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Abstract
Cells are often under attack from various DNA-damaging agents. Accurate repair is required to protect cells from the genome 
instability induced by DNA lesions. DNA damage response (DDR) signaling involves sensitizing, transmitting, and repair-
ing different types of damage within chromatin complexes. Chromatin is a highly ordered complex packed with repeating 
units of nucleosomes and linker DNA sequences. Chromatin structure, gene transcription, and various biological processes 
are regulated by histone post-translational modifications (PTMs), including acetylation, methylation, phosphorylation, and 
ubiquitylation. Of these, the involvement of lysine methylation, regulated by numerous lysine methyltransferases and dem-
ethylases, in the DDR has been extensively explored. In particular, histone 4 lysine 20 methylation is one of the most essen-
tial histone PTMs for biological processes and ensures genome integrity. In this review, we summarize the dynamics and 
modulations of histone lysine methylation during the DDR. We also comprehensively describe the functions, mechanisms, 
and regulation of H4K20 methylation and its modifying enzymes in response to DNA damage.
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Introduction

DNA in eukaryotic cells is continually being damaged in 
an abundance of ways. This damage usually includes DNA 
single-strand breaks (SSBs), DNA double-strand breaks 
(DSBs), adducts, intrastrand and interstrand cross-links, 
and insertion/deletion mismatches. Among them, DSBs are 
considered the most cytotoxic type of damage because they 
induce genomic instability. Ionizing radiation (IR), ultravio-
let light, and various chemical agents represent commonly 
exogenous sources of DNA damage. Deregulated DNA 

replication can also lead to DNA damage, and the disrup-
tion of replication forks has been shown to cause severe 
lesions, including DSBs (Jackson & Bartek, 2009; Lord 
& Ashworth, 2012). To preserve genomic integrity, mam-
malian cells repair damaged DNA via at least nine distinct 
pathways (Ceccaldi et al., 2016; Clauson et al., 2013; Ken-
nedy & D'Andrea, 2006; Kramara et al., 2018). For example, 
IR-induced DSBs are mainly repaired by non-homologous 
end-joining (NHEJ) and homologous recombination (HR). 
Each repair pathway is detected and activated by different 
repair factors to form a precise network that ensures genome 
stability.

The nucleosome is the basic structural unit consisting of 
two copies of the histone proteins, H4, H3, H2A, and H2B, 
and is wrapped in 147 bp of DNA nucleotides. They are fur-
ther packaged into a 30-nm fiber to form the chromatosome 
core particle consisting of a linker histone (H1) bound to the 
nucleosome with 10 bp of DNA. Histone tails are suscepti-
ble to a variety of covalent post-translational modifications 
(PTMs), including methylation, acetylation, ubiquitination, 
and phosphorylation. The PTMs of the histone tails tightly 
control many biological processes by regulating chromatin 
structure and function (Van & Santos, 2018). The second 
most common histone modification linked to the DNA 
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damage response (DDR) is histone methylation, which is 
under the control of histone methyltransferase (HMT) and 
the histone demethylases (HDMs) (Chen & Zhu, 2016). Both 
the lysine and arginine residues of histones can be methyl-
ated, and histone methylation presents as three forms: mono-
(me1), di-(me2), and rei-(me3). It has been demonstrated 
that histone methylation, particularly lysine methylation, 
plays a crucial role in the response to DNA damage (Uck-
elmann & Sixma, 2017; J. Zhang et al., 2021). Methyla-
tions of lysine are modulated by lysine methyltransferases 
(KMTs) and lysine demethylases (KDMs). While the role of 
histone acetylation in the DDR has been extensively studied 
(Li & Zhu, 2014; Li et al., 2020), the investigation of his-
tone methylation is still at a relatively early stage. Therefore, 
elucidating the mechanisms and functions of histone lysine 
methylation will be helpful for developing novel therapeutic 
strategies for DNA-damage-related diseases, including aging 
and cancer.

The common lysine methylation sites are residues 4, 9, 
27, 36, and 79 of histone H3 and lysine 16 and 20 of his-
tone H4. Genome-wide localization analyses indicate that 
each residue and degree-specific methylation has a distinct 
distribution pattern, indicating their unique functions dur-
ing diverse cellular processes. Lysine 20 is a major methyl-
ated lysine residue on the histone H4 tail. Each degree of 
methylation at this residue has distinct regulation properties 
and shares similar functions during the DDR. For exam-
ple, H4K20me1 regulates the cell cycle through condensin 
II, H4K20me2 negatively correlates with H4K16ac, and 
H4K20me3 is highly enriched in heterochromatin. Moreo-
ver, all three forms of H4K20 methylation are reported to 

contribute to p53-binding protein 1 (53BP1) recruitment 
(Tan et al., 2011). A better understanding of the mecha-
nisms that regulate H4K20 methylation will enable us to 
gain deeper insights into how different degrees of methyla-
tion are controlled and what cellular machinery requires this 
modification. In this review, we summarize the critical roles 
of histone lysine methylation, especially H4K20 methyla-
tion, and the relevant modulating enzymes in the DDR.

