO, TMS, Fig. 1d.): δ4.58–4.69(s, 2H), 1.27–1.41(s, 
6H), 7.34–7.77(m, 9H). Therefore, we confirmed that the 
Cl-BPDMH was synthesized successfully.

The Cl-BPDMH finished PET fabrics were fabricated 
by covalently binding Cl-BPDMH to raw PET fabrics 
though a facilely photochemical hydrogen abstraction 
reaction as showed in Fig. 2a. Compared to raw PET, the 
surface and cross-sectional morphology of PET-3 exhib-
ited no obvious damage (Fig. 2b), indicating that PET-3 
fabrics could maintain their original structures well dur-
ing the finishing process. Compared to raw PET fabric, 
a weak signal of Cl (0.12 wt%) ascribed to N–Cl bond 
appeared in PET-3 (Fig. 2b, insert figure), and the oxida-
tive chlorine content of the Cl-BPDMH finished PET fab-
rics increased from 0.067 to 0.18 wt% as the concentration 
of the finishing agent increased (Fig. 2c). The distribution 
mapping of N and Cl elements (Fig. 2d) could be further 
confirmed that Cl-BPDMH was successfully bonded to 
the PET fabrics.

Antibacterial Activities

As shown in Fig. 3a, no live S.aureus could be observed 
when it was incubated with Cl-BPDMH finished PET fabrics 
for 24 h, while about 65% of live E.coli could be observed 
when it incubated with PET-2 for 24 h. Obviously, no live 
bacteria could be observed for both test bacteria when they 
incubated with PET-3 and PET-4 for 24 h.

The DIZs were all zero, and no live bacteria was existed 
under antibacterial PET fabrics (Fig. 3b), indicating that 
no Cl-BPDMH was leached from the Cl-BPDMH finished 
PET fabrics. Therefore, the antibacterial mechanism of the 
Cl-BPDMH finished PET fabrics was proven to contact kill-
ing mechanism [28] by directly transferring the oxidative 
chlorine from N-halamine to bacterial receptors [31, 50]. 
Non-leaching characteristics of antibacterial fabrics usu-
ally exhibited long-lasting antibacterial activity [46]. The 
antimicrobial rates of PET-3 were higher than 99% against 
both S.aureus and E.coli after being washed for 5,10, and 20 
laundering times, respectively (Fig. 3c), which were much 
than the reference values of AA class (FZ/T 73,023–2006 
standard). The bactericidal kinetics of PET-3 were carried 
out compared with raw PET fabrics as shown in Fig. 3d. 
PET-3 could inactivate all of S. aureus and E.coli within 
1 h and 3 h, respectively. Gram-positive S.aureus were more 
susceptible to N-halamine than Gram-negative E.coli may be 
the cell walls of Gram- negative E.coli were more complex 
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than that of Gram positive S.aureus [51]. Thus, the non-
leaching Cl-BPDMH finished fabrics exhibited excellent 
antibacterial activity and PET-3 was selected as the follow-
ing experimental sample.

To further visualize the process of bacteria contact-
ing with PET-3, and its real bactericidal speed, the in-situ 
dynamic process of E.coli contacting with PET-3 compared 
with raw PET fabrics was observed by rotating confocal 

fluorescence microscope as shown in Fig. 3e. The ultra-high 
resolution fluorescence microscopy image of E.coli treated 
with raw PET was full of live bacterial (green). Interestingly, 
E.coli was inactivated (red) after contacting with PET-3 
within 10 s. Therefore, bacteria can be easily adhered to 
Cl-BPDMH finished PET fabrics, thereby being inactivated 
quickly within a few seconds, further indicating the main 
antibacterial mechanism of the Cl-BPDMH finished PET 
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fabrics was contact killing. Though antiviral activity was 
not provided here, and it would be carried out in the future, 
N-haloamines have been proved to have excellent antiviral 
activity [52]. Therefore, Cl-BPDMH finished PET fabrics 
have potential applications in quick sterilization, including 
but not limited to water purification, biochemical protective 
clothing, mask, food packaging, antibacterial textiles.

