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Abstract
N-acetyltransferase 10 catalyzes RNA N4-acetylcytidine (ac4C) modifications and thus regulates RNA stability and transla-
tion efficiency. However, the deacetylase for ac4C is unknown. SIRT7 was initially identified as an  NAD+-dependent pro-
tein deacetylase and plays essential roles in genome stability, circadian rhythms, metabolism, and aging. In this study, we 
identified SIRT7 as a deacetylase of the ac4C of ribosomal (r)RNA for the first time and found it to be  NAD+-independent. 
Our data highlight the important role of SIRT7 in rRNA ac4C modification and suggest an additional epitranscriptional 
regulation of aging.
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Introduction

RNAs can be covalently modified, e.g., N1-methyladen-
osine, N4-acetylcytidine (ac4C), N6-methyladenosine, 
N7-methylguanosine, and 5-methylcytidine, etc., most of 
which regulate the stability and translation efficiency of the 
target RNA (Wiener & Schwartz, 2021). Ac4C modification 
was first identified in yeast transfer (t)RNA almost 5 decades 
ago (Kowalski et al., 1971; Zachau et al., 1966). In 2014, 
Tsutomu Suzuki’s team found that KRE33, the Saccharo-
myces cerevisiae homolog of human N-acetyltransferase 
10 (NAT10), catalyzes the ac4C1773 of 18S ribosomal (r)
RNA, promoting the formation of pre-18S rRNA (Sharma 
et al., 2015). In humans, NAT10 catalyzes the ac4C1842 of 

18S rRNA (Ito et al., 2014a, 2014b). Using an antibody that 
recognizes ac4C, Oberdoerffer’s group expanded the scope 
of ac4C modification targets to mRNA, the upper part of 
which is extensively ac4C-modified by NAT10 thus to regu-
late mRNA stability and translation efficiency (Arango et al., 
2018; Sinclair et al., 2017). Like protein post-translational 
modifiers, the RNA-modifying enzymes and related factors 
are also categorized to three groups: writers, erasers, and 
readers. The identity of the ac4C eraser is undetermined 
(Jin et al., 2020).

Sirtuins are  NAD+-dependent deacylases and mono-
ADP-ribosyltransferases that target histones and numerous 
nonhistone substrates (O’Callaghan & Vassilopoulos, 2017). 
Of the seven mammalian sirtuins, SIRT7 is the only one that 
localizes in the nucleolus. So far, dozens of protein dea-
cetylation targets of SIRT7, including NPM1 (Ianni et al., 
2021; Lee et al., 2014), CRY1 (Liu et al., 2019), GABP-β1 
(Ryu et al., 2014), SMAD4 (Tang et al., 2017b), NFATC1 
(Li et al., 2020), USP39 (Dong et al., 2020), PCAF (Lu 
et al., 2020), and H3K36 (Wang et al., 2019) etc., have been 
identified, and dictate the pleiotropic function of SIRT7 
in genomic stability, lipid metabolism, circadian rhythms, 
hair regeneration, and aging (Tang, 2015; Yoshizawa et al., 
2014). Interestingly, SIRT7 binds to nascent pre-rRNA, 
deacetylates PAF53, and enhances the rDNA occupancy of 
RNA polymerase I (Chen et al., 2013; Ford et al., 2006). 
SIRT7 interacts with mTOR and GTF3C1, and thus, regu-
lates tRNA transcription and protein synthesis (Tsai et al., 
2014). The aim of this study was to determine if SIRT7 
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functions as a deacetylase for ac4C modification of rRNA. 
We tested the interaction of SIRT7 and NAT10, examined 
the effect of SIRT7 overexpression on RNA ac4C, and meas-
ured ac4C levels of 18S rRNA in the presence or absence of 
SIRT7 and  NAD+.

Materials and methods

Cell culture, plasmids and transfections

HEK293T and U2OS cells were cultured in DMEM medium 
(Corning) with 10% FBS (PAN) and 1% P/S (Gibco) at 
37 °C in a humidified atmosphere under 5%  CO2.