Histone lysine methylation

Histone methylation has been recognized as being a PTM 
since 1964 (Murray, 1964). Since this time, methylation 
has been identified on various lysine residues on histone 
H3 and H4 tails, including H3K4me1/2, H3K9me2/3, 
H3K27me2/3, H3K36me1/2/3, H3K79me1/2/3, H4K16me1, 
and H4K20me1/2/3 (Husmann & Gozani, 2019). Other basic 
residues, e.g., H1.4 and H2AX, have been shown to be meth-
ylated in the nucleosome (Black et al., 2012) (Fig. 1). His-
tone methylation plays an essential role in the DDR, chro-
matin structure, gene transcription, and cell cycle regulation. 
To date, many histone methylation sites have been shown to 
be related to the DDR in different ways. Histone methylation 
can provide high-affinity binding sites or platforms for repair 
factor recruitment (Chen & Zhu, 2016). In addition, DNA-
histone interactions in the chromatin structure are mediated 
by the attraction between the negatively charged DNA back-
bone and positively charged lysine and arginine residues of 
the histones. Although histone methylation cannot directly 
change the charge of histones, it is involved in crosstalk with 

Fig. 1   Overview of histone modifications. Representative modification sites are shown. Numbers indicate lysine or arginine residues on histones 
H3 and H4
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other histone modifications, such as acetylation, to regulate 
the compaction of chromatin (Cao et al., Cao, Shen, et al., 
2016, Cao, Wei, et al., 2016). To date, although almost all 
identified histone methylation sites reportedly participate in 
the DDR, deeper investigation is required into whether and 
how crosstalk among different sites affects DNA repair.

H3K4 is a major methylation site of histones and is often 
associated with transcriptionally active genes (Santos-Rosa 
et al., 2002). At sites of DNA damage, H3K4me3 regulates 
NHEJ efficiency and S-phase transition in yeast cells (Fau-
cher & Wellinger, 2010). The methylation of H3K9 is tightly 
linked to stable inheritance of the heterochromatic state 
(Bannister et al., 2001; Rea et al., 2000). H3K9me3 inter-
acts with the chromo domain of Drosophila heterochromatin 
protein 1 (HP1) to regulate chromatin compaction during the 
DDR (Jacobs & Khorasanizadeh, 2002). Loss of H3K9me3 
at DSBs leads to defective repair and increased radiosen-
sitivity (Ayrapetov et al., 2014). H3K14 methylation, the 
latest methylation site discovered on H3, negatively corre-
lates with H3K14 acetylation to repress host gene expression 
(Rolando et al., 2013). Recently, H3K14me3 is reported to 
respond to replication stress by enhancing ataxia-telangi-
ectasia-mutated-and-Rad3-related kinase (ATR) activation 
(Zhu et al., 2021). H3K27 methylation is an established 
gene-silencing marker (Cao et  al., 2002; Margueron & 
Reinberg, 2011). H3K27me2/3 facilitates NHEJ efficiency 
by triggering the chromatin accumulation of Fanconi anemia 
complementation group D2, a central player in the cell’s 
choice of DNA repair pathway (Zhang et al., 2018). H3K36 
methylation is associated with the elongating form of Pol II 
(Wagner & Carpenter, 2012). H3K36me2 recruits and stabi-
lizes DNA repair components, including Nijmegen breakage 
syndrome protein 1 and Ku70, at DSBs (Fnu et al., 2011). 
H3K36me3 promotes HR repair by facilitating DNA end 
resection (Pfister et al., 2014). H3K79 methylation partic-
ipates in active transcription and the DDR (Huyen et al., 
2004; Mehta et al., 2016). H3K79me3 binds to 53BP1 to 
regulate the higher-order chromatin structure during the 
DDR (Huyen et al., 2004). H4K16me1 was originally sug-
gested following a mass spectrometry study a decade ago, 
its biological function in the DDR has only recently been 
clarified (Lu et al., 2019; Tan et al., 2011). H4K16me1 can 
cooperate with H4K20me2 to facilitate 53BP1 recruitment 
and NHEJ mediated DNA repair (Lu et al., 2019). H4K20 
methylation is one of the most thoroughly studied histone 
modifications: it has diverse functions and is regulated by 
various histone modifiers (Jorgensen et al., 2013). The role 
H4K20 methylation in DDR will be discussed in detail in 
this review. The first mammalian H1 methylation site iden-
tified was H1.4K26. The methylation of H1.4K26 provides 
a recognition surface for the chromatin-binding of HP1 
and lethal 3 malignant brain tumor 1 (L3MBTL1) (Trojer 
et al., 2009; Walport et al., 2018). Although most common 