Comprehensive Performance Evaluation

Mechanical property is one of the most critical require-
ments of the fabrics. Compared with the raw PET fabric, 
the breaking strength and breaking elongation, tearing 
strength and bursting strength of PET-3 all showed a 
general increase (Fig. 4a–d). Specifically, the breaking 
strength increased by 8.3% in the warp direction from 
1450.6 to 1570.3 N, and it increased by 38.5% in the weft 
direction from 511.7 to 708.4 N (Fig. 4a). Additionally, 

the breaking elongation increased by 8.0% in the warp 
direction from 31.7 to 34.2%, and it increased by 69.22% 
in the weft direction from 11.3 to 19.2% (Fig. 4b) because 
the increase of the interaction between Cl-BPDMH and 
PET chains improved the portion of amorphous region 
[53]. The tearing strength of PET-3 increased by 10.1% 
in the warp direction from 15.4 to 17.0 N, and it increased 
by 20.5% in the weft direction from 7.0 to 8.5 N (Fig. 4c). 
Therefore, the breaking strength, breaking elongation 
and tearing strength of PET-3 increased obviously com-
pared with raw PET fabrics because the intermolecular 
forces could increase by introducing polar chlorine group 
[54] after binding Cl-BPDMH, and extracting an active 
hydrogen to generate free radicals by mild light irradiat-
ing on the surface of PET fabric for a short time would 
not damage to PET structure [53]. The bursting strength 
remained basically unchanged as compared with raw PET 
(Fig. 4d), while the bending stiffness decreased obviously 
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(Fig. 4e), indicating improved wear comfort property due 
to its enhanced softness.

The whiteness of Cl-BPDMH finished PET fabrics was 
well remained without obvious changes as compared with 
raw PET (Fig. 4f). The water vapor transmission (Fig. 4g) 
and air permeability (Fig. 4h) of PET-3 both increased 
slightly may be the pore size of the Cl-BPDMH finished 
PET fabric were slightly increased during the finishing 
process, resulting in improving the ability of water vapor 
and air flow to penetrate the PET fabrics [2]. Compared 
to raw PET, the water contact angle (WCA) of PET-2, 
PET-3 and PET-4 all increased, meaning that Cl-BPDMH 
finished PET fabrics can improve the hydrophobicity of 
PET fabrics due to the mainly influence of the diaryl 
group (hydrophobic group) on the chain of Cl-BPDMH 
(Fig. 4i), which was conducive to adhering bacteria, and 
thereby inactivated them quickly (Fig. 3e). This strategy 
has obvious advantages over hydrophilic antibacterial 
surfaces for medical surgical clothing and masks with 
waterproof requirements.

Cytotoxicity and Skin Irritation

Cytotoxicity of PET-2, PET-3 and PET-4 compared with raw 
PET were shown in Fig. 5a. After being co-cultured with 
PET fabrics for 24 h, the viability of NIH 3T3 cell treated 
with Cl-BPDMH finished PET fabrics showed a slight 
decrease. Interestingly, compared with raw PET fabrics, the 
cell viability of PET-2, PET-3 and PET-4 were all more than 
95%. Almost no cell was inactivated (red) after incubated 
with both raw PET and PET-3 for 24 h compared with NIH 
3T3 cell only (Fig. 5b). Therefore, the Cl-BPDMH finished 
PET fabrics exhibited negligible cytotoxicity.

Raw PET and PET-3 were further exposed to the back 
of rabbit’s skin to test their irritation responses. After being 
contacted for 12, 24, 48, and 72 h, respectively, no erythema 
and edema of rabbit’s skin treated with both raw PET and 
PET-3 was found on (Fig. 5c). Besides, no distinct histo-
pathological abnormal was found in hematoxylin & eosin 
(H&E) stained images at any evaluated areas masked by raw 
PET and PET-3 (Fig. 5d).
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Conclusion

Cl-CBPDMH was synthesized to fabricate non-leaching bac-
tericidal PET fabrics by photocatalytic hydrogen abstraction 
reaction. The Cl-CBPDMH finished PET fabrics can inac-
tivate bacteria within 10 s, indicating their outstanding bac-
tericidal activity against both Gram-positive S.aureus and 
Gram-negative E.coli. Moreover, PET fabrics can maintain 
even improve their mechanical properties, comfort properties 
and biocompatibility after being finished with Cl-BPDMH. 
Therefore, the Cl-BPDMH was a preferred antimicrobial to 
fabricate excellent bactericidal PET fabrics while negligible 
toxicity. Selecting C–H bond as the modified active site, 
this strategy can be widely applied to finish synthetic fiber 
fabrics, including but not limited to polyester, polyamide, 
polypropylene, and polyacrylonitrile. This work can promote 
the development of permanent antibacterial finishing strat-
egy of synthetic fibers. And Cl-BPDMH finished synthetic 
fiber fabrics has promising applications including but not 
limited to water purification, masks, and medical textiles, 
socks, curtains, carpet and so on.
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