The following plasmids were used in this study: FLAG-
SIRT1-7, FLAG-NAT10 and HA-SIRT7, which were con-
structed by cloning full-length cDNA into the pCDNA3.1 
vector and indicated tags were added on the N-terminal. 
GFP-SIRT7 was constructed by cloning full-length SIRT7 
cDNA into the pEGFP-C1 vector. GST-SIRT7, GST-
SIRT7 (H187Y), GST-SIRT7 (RNAmut) and GST-SIRT7 
(H187Y+RNAmut) were constructed by cloning full-length 
or mutant SIRT7 cDNA into the pGEX-4T-2 vector. The 
conserved catalytic base His187 of SIRT7 was substituted 
to Tyr in GST-SIRT7 (H187Y) mutant. The potential SIRT7 
Protein-RNA binding motif 392KRTKRKK398 was mutated 
to 392AAA AAA A398 in GST-SIRT7 (RNAmut) mutant 
(Tong et al., 2017). GST-SIRT7 (H187Y+RNAmut) is dou-
ble mutated with H187Y and RNAmut. Plasmid transfec-
tions were performed with Lipofectamine 3000 (Invitrogen) 
according to the manufacturer’s instructions.

Recombinant protein preparation

The GST-SIRT7, -SIRT7 (H187Y), -SIRT7 (RNAmut), 
and -SIRT7 (H187Y+RNAmut) were expressed in E. coli 
BL21 (DE3) strain induced with IPTG (1 mM). Cell pellets 
were first resuspended in BC500 buffer (25 mM Tris–HCl 
pH7.3, 500 mM NaCl, 0.5% Triton X-100 and 20% glycerol) 
containing DTT (1 mM) and then were disrupted by soni-
cation. Cleared cell lysates were incubated overnight with 
Glutathione Sepharose (GE Healthcare) at 4 ℃. The beads 
were washed with BC500 buffer once, and further washed 
with BC100 buffer (25 mM Tris–HCl pH7.3, 100 mM NaCl, 
0.5% Triton X-100 and 20% glycerol) three times. Proteins 
were then eluted with Reduced Glutathione (Amresco) and 
stored at – 80 ℃.

Antibodies

The following antibodies were used in this study: Anti-
FLAG M2(F3165, Sigma), Anti-NAT10 (ab194297, 

Abcam), Anti-HA Tag (3724, CST), Anti-Ack (PTM-105, 
PTM BIO), Anti-ac4C (ab252215, Abcam).

Immunoprecipitation and western blotting

HEK293T cells treated with the indicated transfections 
were harvested in lysis buffer [20 mM Tris–HCl (pH 7.5), 
300 mM NaCl, 10% glycerol, 0.1 mM EDTA, 0.1% NP-40, 
and a complete protease inhibitor cocktail]. Cell lysates were 
incubated with 1 µg of the respective antibodies and then 
crosslinked to protein A/G agarose beads at 4 °C overnight 
with rotation. The bead-bound immunoprecipitates were 
washed with lysis buffer and boiled in SDS sample load-
ing buffer. The inputs and immunoprecipitated products 
were resolved using SDS-PAGE and transferred to PVDF 
membranes (Millipore, USA). The membranes were blocked 
in 5% milk in Tris-buffered saline and Tween 20 [TBST: 
150 mM NaCl, 20 mM Tris–HCl (pH 7.6), 0.05% Tween 20] 
for 1 h at room temperature and subjected to immunoblotting 
with the indicated antibodies overnight at 4 °C. The mem-
branes were probed with Peroxidase-conjugated AffiniPure 
Goat Anti-Rabbit (or Mouse) IgG (H+L) (1:5000, Jackson 
ImmunoResearch Laboratories) for 1 h at room temperature, 
and visualized using an enhanced chemiluminescence kit 
(Pierce, USA) and in a Bio-Rad imaging system.