methylation sites are reported to be involved in DNA repair 
efficiency, the detailed mechanisms underlying how specific 
site contributes to DDR require further investigations. For 
example, although H3K4me3 are shown to be important for 
responses to DNA damaging agents, understanding the con-
tribution of H3K4 methylation and its methyltransferases in 
repair factors recruitment needs further studies. In addition, 
several other identified methylation sites exist, but their bio-
logical modulation, especially about DDR, remains unclear. 
For example, little is known about the methylation of H4 K5, 
K8, or K12 catalyzed by yeast Set5, except for its role in cell 
growth and stress responses (Green et al., 2012).

Histone lysine methyltransferases 
and the DNA damage response

HMTs are enzymes that transfer the methyl groups from 
S-adenoidal-L-methionine (SAM) to histone proteins 
(Fig. 2). HMTs are divided into three groups, SET-domain-
containing proteins, DOT1-like proteins, and protein argi-
nine N-methyltransferases (PRMTs). The first two families 
are lysine KMTs, whereas the PRMT family has been shown 
to methylate arginine. In mammalian cells, PRMTs consist 
of PRMT1 to PRMT9, whereas KMTs encompass KMT1 to 
KMT9 (Greer & Shi, 2012). The roles of KMTs vary with 
their histone substrates or interacting partners, and many 
KMTs are thought to participate in the DDR (Biggar & Li, 
2015) (Table 1).

KMT1A (SUV39H1) is a methyltransferase of H3K9 
methylation and is linked to the organization of higher-order 
chromatin and the recruitment of HP1 to DSBs (Ayrape-
tov et al., 2014; Rea et al., 2000; Tu et al., 2020). KMT1B 
(SUV39H2) is a methyltransferase of H2AXK134me2 
(Sone et al., 2014), which regulates γ-H2AX levels dur-
ing the DDR (Sone et al., 2014). KMT1C (G9a, EHMT2) 
methylates H3K9me1/2 and H1.4K26me1/2 to provide a 
recognition surface for the chromatin-binding of replica-
tion protein A (RPA), HP1, and L3MBTL1 (Trojer et al., 
2009; Yang et  al., 2017). KMT1D (GLP, EHMT1), the 
methyltransferase of H3K9me1/2 and H4K16me1, facilitates 
53BP1 recruitment in the NHEJ pathway (Lu et al., 2019; 
Takahashi et  al., 2012). KMT1E (SETDB1) methylates 
H3K9me3, which promotes 53BP1 reposition at damaged 
sites (Alagoz et al., 2015). The methyltransferase KMT3A 
(SETD2) catalyzes H3K14me3 and H3K36me3 to facili-
tate RPA complex loading onto chromatin and HR repair, 
respectively (Pfister et al., 2014; Zhu et al., 2021). KMT4 
(DOT1L) methylates H4K79me1/2/3 to recruit 53BP1 
to DSBs (Huyen et al., 2004). KMT5A (PR-Set7, SET8, 
SETD8) is responsible for H4K20me1, which is involved in 
DNA damage accumulation, 53BP1 recruitment, S-phase 
checkpoint, and ATR dependent cell cycle arrest (Beck et al., 
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Fig. 2   Histone modifications and modifiers. Each residue with known modifiers on histones H3 and H4 are shown for each specific site

Table 1   Histone lysine-specific methyltransferases and DNA damage repair

Name Synonym Histone Mechanism References

KMT1A SUV39H1 H3K9me3 ATM activation Ayrapetov et al., (2014)
KMT1B SUV39H2 H3K9me3

H2AXK134me2
γ-H2AX formation Alagoz et al., (2015), Peters et al., (2001), Sone et al., 

(2014)
KMT1C G9a

EHMT2
H1.4K26me1/2
H3K9me1/2

Recruitment of HP1 and L3MBTL1 Trojer et al., (2009), Yang et al., (2017)

KMT1D GLP
EHMT1

H3K9me1/2
H4K16me1

53BP1 recruitment Lu et al., (2019), Takahashi et al., (2012)

KMT1E SETDB1 H3K9me3 53BP1 recruitment Alagoz et al., (2015)
KMT3A SETD2 H3K14me3