Immunofluorescence staining

U2OS cells transfected with the GFP-SIRT7 construct were 
fixed with 4% paraformaldehyde at 4 °C, then permeabilized 
with PBS containing 0.1% Triton X-100 for 15 min. Then, 
the cells were blocked with 1% bovine serum in PBS for 
30 min at room temperature. The coverslips were incubated 
with anti-NAT10 antibody (1:200) overnight at 4 °C, fol-
lowed by incubation with Alexa Fluor-conjugated second-
ary antibodies (1:500, Life Technologies) for 1 h at room 
temperature in the dark and mounted with DAPI-containing 
mounting medium. The images were captured under a confo-
cal microscope (Zeiss, Germany).

In vitro transcription of ac4C‑containing RNA probes

Complementary DNA (cDNA) was used as template for 
PCR amplification of 18S rRNA. 5′ primer contains the 
T7 promoter sequence 5′-CCA AGC TTC TAA TAC GAC 
TCA CTA TAG GGA GA-3′ (T7). To prepare templates for 
18S rRNA, the following primer pair was used: 5′- (T7) 
TAC CTG GTT GAT CCT GCC AGT AGC -3′ and 5′-TAA TGA 
TCC TTC CGC AGG TTC ACC -3′. ac4C-containing 18S 
rRNA probes were prepared using in vitro transcription of 
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PCR-amplified DNA templates with T7 RNA polymerases 
(Thermo) as recommended. For the modified transcripts, 
cytidine triphosphate (CTP) was replaced with ac4CTP 
in the reaction mix. The reaction was incubated for 2–4 h 
at 37 °C, followed by incubation with DNaseI (Thermo; 
1 U/1 µg of template DNA) for 30 min at 37 °C, and termi-
nated by 10 mM EDTA with incubation at 65 °C for 10 min. 
Then the RNA probes were extracted with Trizol and stored 
at – 80 ℃. The incorporation of ac4C into the RNA probe 
was assessed by dot blot.

SIRT7 in vitro deacetylase assay

We preincubated 300 ng of ac4C-containing 18S rRNA 
probes with 2  μg of the purified GST-SIRT7, GST-
SIRT7 (H187Y), GST-SIRT7 (RNAmut) and GST-SIRT7 
(H187Y+RNAmut) proteins respectively in the following 
buffer: 10 mM Tris pH 8.0, 2 mM  MgCl2, 0.2 mM DTT, and 
10% glycerol either in the presence or absence of 2.5 mM 
 NAD+. The reaction was carried out in a 30 ℃ water bath 
for 1 h. The RNA probe was then purified using Trizol and 
transferred onto Amersham Hybond-N+ membranes for fur-
ther dot blot analysis.

ac4C detection by dot blotting

Dot blotting was performed using rabbit monoclonal anti-
ac4C antibody (#ab252215, Abcam). Briefly, total RNA 
or in vitro transcribed probes were loaded onto Hybond-
N+ membranes, crosslinked at 120,000 μJ/cm2, blocked with 
5% non-fat milk in 0.1% Tween-20 TBS (TBST) for 30 min 
at room temperature, and probed overnight with the anti-
ac4C antibody in 5% non-fat milk (1:1000) at 4 ℃. Mem-
branes were washed four times with 0.1% TBST, incubated 
with Peroxidase-conjugated AffiniPure Goat Anti-Rabbit 
IgG (H+L) (1:5000, Jackson ImmunoResearch Laborato-
ries) for 1 h at room temperature, and visualized using an 
enhanced chemiluminescence kit (Pierce, USA) on Bio-Rad 
imaging system.

ac4C detection by immuno‑northern blotting

HEK293T cells were transfected with vector or FLAG-
SIRT7 plasmids for 48 h and total RNAs were isolated. 
Equal amounts of total RNA (20 μg) were mixed with 
formaldehyde denaturing loading dye, incubated at 65℃ 
for 15 min and separated on 1% agarose denaturing gel 
containing nucleic acid dye. The gel was verified by 
UV imaging before transfer. RNA was transferred onto 
Hybond-N + membranes (GE Healthcare) by capillary 
transfer using 20×SSC buffer [3 M NaCl, 0.3 M sodium 
citrate, (pH 7.0)]. Membranes were then blotted with anti-
ac4C antibodies.

18S rRNA degradation assay

To measure the degradation rate of 18S rRNA, HEK293T 
cells were transfected with vector, FLAG-SIRT7 plasmids, 
control or siSIRT7 siRNA for 48 h. The expression of 18S 
rRNA was shut off by adding actinomycin D (2 μg/ml) into 
the cell culture medium for 5 h, and total RNA was isolated 
and subjected to quantitative RT-PCR analysis. The primer 
sequences are as follows: 18S forward: 5′-CAG CCA CCC 
GAG ATT GAG CA-3′ and reverse: 5′-TAG TAG CGA CGG 
GCG GTG TG-3′; GAPDH forward: 5′- CAC CCA CTC CTC 
CAC CTT TG-3′ and reverse: 5′-CCA CCA CCC TGT TGC 
TGT AG-3′.

Statistical analysis

A two-tailed Student’s t test was used to determine the statis-
tical significance of group differences. All data are presented 
as the means ± s.d. or means ± s.e.m. as indicated, and a p 
value of < 0.05 was considered statistically significant.

Results

SIRT7 interacts with NAT10

The ac4C acetylase activity of NAT10 is related to its acety-
lation state (Cai et al., 2017). We thus examined the interac-
tion between sirtuins and NAT10 with the assumption that 
sirtuins might indirectly regulate ac4C level. As shown, 
western blotting of the anti-FLAG immunoprecipitates from 
HEK293T cells overexpressing FLAG-tagged sirtuins dem-
onstrated that, of the seven sirtuin members, FLAG-SIRT7 
had the highest NAT10-binding capacity (Fig. 1a). This was 
confirmed by detection of FLAG-NAT10 in anti-HA immu-
noprecipitates from HEK293T cells overexpressing FLAG-
NAT10 with or without HA-SIRT7 (Fig. 1b). Reciprocally, 
HA-SIRT7 was observed in the anti-FLAG immunoprecipi-
tates from HEK293T cells overexpressing HA-SIRT7 with 
or without FLAG-NAT10 (Fig. 1c). Further co-immunoflu-
orescence staining indicated that NAT10 and GFP-SIRT7 
co-localized in the nucleoli (Fig. 1d). We found that levels 
of pan-acetyl-lysine in the anti-NAT10 immunoprecipitates 
were comparable in the presence and absence of ectopic 
HA-SIRT7 (Fig. 1e), implicating that SIRT7 unlikely affects 
the ac4C level, if any, via deacetylating and modulating the 
acetylase activity of NAT10.

SIRT7 is a deacetylase of 18S rRNA ac4C

Next, we examined whether SIRT7 would directly affect the 
ac4C level of RNA. The overexpression of ectopic SIRT7 dis-
tinctly decreased the ac4C levels of the total RNA purified 
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from HEK293T cells (Fig. 2a, b). To test whether SIRT7 
is a deacetylase of ac4C, we purified recombinant human 
SIRT7, obtained 18S rRNA with incorporated ac4CTP via 
in vitro transcription, and carried out an in vitro deacetylation 
assay. The incubation with GST-SIRT7 significantly down-
regulated the levels of ac4C (Fig. 2c, d), and the presence 
of NAD+ only slightly reduced the ac4C level. The H187Y 
mutation of SIRT7 blocks its deacetylation activity towards 
protein targets (Mitra & Dey, 2020), and the SIRT7 muta-
tion 392KRTKRKK398 (SIRT7 RNAmut) inhibits its bind-
ing to RNAs (Tong et al., 2017). Both SIRT7 H187Y and 
RNAmut significantly attenuated the deacetylase activity of 
ac4C on 18S rRNA, and an additive effect was observed with 
the double mutant (Fig. 2e, f). We next examined the effect 
of SIRT7 manipulation in mammalian cells. Overexpression 
of SIRT7 largely downregulated the ac4C level of 18S rRNA 
in HEK293T cells, determined by immuno-northern blot-
ting (Fig. 2g). Further degradation assay revealed that SIRT7 

overexpression significantly accelerated 18S rRNA degrada-
tion, while knockdown of SIRT7 significantly stabilized 18S 
rRNA (Fig. 2h). Together, these data support SIRT7 as a dea-
cetylase of ac4C modification on 18S rRNA.