H3K36me3
RPA recruitment Pfister et al., (2014), Zhu et al., (2021)

KMT3G MMSET H4K20me2/3 53BP1 recruitment Pei et al., (2011)
KMT4 DOT1L H3K79me1/2/3 53BP1 recruitment Farooq et al., (2016), Huyen et al., (2004)
KMT5A PR-Set7 SET8

SETD8
H4K20me1 53BP1 recruitment Dulev et al. (2014), Li et al., (2016), Oda et al., (2010) 

Schotta et al., (2008)
KMT5B SUV4-20H1 H4K20me2 Replication origins activation Bromberg et al., (2017),  Long et al., (2020),  Schotta 

et al., (2008)
KMT5C SUV4-20H2 H4K20me3 Repetitive elements silencing Bromberg et al., (2017),  Kapoor-Vazirani et al., (2011),  

Schotta et al., (2008)
KMT6A EZH2 H3K27me2/3 Transcription silencing Karakashev et al., (2020), Kuser-Abali et al., (2018)
KMT7 SETD7

SET7/9
H3K4me3 P53 activity,

heterochromatin relaxation
Liu et al., (2011; Wang et al., (2013)

KMT8A PRDM2 RIZ1 H3K9me2 BRCA1 recruitment Khurana et al.,(2014)
SETMA Metnase H3K4me

H3K36me2
Opening chromatin, DNA end-joining Lee et al., (2005)
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2012; Li et al., 2016; Tuzon et al., 2014). KMT5B (SUV4-
20H1) catalyzes H4K20me2 to regulate the licensing and 
activation of early replication origins and maintains repli-
cation timing (Long et al., 2020). KMT5C (SUV4-20H2) 
catalyzes H4K20me3, allowing it to function in repetitive 
element silencing (Fodor et al., 2010), and the elimination of 
KMT5B/C proteins causes defected S-phase entry, whereas 
loss of KMT5A leads to fatal consequences (Schotta et al., 
2004). KMT6A (EZH2) is responsible for H3K27me3 and 
accumulates at actively transcribes gene promoters during 
DDR (Karakashev et al., 2020; Kuser-Abali et al., 2018). 
KMT7 (SET7/9) demethylates P53 and SUV39H1 to facili-
tate an efficient DDR (Liu et al., 2011; Wang et al., 2013), 
KMT8A (PRDM2) promotes recruitment of BReast-CAncer 
susceptibility gene 1 (BRCA1), but not 53BP1, to contribute 
to chromatin condensation (Khurana et al., 2014). SETMA 
(Metnase) methylates H3K4 and H3K36, which are associ-
ated with chromatin opening (Lee et al., 2005). Although 
many studies confirmed the recruitment of different KTMs, 
their specific methylation site are not increased. For exam-
ple, KMT6 accumulates at DSB site, while the increase 
of H3K27me3 is not detected during DNA damage repair 
(Zhang et al., 2021). Other substrates, including histones and 
non-histones, might be involved in this progress.

Histone demethylases and the DNA damage 
response

HDMs, which are responsible for methyl group removal, 
are divided into histone arginine demethylases and KDMs 
(Chang et al., 2019; Dimitrova et al. 2015; Shi et al., 2003, 
2004). KDMs are further divided into two groups: the 
first is the mono-amine oxidases, which use flavin ade-
nine dinucleotide (FAD) as a cofactor to oxidize methyl 
groups and hydrolyze them into formaldehyde, and the 
second is the Jumonji-C (JmjC) class, which uses Fe(II) 

and 2-oxoglutarate (2-OG or α-ketoglutarate) as cofactors 
to hydroxylate the methyl groups via a free-radical mecha-
nism (Jambhekar et al. 2017). Many KDMs are reported to 
participate in the DDR (Table 2).

KDM1A (LSD1) specifically demethylates H3K4 meth-
ylation, which is linked to active transcription (Shi et al., 
2004); KDM1A lies downstream of RING finger protein 
168 (RNF168) but upstream of 53BP1 and BRCA1 in the 
DDR (Mosammaparast et al., 2013). KDM2A (JHDM1A, 
FBXL11), the demethylase for H3K36me3, acts as a sub-
strate of Ataxia telangiectasia mutated kinase (ATM) to 
modulate the recruitment of the meiotic recombination 
11 ( MRE11) complex to DNA-damage sites (Cao et al., 
Cao, Shen, et al., 2016, Cao, Wei, et al., 2016). KDM2B 
(JHDM1B, FBXL10) is responsible for the timely dissocia-
tion of proliferating cell nuclear antigen (PCNA) from chro-
matin, allowing for efficient DNA replication (Kang et al., 
2020). Four proteins belong to the KDM4, also known as 
JMJD2, encompasses four subfamilies, including KDM4A 
(JMJD2A), KDM4B (JMJD2B), KDM4C (JMJD2C), and 
KDM4D (JMJD2D), all of which have a JmjC domain. 
KDM4 demethylates H3K9me2/3, H3K36me2/3, and 
H1.4K26 to regulate gene expression and chromatin struc-
ture (Lee et al., 2020). The degradation of KDM4A and 
KDM4B restores the formation of 53BP1 foci in RING 
finger protein 8 (RNF8)- and RNF168-deficient cells (Mal-
lette et al., 2012), and KDM4D knockdown disrupts the 
DNA-damage-induced association between ATM, RAD51, 
53BP1, and chromatin (Khoury-Haddad et  al., 2014). 
KDM5A-dependent H3K4me3 demethylation is required 
for Zinc finger and MYND (Myeloid, Nervy, and DEAF-
1) domain containing 8 (ZMYND8)–Nucleosome remod-
eling and histone deacetylation (NuRD) recruitment to DNA 
damage sites (Gong et al., 2017). KDM5B contributes to 
the recruitment of Ku70 and BRCA1 to facilitate efficient 
DSB repair (Li et al., 2014). The KDM7 subfamily consists 
of KDM7A (KIAA1718), KDM7B (plant homeodomain 

Table 2   Histone lysine-specific demethylases and DNA damage repair

Family Subfamily Alias Substrate Mechanism References

KDM1 KDM1A LSD1 H3K4me1/2 H2AX ubiquitylation, Fang et al., (2010)
KDM2 KDM2A

KDM2B
JHDM1A 

FBXL11 
JHDM1B 
FBXL10

H3K36me3
H3K36me2 H3K4me1

ATM substrate, PCNA dissociation Cao et al. (Cao, Shen, et al., 2016; 
Cao, Wei, et al., 2016), Kang et al., 
(2020)

KDM4 KDM4A KDM4B 
KDM4C 
KDM4D

JMJD2A 
JMJD2B 
JMJD2C 
JMJD2D

H3K9me2/3 
H3K36me2/3 
H1.4K26me2/3

53BP1 recruitment, Recruitment of 
ATM, Rad51 and 53BP1

Khoury-Haddad et al., (2014), Mal-
lette et al., (2012)

KDM5 KDM5A
KDM5B

JARID1A
JARID1B

H3K4me3
H3K4me3

Recruitment of ZMYND8–NuRD 
Recruitment of Ku70 and BRCA1

Gong et al., (2017), Liu et al., (2011)

KDM7 KDM7B
KDM7C

PHF8
PHF2

H4K20me1,
H3K9me2

ATR activation, Recruitment of 
53BP1 and BRCA1

Alonso-de Vega et al., (2020), Ma 
et al., (2021)
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finger-containing protein 8 [PHF8]), and KDM7C (PHF2). 
KDM7C has recently been found to control the forma-
tion of 53BP1 and BRCA1 (Alonso-de Vega et al., 2020). 
Although many KDMs are reported to accumulate at DSB 
sites, our knowledge of most KDMs is largely lacking. The 
functions of two demethylases those are responsible for dif-
ferent forms of the same methylation site could be opposite. 
For example, deficiency of KDM1A, the demethylase of 
H3K4me2, increased the HR repair efficiency, whereas loss 
of KDM5A/B, the demethylases of H3K4me2/3, impaired 
HR (Li et al., 2014; Mosammaparast et al., 2013). This con-
tradiction might indicate that additional non-histone sus-
trates are involved.

Histone H4 lysine 20 methylation

H4K20 was one of the earliest described histone modifi-
cations was discovered in 1969 and forms the majority of 
lysine residue methylation on the H4 N-terminal tail (Fang 
et al., 2002; Schotta et al., 2004). Studies have shown that 
H4K20 must first be mono-methylated then di- and tri-
methylated (Weirich et al., 2016; Wu et al., 2013). Several 