Discussion

Post-transcriptional modifications on RNAs, globally 
termed epitranscriptome, provide additional layers of 
response to environmental and endogenous stresses 
(Roundtree et  al., 2017). Ac4C modification was evi-
denced decades ago, however, until recently and with 
the development of new molecular techniques, research-
ers have been able to reveal details of global ac4C; it has 
been mainly found in rRNA and tRNA, and with only a 
small fraction in mRNA (Sas-Chen et al., 2020; Thala-
lla Gamage et al., 2021). NAT10 is the only identified 
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Fig. 1  SIRT7 interacts and colocalizes with NAT10 in the nucleolus. 
a Representative immunoblots showing NAT10 in the anti-FLAG 
immunoprecipitates from HEK293T cells overexpressing FLAG-
tagged sirtuins (SIRT1-7). b Representative immunoblots showing 
FLAG-NAT10 in the anti-HA immunoprecipitates from HEK293T 
cells overexpressing FLAG-NAT10 with or without HA-SIRT7. c 
Representative immunoblots showing HA-SIRT7 in the anti-HA 

immunoprecipitates from HEK293T cells overexpressing HA-SIRT7 
and with or without FLAG-NAT10. d Representative immunofluores-
cence microscopic images showing colocalized endogenous NAT10 
and ectopic GFP-SIRT7 in U2OS cells. e Representative immunob-
lots showing pan-acetyl-lysine (AcK) levels in the anti-FLAG-NAT10 
immunoprecipitates from HEK293T cells overexpressing FLAG-
NAT10 and with or without HA-SIRT7
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acetyltransferase that catalyzes ac4C modification. Given 
essential and common roles of SIRT7, as an acylation 
eraser, and of NAT10, as an ac4C RNA acetylation writer, 
in the regulation of aging, we speculated that SIRT7 may 
serve as an eraser of ac4C, and RNA ac4C might regulate 
aging. There was a clear decrease in the ac4C levels in 
the total RNA of HEK293T cells when SIRT7 was over-
expressed. Both SIRT7 H187Y and RNAmut attenuated 

the deacetylase activity of ac4C on 18S rRNA. Thus, our 
data support the hypothesis that SIRT7 is a deacetylase of 
ac4C. We also found that the absence of  NAD+ had little 
effect on the activity of SIRT7; therefore, its deacetylase 
activity appears to be  NAD+-independent. Of note SIRT7 
was previously reported to regulate the production of pre-
rRNA and small nucleolar RNAs (snoRNAs) through the 
core components of the U3 snoRNP complex U3-55 k 
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Fig. 2  SIRT7 deacetylates ac4C rRNA. a Representative dot blot 
showing the levels of ac4C of total RNA from HEK293T cells with 
ectopic SIRT7 overexpression or mock (vector) treatment. b Quan-
tification of a, showing significantly reduced ac4C levels in SIRT7-
overexpressing cells. c Representative dot blot showing ac4C levels 
of 18S rRNA (in vitro transcribed to incorporate ac4CTP) in the 
presence or absence of GST-SIRT7 and/or NAD+ . d Quantification 
of c, showing significantly reduced ac4C levels in the presence of 
GST-SIRT7 regardless of  NAD+. e Representative dot blot showing 

ac4C levels of 18S rRNA in the presence of indicated SIRT7 recom-
binant proteins. f Quantification of e, showing significantly reduced 
ac4C levels in the presence of GST-SIRT7. The effect was reduced 
in the case of the mutant SIRT7. g Representative images of aga-
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18S rRNA in HEK293T cells with indicated SIRT7 manipulations. 
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(Chen et al., 2016). We recently found that sirtuin SIRT6 
recognizes double strand breaks and potentiates the DNA 
damage response (Meng et al., 2020). Whether SIRT6 and 
other sirtuins also deacetylate ac4C merits investigation.