different methyltransferases and demethylases have been 
identified that regulate H4K20 methylation in mammals 
(Beck et  al., 2012; Oda et  al., 2010) (Fig. 3). KMT5A 
was previously recognized as the only mono-methyltrans-
ferase, whereas H4K20me2 and H4K20me3 are catalyzed 
by KMT5B/KMT5C (Nishioka et al., 2002; Schotta et al., 
2008). KDM7B demethylates H4K20me1, while the dem-
ethylase for H4K2/3 is still largely unclear (Qi et al., 2010). 
Of note, KDM7B may not be the sole histone demethylase 
for H4K20me1, as KDM7B is not present in yeast (Klose 
et al., 2006), while H4K20me1 is (Edwards et al., 2011; 
Sanders et al., 2004). Consistent with this notion, using 
high-content cell-based screening of 2500 nuclear proteins, 
hHR23A was identified as a demethylase for H4K20me1/2/3 
(X. Cao et al., 2020). In addition, DPY-21 was recently also 
found to be an H4K20me2 demethylase (Brejc et al., 2017). 
Since the expression and activity of KMT5A are regulated 
by the cell cycle, the methylation state of H4K20 exhibits 
dynamic change (Liu et al., 2010) (Fig. 4). H4K20me1 is 
in decline during the G1 phase, leading to the accumula-
tion of the unmodified form of H4K20 at the beginning of 
the S phase. H4K20me1 accumulates at the G2/M phase 
and then is gradually converted to H4K20me2/3 (Oda et al., 

Fig. 3   Schematic diagram of 
H4K20 methylation. The differ-
ent methylation states of H4K20 
with the various mammalian 
enzymes that perform these 
post-translational modifications 
are shown
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2009; Pesavento et al., 2008). H4K20 methylation plays an 
essential role in chromatin compaction, genome integrity, 
DNA damage repair, and DNA replication (Jorgensen et al., 
2013). H4K20me1 and H4K20me2 are often associated with 
DNA damage repair and DNA replication after exposure to 
DNA damaging agents, whereas H4K20me3 is associated 
with the silencing of the heterochromatic state (Jorgensen 
et al., 2013).

Histone H4 lysine 20 mono‑methylation

The fundamental role of H4K20me1 in DNA repair comes 
from analyses of the first identified mono-methyltransferase, 
KTM5A (Lu et al., 2021). Deletion of KTM5A results in 
lethality in mice because of the huge numbers of DSBs 
(Oda et al., 2009). In mammalian cells, RNA interference of 
KTM5A expression leads to increased γH2AX foci, recruit-
ment of DNA repair proteins, and activation of DNA dam-
age checkpoint (Paulsen et al., 2009; Sakaguchi & Steward, 
2007). The significant role of KTM5A in DNA damage 
may partially lie in its regulation of the cell cycle, as it was 
shown that defects in KTM5A and H4K20me1 demethyla-
tion result in a delay in G1-S transition (W. Liu et al., 2010). 

In addition, loss of KTM5A causes DNA damage, specifi-
cally during DNA replication, which is abrogated by the co-
depletion of RAD51, a critical HR repair factor. H4K20me1 
functions in DNA damage in direct and indirect ways. On 
one hand, KMT5A-mediated H4K20me1 directly regulates 
chromatin structure, without other cofactors, to contribute 
to DNA repair. On the other hand, H4K20me1 serves as a 
platform for cooperation with its binders, including 53BP1, 
L3MBTL1, condensin II, and PCNA.

BRCA1 and 53BP1 play essential roles in DNA repair 
with HR and NHEJ, respectively (Shibata, 2017). 53BP1 is 
the DNA damage checkpoint protein required for an efficient 
NHEJ pathway (FitzGerald et al., 2009), and in the absence 
of 53BP1, BRCA1 promotes repair through the HR pathway 
(Shibata, 2017). RNF8 and RNF168 cause the ubiquitina-
tion of H2AK15 via its ubiquitination dependent recruit-
ment (UDR) motif; then H2AK15ub is recognized by 53BP1 
and facilitates 53BP1 foci formation in the NHEJ pathway 
(Fradet-Turcotte et al., 2013) (Fig. 5).

H4K20me1 is linked to 53BP1 in the DDR, an asso-
ciation that was first identified in Schizosaccharomyces 
pombe. Crb9, the homolog of 53BP1, binds to Set9-cata-
lyzed H4K20me1 for its recruitment to DNA damage sites 

Fig. 4   Diagram of H4K20 methylation during cell cycle regulation. The dynamics of H4K20me1/2/3 and established enzymes during cell cycle 
progression are depicted
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(Sanders et al., 2004), an interaction that is also present in 
mammalian cells (Botuyan et al., 2006). A further study 
found that the tandem Tudor domain of 53BP1 is conserved 
and required for its recruitment. Knockdown of KMT5A 
inhibits 53BP1 recruitment to DNA damage sites and blocks 
checkpoint signaling, validating the idea that H4K20me1 
contributes to 53BP1 recruitment (Oda et al., 2010). Inter-
estingly, several studies demonstrated that Cullin ring-finger 
ubiquitin ligase 4 (CRL4, Cdt2) degrades chromatin-bound 
KMT5A via the PCNA-interacting motif (PIP-box). How-
ever, there is no increase in H4K20 methylation or recruit-
ment of 53BP1 before KMT5A degradation (Abbas et al., 
2010; Centore et al., 2010; Jorgensen et al., 2007). In addi-
tion, 53BP1 transfers to damaged sites even in the absence of 
KTM5A, indicating that there are other proteins and histone 
modifications involved in the 53BP1 recruitment platform 
and that KMT5A has other functions in addition to 53BP1 
recruitment (Jorgensen et al., 2007; Tardat et al., 2007). 

In support of this notion, the ectopic expression of a non-
degradable form of KMT5A led to chromatin condensation, 
activation of the DDR, and cell cycle progression failure 
(Beck et al., 2012).

Another factor that is recruited by H4K20me1 is 
L3MBTL1 (Trojer et al., 2007), which directly binds com-
ponents of the replication machinery, potentially linking 
H4K20me1 with genome instability (Gurvich et al., 2010). 
Condensin II was also discovered to recognize H4K20me1 
through its N-CAPD3 and N-CAPG2 subunits via two 
Huntingtin, elongation factor 3, protein phosphatase 2A, 
and lipid kinase TOR domains, and it is involved in mitotic 
progression (Liu et al., 2010).

Histone H4 lysine20 di/tri‑methylation

H4K20me2 is an extremely abundant marker exhibited by 
more than 80% of nucleosomes, whereas H4K20me1 and 

Fig. 5   53BP1 is highly correlated with H4K20 methylation during 
DDR. A Essential methyltransferases of H4K20me/1/2/3 are known 
as KMT5A/B/C. KDM4A and KDM7B regulate H4K20 di/tri-dem-
ethylation. The crosstalk between H4K20 and H4K16 is also indi-

cated. B 53BP1 binds to H4K20me/1/2/3 to facilitate DDR through 
the NHEJ pathway. After DSBs, ATM is auto-phosphorylated and 
further phosphorylates H2AX. RNF8/RNF168 ubiquitinates H2AK15 
and disturbs the association of 53BP1 and H4K20 methylation
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H4K20me3 are present at comparably low levels. KMT5B 
and KMT5C are responsible for most of the di- and tri-
methylation of H4K20, respectively (Schotta et al., 2004). 
KMT5B and KMT5C require SAM as a co-factor in the 
transfer of a methyl group to proteins, lipids, or nucleic acid 
substrates (Schotta et al., 2004; Southall et al., 2014; Wu 
et al., 2013). The KMT5B/C enzymes are characteristics of 
the DDR; they maintain telomere length and regulate hetero-
chromatin compaction, and therefore are linked to genome 
instability (Schotta et al., 2008). In human cells, an inhibi-
tor of KMT5B/C (A-196) has been shown to significantly 
impact genome integrity (Bromberg et al., 2017).

H4K20me2 has been observed to further accumulate at 
DNA-damage sites and to play a role in DNA-damage repair 
mainly by serving as a 53BP1-binding platform (Pei et al., 
2011). In agreement with this, KMT5A was reportedly insuf-
ficient for 53BP1 recruitment. The de novo H4K20me1 facil-
itates KTM5B/C recruitment and catalyzes H4K20me2/3 
to regulate 53BP1 binding (Tuzon et al., 2014). Actually, 
peptide-affinity studies suggested that 53BP1 has a higher 
affinity for H4K20me2 peptide than for H4K20me1 pep-
tide (Schotta et al., 2004). KTM5B/C double-knockout cells 
showed significantly delayed 53BP1 foci formation (Schotta 
et al., 2008). In addition to KTM5B/C, multiple myeloma 
SET domain-containing protein (MMSET), the primary 
methyltransferase for H3K36me, has also been identified as 
a methyltransferase for H4K20me2/3, but not H4K20me1. 
The downregulation of MMSET significantly decreases the 
accumulation of 53BP1 (Pei et al., 2011). Besides meth-
yltransferases, several other proteins containing a Tudor 
domain bind to H4K20me2 to regulate 53BP1 recruitment 
in response to DNA damage. KDM4A competes with 53BP1 
for binding to H4K20me2 and facilitates 53BP1 movement 
to sites of damage; KDM4A is degraded in an RNF8- and 
RNF168-dependent manner after DNA damage (Mallette 
et al., 2012). In contrast to human L3MBTL1, which mainly 
binds to H4K20me1, dl(3)MBT binds to all three methylated 
H4K20 peptides in Drosophila cells, with the highest affinity 
being for H4K20me1/2 (Scharf et al., 2009). The ATPase 
activity of valosin-containing protein promotes the release of 
L3MBTL1 from chromatin; L3MBTL1 binds to H4K20me2, 
thereby facilitating 53BP1 recruitment (Acs et al., 2011). 
Other histone modifications can occupy 53BP1 to disrupt 
its binding with H4K20me2 and thus direct DNA repair. 
H3K79me2 is primarily responsible for 53BP1 binding in 
budding yeast (Chen & Zhu, 2016). In human cells, although 
both methylations H3K79 and H4K20 are able to bind to 
53BP1, H4K20 methylation binds more tightly. Addition-
ally, TIP60-catalyzed H4K16ac impacts the ability of 53BP1 
to bind neighboring H4K20me2 (Panier & Boulton, 2014; 
Tang et al., 2013). Similarly, 53BP1 recognizes mononu-
cleosomes containing both H4K20me2 and H2AK15ub as 
a dimer using its methyl-lysine-binding Tudor domain and 