Aging is accompanied by a gradual decline in sirtuin 
levels and/or activities, as well as  NAD+ levels, making 
sirtuins some of the most viable targets for anti-aging treat-
ments (Covarrubias et al., 2021). Research using geneti-
cally engineered animals affirms that loss of expression 
of the sirtuin genes Sirt1, Sirt3, Sirt6, or Sirt7 accelerates 
aging, while the overexpression of Sirt1, Sirt3, or Sirt6 
potentially extends lifespans (Araki et al., 2015; Kanfi 
et al., 2012; Kawahara et al., 2009; Satoh et al., 2013; 
Vakhrusheva et al., 2008; Vazquez et al., 2016). SIRT7 is 
mainly localized in the nucleolus, and the levels gradually 
decrease during aging (Kiran et al., 2013). Accumulating 
evidence suggests SIRT7 as a stress sensor in physiologi-
cal homeostasis (Sun et al., 2016; Yan et al., 2018; Yu 
et al., 2017). Exemplified by genotoxic stresses, SIRT7 is 
released from the nucleolus desuccinylates H3K122, dea-
cetylates H4K18, and deglutarylates H4K91 to modulate 
chromatin confirmation, and facilitates the recruitment of 
53BP1, enhancing the DNA damage response (Bao et al., 
2019; Barber et al., 2012; Li et al., 2016; Vazquez et al., 
2016). SIRT7 deacetylates and promotes the dephospho-
rylation of ATM after successful DNA repair (Tang et al., 
2019), and its 5-fluorouracil-induced reduction promotes 
cancer radiosensitivity (Tang et al., 2017a). SIRT7 also 
cooperates with Myc activity to suppress ER stress (Shin 
et al., 2013), and the aging-related decline in SIRT7 com-
promises the regenerative capacity of hematopoietic stem 
cells by increasing mitochondrial protein-folding stress 
(Mohrin et al., 2015). Our data revealed SIRT7 as a novel 
epitranscriptional regulator of stress response.

NAT10 is mainly located in the nucleolus and is essential 
for nucleolus assembly during mitosis (Shen et al., 2009). 
NAT10 overexpression causes telomere shortening (Fu & 
Collins, 2007), and induces micronuclei formation in tumor 
cells, activating cGAS and leading to the production of the 
senescence-related secretory phenotype, a hallmark of cel-
lular senescence (Cao et al., 2020). Recently, it has been 
reported that the increase in oxidative stress in elderly indi-
viduals increases cell ac4C levels and, thus, accelerates the 
degradation of tRNA, which leads to IL-1β production (Fur-
man et al., 2017). In addition, pharmaceutical inhibition and 
genetic ablation of NAT10 can rescue progeroid features 
of cells and mouse models for Hutchinson-Gilford prog-
eria syndrome, a premature aging disease (Balmus et al., 
2018; Larrieu et al., 2014, 2018; Wilson, 2018). We found 
that NAT10 is unlikely to be a protein-deacetylating target 
of SIRT7, as comparable levels of pan-acetyl-lysine were 
observed in the anti-NAT10 immunoprecipitates in both 
the presence and absence of ectopic HA-SIRT7. Of note, 

another sirtuin member, SIRT1, deacetylates NAT10 to acti-
vate autophagy and enhance cell survival (Cai et al., 2017; 
Liu et al., 2018). It is, therefore, hypothesized that the ac4C 
modification plays a role in aging.

Our study provides the first evidence that SIRT7 is an 
eraser of RNA ac4C, and couples longevity-promoting 
sirtuins to epitranscriptomic regulation. Evidence points 
towards ac4C modification being involved in the regulation 
of aging, and this hypothesis merits further investigation.
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