UDR motif, respectively (Fradet-Turcotte et al., 2013). Inter-
estingly, the ubiquitylation of H2AK15 by RNF168 can be 
blocked by Tat-interactive protein 60-kDa (Tip60)-catalyzed 
acetylation of H2AK15 in cis form (Jacquet et al., 2016); 
therefore, TIP60 regulates 53BP1-dependent repair through 
the competitive bivalent modification of chromatin.

H4K20me3 is enriched in constitutive heterochromatin 
and regulates the stability of telomere and heterochroma-
tin structures (Jorgensen et al., 2013). Because the specific 
partner proteins of H4K20me3 are unknown, the detailed 
mechanisms of how H4K20me3 regulates heterochromatin 
and DNA damage are not understood.

Histone H4 lysine20 demethylation

KDM7B is the first reported demethylase of H4K20me1 that 
is also linked to the enzymes related to cell cycle progres-
sion and proliferation (Liu et al., 2010) (Yatim et al., 2012). 
The stabilization of histone demethylase KDM7B by ubiq-
uitin specific protease 7 is augmented during DNA damage 
(Wang et al., 2016). Replication stress results in KDM7B 
phosphorylation and dissociation from topoisomerase IIβ-
binding protein 1 (TOPBP1). Consequently, hypomethylated 
TOPBP1 facilitates RADiation-sensitive 9-binding to chro-
matin to fully activate ATR and thus safeguard the genome 
and protect cells against replication stress (Feng et al., 2020; 
Ma et al., 2021). Although many studies have observed the 
role of KDM7B in transcription silencing, further studies 
are needed to elaborate on the role of KDM7B in the DDR.

Perspectives and concluding remarks

In contrast to DNA methylation, which only exists in higher 
eukaryotes, histone methylation is conserved in organisms 
such as Drosophila melanogaster and C. elegans, in which 
DNA methylation is absent. In addition, histone methylation 
is a reversible event that is modified by methyltransferases 
and demethylases. Therefore, dynamic histone methylation 
is indispensable for maintaining normal biological function. 
During the past two decades, there has been several pro-
gress are reported to be regulated by H4K20 methylation. 
On one hand, H4K20 methylation is able to directly affect 
chromatin compaction. On the other hand, different degrees 
of H4K20me serve as a binding platform for a variety of 
effectors, and therefore, the modification is associated with 
diverse functions. The identification of novel proteins that 
either regulate H4K20 modulators or recognize different 
degrees of H4K20 methylation will enrich our knowledge 
of the roles of H4K20 methylation.

Methylation can occur at multiple different sites on the 
same histone, and one site can incur different modifications. 
Different combinations of histone modifications can alter 
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the recognition and binding of DDR factors. For example, 
H4K16ac adjacent to H4K20me2 affects 53BP1 binding 
through the disruption of H4K16 and Tudor domain inter-
actions (Lu et al., 2019). Because histone methylation marks 
do not appear in isolation, it is important to determine the 
collaborative and antagonistic relationships among different 
histone marks.

The importance of histone methylation is also being dem-
onstrated by emerging evidence that links histone methyla-
tion to disease and ageing. At present, a select group of 
demethylase inhibitors is being evaluated in clinical trials 
(Wen et al., 2019). One of the most studied inhibitors is tra-
nylcypromine, which efficiently inhibits KDM1A by forming 
a covalent adduct with the FAD cofactor, and two clinical 
trials using tranylcypromine to cure acute myeloid leukemia 
and myelodysplastic syndrome are underway (Jambhekar 
et al., 2017). The removal of H4K20 methyltransferases 
results in lethality, and loss of H4K20me3 is a hallmark of 
many human cancers. However, there are still no specific 
inhibitors of H4K20me demethylases. Developing highly 
efficient inhibitors is of significance to transfer our under-
standing of methylation from the bench to the bedside.
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